Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.377
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Obesity (Silver Spring) ; 32(8): 1448-1452, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38979671

RESUMO

OBJECTIVE: This study aimed to determine a dopaminergic circuit required for diet-induced obesity in mice. METHODS: We created conditional deletion mutants for tyrosine hydroxylase (TH) using neurotensin receptor 1 (Ntsr1) Cre and other Cre drivers and measured feeding and body weight on standard and high-fat diets. We then used an adeno-associated virus to selectively restore TH to the ventral tegmental area (VTA) Ntsr1 neurons in conditional knockout (cKO) mice. RESULTS: Mice with cKO of Th using Vglut2-Cre, Cck-Cre, Calb1-Cre, and Bdnf-Cre were susceptible to obesity on a high-fat diet; however, Ntsr1-Cre Th cKO mice resisted weight gain on a high-fat diet and did not experience an increase in day eating unlike their wild-type littermate controls. Restoration of TH to the VTA Ntsr1 neurons of the Ntsr1-Cre Th cKO mice using an adeno-associated virus resulted in an increase in weight gain and day eating on a high-fat diet. CONCLUSIONS: Ntsr1-Cre Th cKO mice failed to increase day eating on a high-fat diet, offering a possible explanation for their resistance to diet-induced obesity. These results implicate VTA Ntsr1 dopamine neurons as promoting out-of-phase feeding behavior on a high-fat diet that could be an important contributor to diet-induced obesity in humans.


Assuntos
Dieta Hiperlipídica , Dopamina , Camundongos Knockout , Obesidade , Receptores de Neurotensina , Tirosina 3-Mono-Oxigenase , Área Tegmentar Ventral , Aumento de Peso , Animais , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/genética , Obesidade/metabolismo , Obesidade/etiologia , Camundongos , Área Tegmentar Ventral/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Masculino , Neurônios/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Dependovirus/genética , Peso Corporal
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000030

RESUMO

This study aimed to investigate, for the first time, the potential role of the gigantocellular nucleus, a component of the reticular formation, in the pathogenetic mechanism of Sudden Infant Death Syndrome (SIDS), an event frequently ascribed to failure to arouse from sleep. This research was motivated by previous experimental studies demonstrating the gigantocellular nucleus involvement in regulating the sleep-wake cycle. We analyzed the brains of 48 infants who died suddenly within the first 7 months of life, including 28 SIDS cases and 20 controls. All brains underwent a thorough histological and immunohistochemical examination, focusing specifically on the gigantocellular nucleus. This examination aimed to characterize its developmental cytoarchitecture and tyrosine hydroxylase expression, with particular attention to potential associations with SIDS risk factors. In 68% of SIDS cases, but never in controls, we observed hypoplasia of the pontine portion of the gigantocellular nucleus. Alterations in the catecholaminergic system were present in 61% of SIDS cases but only in 10% of controls. A strong correlation was observed between these findings and maternal smoking in SIDS cases when compared with controls. In conclusion we believe that this study sheds new light on the pathogenetic processes underlying SIDS, particularly in cases associated with maternal smoking during pregnancy.


Assuntos
Morte Súbita do Lactente , Humanos , Morte Súbita do Lactente/patologia , Morte Súbita do Lactente/etiologia , Feminino , Masculino , Lactente , Fatores de Risco , Estudos de Casos e Controles , Recém-Nascido , Gravidez , Tirosina 3-Mono-Oxigenase/metabolismo , Ponte/patologia , Ponte/metabolismo , Formação Reticular/patologia , Formação Reticular/metabolismo
3.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015077

RESUMO

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Assuntos
Canabinoides , Neurônios Dopaminérgicos , Ferro , Oxidopamina , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide , Animais , Masculino , Canabinoides/farmacologia , Ratos , Ferro/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Tirosina 3-Mono-Oxigenase/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia
4.
Toxicol Ind Health ; 40(9-10): 530-538, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39075981

RESUMO

The study aimed to investigate the combined effects of chlorpyrifos and cypermethrin combined on dopaminergic neurotoxicity, motor behaviours and level of selected inflammatory proteins in rats compared to either alone for delineating an interaction between these two pesticides. The rotarod and grip strength tests were employed to assess neurobehavioural changes. The striatal dopamine content and expression of tyrosine hydroxylase (TH), α-synuclein, cyclooxygenase-2 (COX-2), and tumour necrosis factor-α (TNF-α) proteins in the nigrostriatal tissue were measured. Chlorpyrifos impaired the neurobehavioural indexes, reduced the striatal dopamine level, augmented the level of α-synuclein, COX-2, and TNF-α and attenuated the expression of TH similar to but a little less than cypermethrin. Half the dose of both pesticides together produced additional neurotoxicity compared with the usual (highest employed) dose of either alone. The results showed that chlorpyrifos induced moderately less dopaminergic neurotoxicity than cypermethrin. In the combination, they produced a little higher toxicity than either pesticide alone.


Assuntos
Clorpirifos , Dopamina , Neurônios Dopaminérgicos , Inseticidas , Piretrinas , Animais , Clorpirifos/toxicidade , Piretrinas/toxicidade , Ratos , Masculino , Inseticidas/toxicidade , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Síndromes Neurotóxicas , Tirosina 3-Mono-Oxigenase/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo
5.
Brain Res ; 1842: 149112, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38969083

RESUMO

It has been reported that the clinical symptoms of functional dyspepsia (FD) exacerbate upon stress while the gender-related factors have been incompletely understood. This study aims to investigate the role of sex in chronic heterotypic stress (CHS)-induced autonomic and gastric motor dysfunction. For CHS, the rats were exposed to the combination of different stressors for 7 consecutive days. Subsequently, electrocardiography was recorded in anesthetized rats to evaluate heart rate variability (HRV) for the determination of autonomic outflow and sympathovagal balance. Solid gastric emptying (GE) was measured in control and CHS-loaded male and female rats. The immunoreactivities of catecholaminergic cell marker tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), corticotropin releasing factor (CRF), and estrogen receptor (ER-α/ß) were evaluated in medullary and pontine brainstem sections by immunohistochemistry. Compared with the controls, CHS significantly delayed GE in males but not in females. There was no significant sex-related difference in parasympathetic indicator HF under either control or CHS conditions. Sympathetic indicator LF was significantly higher in control females compared to the males. The higher sympathetic output in females was found to be attenuated upon CHS; in contrast, the elevated sympathetic output was detected in CHS-loaded males. No sex- or stress-related effect was observed on ChAT immunoreactivity in the dorsal motor nucleus of N.vagus (DMV). In males, greater number of TH-ir cells was observed in the caudal locus coeruleus (LC), while they were more densely detected in the rostral LC of females. Regardless of sex, CHS elevated immunoreactivity of TH throughout the LC. Under basal conditions, greater number of TH-ir cells was detected in the rostral ventrolateral medulla (RVLM) of females. In contrast, CHS remarkably increased the number of TH-ir cells in the RVLM of males which was found to be decreased in females. There was no sex-related alteration in TH immunoreactivity in the nucleus tractus solitarius (NTS) of control rats, while CHS affected both sexes in a similar manner. Compared with females, CRF immunoreactivity was prominently observed in control males, while both of which were stimulated by CHS. ER-α/ß was found to be co-expressed with TH in the NTS and LC which exhibit no alteration related to either sex or stress status. These results indicate a sexual dimorphism in the catecholaminergic and the CRF system in brainstem which might be involved in the CHS-induced autonomic and visceral dysfunction occurred in males.


Assuntos
Ratos Sprague-Dawley , Caracteres Sexuais , Estresse Psicológico , Animais , Masculino , Feminino , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Ratos , Rombencéfalo/metabolismo , Motilidade Gastrointestinal/fisiologia , Catecolaminas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Sistema Nervoso Autônomo/metabolismo , Frequência Cardíaca/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Esvaziamento Gástrico/fisiologia , Colina O-Acetiltransferase/metabolismo
6.
Mol Biol Rep ; 51(1): 768, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884894

RESUMO

BACKGROUND: Parkinson's disease is a neurological disorder caused by the loss of dopaminergic neurons in the midbrain. Various mechanisms are involved in the incidence of the disease including oxidative stress. Several herbs and natural products may interfere with the oxidative-stress pathway due to their antioxidant effects. OBJECTIVE: Herein, we aimed to investigate the neuroprotective role of F. vaillantii extract on Parkinson's in vitro and in vivo model owing to the presence of the bioactive agents with antioxidant properties. METHODS: In vitro experments showed that 6-hydroxydopamine could induce toxicity in PC12 cells. The impact of F. vaillantii extract on cell viability was measured by using MTT assay. Nuclear morphological changes were qualitatively evaluated employing Hoechst staining. The antioxidant activity of the extract was determined by ROS and lipid peroxidation assays. Tyrosine hydroxylase protein expression was measured by western blotting in PC12 cells. For in vivo study, movement parameters were evaluated. RESULTS: The results indicated that 75 µΜ of 6-OHDA induced 50% toxicity in PC12 cells for 24 h. Following post-treatment with F. vaillantii extract (0.1 mg/ml) for 72 h, we observed that the extract effectively prevented cell toxicity induced by 6-OHDA and reduced the apoptotic cell population. Furthermore, the extract attenuated the ROS level, lipid peroxidation and increased protein expression of TH after 72 h of treatment. In addition, oral administration of 300 mg/kg of F. vaillantii extract for 14 days improved locomotor activity, catalepsy, bradykinesia, motor coordination and reduced the apomorphine-caused rotation in 6-OHDA- induced Parkinson's disease-like symptoms in male rats. CONCLUSION: The present study suggests a protective role for the extract of F. vaillantii against oxidative stress-induced cell damage in the PC12 cells exposed to neurotoxin 6-OHDA which was verified in in vivo model by reducing the motor defects induced by 6-OHDA. This extract could be a promising therapeutic agent for the prevention of PD progression.


Assuntos
Antioxidantes , Sobrevivência Celular , Fármacos Neuroprotetores , Estresse Oxidativo , Oxidopamina , Extratos Vegetais , Animais , Células PC12 , Ratos , Extratos Vegetais/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Parkinsonism Relat Disord ; 124: 107024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843617

RESUMO

INTRODUCTION: Among gene mutations and variants linked to an increased risk of PD, mutations of leucine-rich repeat kinase 2 gene (LRRK2) are among the most frequently associated with early- and late-onset PD. Clinical and neuropathological characteristics of idiopathic-PD (iPD) and LRRK2-PD are similar, and these similarities suggest that the pathomechanisms between these two conditions are shared. LRRK2 mutations determine a gain-of-function and yield higher levels of lrrk2 across body tissues, including brain. On another side, recent animal studies supported the potential use of low dose radiation (LDR) to modify the pathomechanisms of diseases such as Alzheimer's disease (AD). METHODS: We assessed if a single total-body LDR (sLDR) exposure in normal swine could alter expression levels of the following PD-associated molecules: alpha-synuclein (α-syn), phosphorylated-α-synuclein (pα-syn), parkin, tyrosine hydroxylase (th), lrrk2, phosphorylated-lrrk2 (pS935-lrrk2), and some LRRK2 substrates (Rab8a, Rab12) across different brain regions. These proteins were measured in frontal cortex, hippocampus, striatum, thalamus/hypothalamus, and cerebellum of 9 radiated (RAD) vs. 6 sham (SH) swine after 28 days from a sLDR of 1.79Gy exposure. RESULTS: Western Blot analyses showed lowered lrrk2 levels in the striatum of RAD vs. SH swine (p < 0.05), with no differences across the remaining brain regions. None of the other protein levels differed between RAD and SH swine in any examined brain regions. No lrrk2 and p-lrrk2 (S935) levels differed in the lungs of RAD vs. SH swine. CONCLUSIONS: These findings show a specific striatal lrrk2 lowering effect due to LDR and support the potential use of LDR to interfere with the pathomechanisms of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Animais , Feminino , Masculino , alfa-Sinucleína/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos da radiação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Suínos , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920687

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Assuntos
Axônios , Corpo Estriado , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Axônios/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Camundongos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios Espinhosos Médios
9.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856775

RESUMO

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Assuntos
Estimulação Elétrica , Laringe , Substância Cinzenta Periaquedutal , Proteínas Proto-Oncogênicas c-fos , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Elétrica/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Laringe/fisiologia , Laringe/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Pressão , Bulbo/metabolismo , Bulbo/fisiologia , Ácido Glutâmico/metabolismo
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 876-884, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862445

RESUMO

OBJECTIVE: To investigate the mechanisms that mediate the neuroprotective effect of the intestinal microbial metabolite sodium butyrate (NaB) in a mouse model of Parkinson's disease (PD) via the gut-brain axis. METHODS: Thirty-nine 7-week-old male C57BL/6J mice were randomized equally into control group, PD model group, and NaB treatment group. In the latter two groups, PD models were established by intraperitoneal injection of 30 mg/kg 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) once daily for 5 consecutive days, and normal saline was injected in the control group. After modeling, the mice received daily gavage of NaB (300 mg/kg) or an equal volume of saline for 14 days. Behavioral tests were carried out to assess the changes in motor function of the mice, and Western blotting was performed to detect the expressions of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the striatum and nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the tight junction proteins ZO-1, Occludin, and Claudinin the colon. HE staining was used to observe inflammatory cell infiltration in the colon of the mice. RNA sequencing analysis was performed to identify the differentially expressed genes in mouse colon tissues, and their expressions were verified using qRT-PCR and Western blotting. RESULTS: The mouse models of PD with NaB treatment showed significantly increased movement speed and pulling strength of the limbs with obviously upregulated expressions of TH, Occludin, and Claudin and downregulated expressions of α-syn, NF-κB, TNF-α, and IL-6 (all P < 0.05). HE staining showed that NaB treatment significantly ameliorated inflammatory cell infiltration in the colon of the PD mice. RNA sequencing suggested that Bmal1 gene probably mediated the neuroprotective effect of NaB in PD mice (P < 0.05). CONCLUSION: NaB can improve motor dysfunction, reduce dopaminergic neuron loss in the striatum, and ameliorate colonic inflammation in PD mice possibly through a mechanism involving Bmal1.


Assuntos
Ácido Butírico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Corpo Estriado/metabolismo , Ocludina/metabolismo , Ocludina/genética , Eixo Encéfalo-Intestino
11.
Neurol Res ; 46(8): 763-771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740025

RESUMO

INTRODUCTION: Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat. MATERIAL AND METHODS: The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry. RESULTS: DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels. CONCLUSION: Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2 , Dexmedetomidina , Neurônios Dopaminérgicos , Fármacos Neuroprotetores , Oxidopamina , Substância Negra , Animais , Dexmedetomidina/farmacologia , Fármacos Neuroprotetores/farmacologia , Masculino , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Ratos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Modelos Animais de Doenças , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Glucose/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Stem Cell Reports ; 19(6): 830-838, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759646

RESUMO

The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , Células-Tronco Embrionárias Humanas , Proteínas com Homeodomínio LIM , Mesencéfalo , Fatores de Transcrição , Humanos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Padronização Corporal/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento
13.
Brain Res ; 1839: 149017, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768935

RESUMO

Parkinson's disease (PD) is a complex disorder, primarily of idiopathic origin, with environmental stressors like rotenone and manganese linked to its development. This study explores their potential interaction and resulting neurotoxicity, aiming to understand how environmental factors contribute to PD. In an eight-day experiment, male Wistar rats weighing 280-300 g were subjected to rotenone, manganese, or a combination of both. Various parameters were assessed, including body weight, behavior, serum markers, tissue damage, protein levels (tyrosine hydroxylase, Dopamine- and cAMP-regulated neuronal phosphoprotein -DARPP-32-, and α-synuclein), and mitochondrial function. Manganese heightened rotenone's impact on reducing food intake without causing kidney or liver dysfunction. However, the combined exposure intensified neurotoxicity, which was evident in augmented broken nuclei and decreased tyrosine hydroxylase and DARPP-32 levels in the striatum. While overall mitochondrial function was preserved, co-administration reduced complex IV activity in the midbrain and liver. In conclusion, our findings revealed a parallel toxic effect induced by rotenone and manganese. Notably, while these substances do not target the same dopaminergic regions, a notable escalation in toxicity is evident in the striatum, the brain region where their toxic effects converge. This study highlights the need for further exploration regarding the interaction of environmental factors and their possible impact on the etiology of PD.


Assuntos
Manganês , Ratos Wistar , Rotenona , Tirosina 3-Mono-Oxigenase , Animais , Rotenona/toxicidade , Masculino , Manganês/toxicidade , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismo , Síndromes Neurotóxicas/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos
14.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38713055

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Dopamina , Memória de Curto Prazo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Teobromina , Animais , Masculino , Ratos , Teobromina/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Dopamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Lobo Frontal/metabolismo , Lobo Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Modelos Animais de Doenças , Proteína 25 Associada a Sinaptossoma/metabolismo
15.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703793

RESUMO

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Assuntos
Administração Intranasal , Corpo Estriado , Dopamina , Neurônios Dopaminérgicos , Kisspeptinas , Oxidopamina , Transtornos Parkinsonianos , Ratos Sprague-Dawley , Substância Negra , Animais , Masculino , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Dopamina/metabolismo , Oxidopamina/farmacologia , Ratos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Kisspeptinas/administração & dosagem , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Atividade Motora/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Anal Chem ; 96(18): 7082-7090, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652135

RESUMO

Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.


Assuntos
Corantes Fluorescentes , Tirosina 3-Mono-Oxigenase , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Animais , Camundongos , Humanos , Imagem Óptica , Linhagem Celular Tumoral , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo
17.
Behav Brain Res ; 467: 115002, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636779

RESUMO

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.


Assuntos
Concussão Encefálica , Catecolaminas , Tomada de Decisões , Córtex Pré-Frontal , Recompensa , Assunção de Riscos , Animais , Masculino , Feminino , Tomada de Decisões/fisiologia , Catecolaminas/metabolismo , Córtex Pré-Frontal/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ratos Sprague-Dawley , Ratos , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo
18.
Acta Neurobiol Exp (Wars) ; 84(1): 98-110, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38587319

RESUMO

Neuroinflammation is a process associated with degeneration and loss of neurons in different parts of the brain. The most important damage mechanisms in its formation are oxidative stress and inflammation. This study aimed to investigate the protective effects of cannabidiol (CBD) against neuroinflammation through various mechanisms. Thirty­two female rats were randomly divided into 4 groups as control, lipopolysaccharide (LPS), LPS + CBD and CBD groups. After six hours following LPS administration, rats were sacrificed, brain and cerebellum tissues were obtained. Tissues were stained with hematoxylin­eosin for histopathological analysis. Apelin and tyrosine hydroxylase synthesis were determined immunohistochemically. Total oxidant status and total antioxidant status levels were measured, and an oxidative stress index was calculated. Protein kinase B (AKT), brain-derived neurotrophic factor (BDNF), cyclic­AMP response element­binding protein (CREB) and nuclear factor erythroid 2­related factor 2 (NRF2) mRNA expression levels were also determined. In the LPS group, hyperemia, degeneration, loss of neurons and gliosis were seen in all three tissues. Additionally, Purkinje cell loss in the cerebellum, as well as neuronal loss in the cerebral cortex and hippocampus, were found throughout the LPS group. The expressions of AKT, BDNF, CREB and NRF2, apelin and tyrosine hydroxylase synthesis all decreased significantly. CBD treatment reversed these changes and ameliorated oxidative stress parameters. CBD showed protective effects against neuroinflammation via regulating AKT, CREB, BDNF expressions, NRF2 signaling, apelin and tyrosine hydroxylase synthesis.


Assuntos
Canabidiol , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Dopamina/farmacologia , Apelina/metabolismo , Apelina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia , Hipocampo/metabolismo , Expressão Gênica
19.
Eur J Med Res ; 29(1): 228, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610044

RESUMO

The alteration of metabolic processes has been found to have significant impacts on the development of hepatocellular carcinoma (HCC). Nevertheless, the effects of dysfunction of tyrosine metabolism on the development of HCC remains to be discovered. This research demonstrated that tyrosine hydroxylase (TH), which responsible for the initial and limiting step in the bio-generation of the neuro-transmitters dopamine and adrenaline, et al. was shown to be reduced in HCC. Increased expression of TH was found facilitates the survival of HCC patients. In addition, decreased TH indicated larger tumor size, much more numbers of tumor, higher level of AFP, and the presence of cirrhosis. TH effectively impairs the growth and metastasis of HCC cells, a process dependent on the phosphorylation of serine residues (S19/S40). TH directly binds to Smad2 and hinders the cascade activation of TGFß/Smad signaling with the treatment of TGFß1. In summary, our study uncovered the non-metabolic functions of TH in the development of HCC and proposes that TH might be a promising biomarker for diagnosis as well as an innovative target for metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tirosina 3-Mono-Oxigenase/genética , Transdução de Sinais , Linhagem Celular
20.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554797

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Assuntos
Neurônios Dopaminérgicos , Receptores ErbB , Lapatinib , Transtornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Lapatinib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA