Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397215

RESUMO

Water deficit caused by osmotic stress and drought limits crop yield and tree growth worldwide. Screening and identifying candidate genes from stress-resistant species are a genetic engineering strategy to increase drought resistance. In this study, an increased concentration of mannitol resulted in elevated expression of thioredoxin f (KcTrxf) in the nonsecretor mangrove species Kandelia candel. By means of amino acid sequence and phylogenetic analysis, the mangrove Trx was classified as an f-type thioredoxin. Subcellular localization showed that KcTrxf localizes to chloroplasts. Enzymatic activity characterization revealed that KcTrxf recombinant protein possesses the disulfide reductase function. KcTrxf overexpression contributes to osmotic and drought tolerance in tobacco in terms of fresh weight, root length, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) production. KcTrxf was shown to reduce the stomatal aperture by enhancing K+ efflux in guard cells, which increased the water-retaining capacity in leaves under drought conditions. Notably, the abscisic acid (ABA) sensitivity was increased in KcTrxf-transgenic tobacco, which benefits plants exposed to drought by reducing water loss by promoting stomatal closure. KcTrxf-transgenic plants limited drought-induced H2O2 in leaves, which could reduce lipid peroxidation and retain the membrane integrity. Additionally, glutathione (GSH) contributing to reactive oxygen species (ROS) scavenging and transgenic plants are more efficient at regenerating GSH from oxidized glutathione (GSSG) under conditions of drought stress. Notably, KcTrxf-transgenic plants had increased glucose and fructose contents under drought stress conditions, presumably resulting from KcTrxf-promoted starch degradation under water stress. We conclude that KcTrxf contributes to drought tolerance by increasing the water status, by enhancing osmotic adjustment, and by maintaining ROS homeostasis in transgene plants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Tiorredoxinas de Cloroplastos/genética , Tiorredoxinas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/metabolismo , Rhizophoraceae/química , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Secas , Frutose/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Manitol/toxicidade , NADH NADPH Oxirredutases/metabolismo , Pressão Osmótica , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência , Nicotiana/efeitos dos fármacos , Regulação para Cima , Água/metabolismo
2.
J Exp Bot ; 70(3): 1005-1016, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476130

RESUMO

The activity of the protein kinase STN7, involved in phosphorylation of the light-harvesting complex II (LHCII) proteins, has been reported as being co-operatively regulated by the redox state of the plastoquinone pool and the ferredoxin-thioredoxin (Trx) system. The present study aims to investigate the role of plastid Trxs in STN7 regulation and their impact on photosynthesis. For this purpose, tobacco plants overexpressing Trx f or m from the plastid genome were characterized, demonstrating that only Trx m overexpression was associated with a complete loss of LHCII phosphorylation that did not correlate with decreased STN7 levels. The absence of phosphorylation in Trx m-overexpressing plants impeded migration of LHCII from PSII to PSI, with the concomitant loss of PSI-LHCII complex formation. Consequently, the thylakoid ultrastructure was altered, showing reduced grana stacking. Moreover, the electron transport rate was negatively affected, showing an impact on energy-demanding processes such as the Rubisco maximum carboxylation capacity and ribulose 1,5-bisphosphate regeneration rate values, which caused a strong depletion in net photosynthetic rates. Finally, tobacco plants overexpressing a Trx m mutant lacking the reactive redox site showed equivalent physiological performance to the wild type, indicating that the overexpressed Trx m deactivates STN7 in a redox-dependent way.


Assuntos
Tiorredoxinas de Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28808108

RESUMO

Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism to control chloroplast proteins involved in biogenesis, in regulation of light harvesting and distribution of light energy between photosystems, in photosynthetic carbon fixation and other biosynthetic pathways, and in stress responses of plants. Of the two plant plastid thioredoxin systems, the ferredoxin-dependent system relays reducing equivalents from photosystem I via ferredoxin and ferredoxin-thioredoxin reductase (FTR) to chloroplast proteins, while NADPH-dependent thioredoxin reductase (NTRC) forms a complete thioredoxin system including both reductase and thioredoxin domains in a single polypeptide. Chloroplast thioredoxins transmit environmental light signals to biochemical reactions, which allows fine tuning of photosynthetic processes in response to changing environmental conditions. In this paper we focus on the recent reports on specificity and networking of chloroplast thioredoxin systems and evaluate the prospect of improving photosynthetic performance by modifying the activity of thiol regulators in plants.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Tiorredoxinas de Cloroplastos/genética , Produtos Agrícolas/fisiologia , Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Fotossíntese
4.
Plant Cell Environ ; 36(1): 16-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22646759

RESUMO

Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.


Assuntos
Arabidopsis/enzimologia , Tiorredoxinas de Cloroplastos/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Folhas de Planta/metabolismo , Amido/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/enzimologia , Ritmo Circadiano , Ativação Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Inativação de Genes , Luz , Oxirredução , Fotossíntese , Sacarose/metabolismo
5.
Plant Physiol ; 159(1): 118-30, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22452855

RESUMO

The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Liases/metabolismo , Pisum sativum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tetrapirróis/biossíntese , Agrobacterium/genética , Agrobacterium/metabolismo , Ácido Aminolevulínico/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Tiorredoxinas de Cloroplastos/genética , Ativação Enzimática , Inativação Gênica , Genes de Plantas , Homeostase , Dados de Sequência Molecular , Oxirredução , Pisum sativum/enzimologia , Pisum sativum/genética , Fenótipo , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Biotechnol J ; 9(6): 639-50, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21426478

RESUMO

Thioredoxins (Trxs) are small ubiquitous disulphide proteins widely known to enhance expression and solubility of recombinant proteins in microbial expression systems. Given the common evolutionary heritage of chloroplasts and bacteria, we attempted to analyse whether plastid Trxs could also act as modulators of recombinant protein expression in transgenic chloroplasts. For that purpose, two tobacco Trxs (m and f) with different phylogenetic origins were assessed. Using plastid transformation, we assayed two strategies: the fusion and the co-expression of Trxs with human serum albumin (HSA), which was previously observed to form large protein bodies in tobacco chloroplasts. Our results indicate that both Trxs behave similarly as regards HSA accumulation, although they act differently when fused or co-expressed with HSA. Trxs-HSA fusions markedly increased the final yield of HSA (up to 26% of total protein) when compared with control lines that only expressed HSA; this increase was mainly caused by higher HSA stability of the fused proteins. However, the fusion strategy failed to prevent the formation of protein bodies within chloroplasts. On the other hand, the co-expression constructs gave rise to an absence of large protein bodies although no more soluble HSA was accumulated. In these plants, electron micrographs showed HSA and Trxs co-localization in small protein bodies with fibrillar texture, suggesting a possible influence of Trxs on HSA solubilization. Moreover, the in vitro chaperone activity of Trx m and f was demonstrated, which supports the hypothesis of a direct relationship between Trx presence and HSA aggregates solubilization in plants co-expressing both proteins.


Assuntos
Tiorredoxinas de Cloroplastos/metabolismo , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Plastídeos/genética , Proteínas Recombinantes de Fusão/biossíntese , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/metabolismo , Chaperonas Moleculares/metabolismo , Plasmídeos/genética , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Albumina Sérica/genética , Albumina Sérica/metabolismo , Solubilidade , Transformação Genética
7.
FEBS Lett ; 583(17): 2827-32, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19631646

RESUMO

Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme of the oxidative pentose phosphate pathway supplying reducing power (as NADPH) in non-photosynthesizing cells. We have examined in detail the redox regulation of the plastidial isoform predominantly present in Arabidopsis green tissues (AtG6PDH1) and found that its oxidative activation is strictly dependent on plastidial thioredoxins (Trxs) that show differential efficiencies. Light/dark modulation of AtG6PDH1 was reproduced in vitro in a reconstituted ferredoxin/Trx system using f-type Trx allowing to propose a new function for this Trx isoform co-ordinating both reductive (Calvin cycle) and oxidative pentose phosphate pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/genética , Cisteína/metabolismo , Escuridão , Ferredoxinas/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA