Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Immunol ; 12: 757231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630435

RESUMO

Dendritic cells (DCs) are composed of multiple lineages of hematopoietic cells and orchestrate immune responses upon detecting the danger and inflammatory signals associated with pathogen and damaged tissues. Under steady-state, DCs are maintained at limited numbers and the functionally quiescent status. While it is known that a fine balance in the DC homeostasis and activation status is also important to prevent autoimmune diseases and hyperinflammation, mechanisms that control DC development and activation under stead-state remain not fully understood. Here we show that DC-specific ablation of CBL and CBL-B (CBL-/-CBL-B-/-) leads to spontaneous liver inflammation and fibrosis and early death of the mice. The mutant mice have a marked expansion of classic CD8α+/CD103+ DCs (cDC1s) in peripheral lymphoid organs and the liver. These DCs exhibit atypical activation phenotypes characterized by an increased production of inflammatory cytokines and chemokines but not the cell surface MHC-II and costimulatory ligands. While the mutant mice also have massive T cell activation, lymphocytes are not required for the disease development. The CBL-/-CBL-B-/- mutation enhances FLT3-mTOR signaling, due to defective FLT3 ubiquitination and degradation. Blockade of FLT3-mTOR signaling normalizes the homeostasis of cDC1s and attenuates liver inflammation. Our result thus reveals a critical role of CBLs in the maintenance of DC homeostasis and immune quiescence. This regulation could be relevant to liver inflammatory diseases and fibrosis in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Dendríticas/imunologia , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apresentação de Antígeno , Divisão Celular , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Hepatite Autoimune/genética , Hepatite Autoimune/imunologia , Homeostase , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação Puntual , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Sirolimo/farmacologia , Tirosina Quinase 3 Semelhante a fms/fisiologia
2.
Clin Cancer Res ; 27(21): 6012-6025, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400415

RESUMO

PURPOSE: AXL has been shown to play a pivotal role in the selective response of FLT3-ITD acute myeloid leukemia (AML) cells to FLT3 tyrosine kinase inhibitors (TKI), particularly within the bone marrow microenvironment. EXPERIMENTAL DESIGN: Herein, we compared the effect of dual FLT3/AXL-TKI gilteritinib with quizartinib through in vitro models mimicking hematopoietic niche conditions, ex vivo in primary AML blasts, and in vivo with dosing regimens allowing plasma concentration close to those used in clinical trials. RESULTS: We observed that gilteritinib maintained a stronger proapoptotic effect in hypoxia and coculture with bone marrow stromal cells compared with quizartinib, linked to a dose-dependent inhibition of AXL phosphorylation. In vivo, use of the MV4-11 cell line with hematopoietic engraftment demonstrated that gilteritinib was more effective than quizartinib at targeting leukemic cells in bone marrow. Finally, FLT3-ITD AML patient-derived xenografts revealed that this effect was particularly reproducible in FLT3-ITD AML with high allelic ratio in primary and secondary xenograft. Moreover, gilteritinib and quizartinib displayed close toxicity profile on normal murine hematopoiesis, particularly at steady state. CONCLUSIONS: Overall, these findings suggest that gilteritinib as a single agent, compared with quizartinib, is more likely to reach leukemic cells in their protective microenvironment, particularly AML clones highly dependent on FLT3-ITD signaling.


Assuntos
Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia , Linhagem Celular Tumoral , Hematopoese , Humanos , Receptor Tirosina Quinase Axl
3.
Commun Biol ; 4(1): 799, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172833

RESUMO

The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD + AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD + AML.


Assuntos
Citoesqueleto de Actina/fisiologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Estaurosporina/análogos & derivados , Tirosina Quinase 3 Semelhante a fms/genética , Citoesqueleto de Actina/química , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pironas/farmacologia , Quinolinas/farmacologia , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/fisiologia
4.
FEBS Open Bio ; 10(5): 767-779, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128992

RESUMO

Osteosarcoma is the most common malignant bone tumor in adolescence and childhood. Metastatic osteosarcoma has a poor prognosis with an overall 5-year survival rate of approximately 20%. TAS-115 is a novel multiple receptor tyrosine kinase inhibitor that is currently undergoing clinical trials. Using the mouse highly lung-metastatic osteosarcoma cell line, LM8, we showed that TAS-115 suppressed the growth of subcutaneous grafted tumor and lung metastasis of osteosarcoma at least partially through the inhibition of platelet-derived growth factor receptor alpha, AXL, and Fms-like tyrosine kinase 3 phosphorylation. We also show that these signaling pathways are activated in various human osteosarcoma cell lines and are involved in proliferation. Our results suggest that TAS-115 may have potential for development into a novel treatment for metastatic osteosarcoma.


Assuntos
Osteossarcoma/metabolismo , Quinolinas/farmacologia , Tioureia/análogos & derivados , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares , Camundongos , Camundongos Endogâmicos C3H , Osteossarcoma/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Tioureia/metabolismo , Tioureia/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/fisiologia , Receptor Tirosina Quinase Axl
5.
Physiol Rev ; 99(3): 1433-1466, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066629

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.


Assuntos
Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Antineoplásicos/farmacologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética
6.
Gene ; 697: 152-158, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30772520

RESUMO

Neuron damage contributes to ischemic brain injury. Although FMS-like tyrosine kinase-3 (FLT3) plays a critical role in neuron survival, its function and molecular mechanism in cerebral ischemia/reperfusion injury is unclear. In the present study, we exposed SH-SY5Y cells to oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic ischemia/reperfusion injury. We found that FLT3 and MAPK14/p38α expression increased in OGD/R-treated cells. FLT3 silence significantly increased OGD/R-induced SH-SY5Y cell survival, inhibited reactive oxygen species production. Also, we observed that FLT3 silence suppressed OGD/R-induced SH-SY5Y cell apoptosis, apoptosis related protein Bax level and caspase-3 activity was decreased and Bcl-2 expression was increased in FLT3 silence SH-SY5Y cell treated with OGD/R. Furthermore, FLT3 depletion induced MAPK14/p38α inhibition in SH-SY5Y cultures after OGD/R exposure. These findings suggest that MAPK14/p38α overexpression reverses the action of FLT3 silence in OGD/R-induced SH-SY5Y cells. They also provide the first evidence that FLT3 silence has a neuroprotective role in OGD/R-induced SH-SY5Y cell damage. These data provide insight about potential neuroprotective molecular for ischemia/reperfusion injury.


Assuntos
Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Apoptose , Caspase 3 , Hipóxia Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Glucose/metabolismo , Humanos , Proteína Quinase 14 Ativada por Mitógeno , Neurônios , Fármacos Neuroprotetores , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Espécies Reativas de Oxigênio , Proteína X Associada a bcl-2 , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/fisiologia
9.
Theriogenology ; 126: 145-152, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553232

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is a type III kinase that is highly expressed in seminal plasma of infertile men. FLT3 activation can be blocked by inhibition of its phosphorylation using the nontoxic and selective inhibitor, quizartinib. We investigated the function of FLT3 and the corresponding effects of quizartinib in mouse spermatozoa. Spermatozoa were treated with different concentrations (0.1, 1, 10, 20, and 30 µM) of quizartinib for 90 min at 37 °C in 5% CO2 in air. FLT3 was detected in capacitated and non-capacitated spermatozoa. While the level of FLT3 was unaffected, the levels of phospho-FLT3 were significantly altered in spermatozoa by quizartinib. Exposure of spermatozoa to higher concentrations of quizartinib significantly altered sperm viability, motility, motion kinematics, levels of intracellular ATP, and capacitation status. Fertilization and early embryonic development were suppressed by quizartinib. This may have occurred as a consequence of decreased protein kinase A (PKA) activity and tyrosine phosphorylation. The inhibition of FLT3 by quizartinib may affect the fertilization and embryonic development by reducing tyrosine phosphorylation through a PKA-dependent pathway. Our data implicate FLT3 as a biomarker for diagnosis and prognosis of male fertility. In addition, quizartinib has potential for development as a new contraceptive agent.


Assuntos
Infertilidade Masculina/genética , Tirosina Quinase 3 Semelhante a fms/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Benzotiazóis/farmacologia , Biomarcadores/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Análise do Sêmen , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30559310

RESUMO

Genetic rearrangements involving FLT3 are rare and only recently have been detected in myeloid/lymphoid neoplasms associated with eosinophilia (MLN-eos) and chronic myeloproliferative disorders. Here we report two cases with FLT3 fusions in patients demonstrating mixed features of myelodysplastic/myeloproliferative neoplasms. In the first case, FLT3 was fused with a new fusion partner MYO18A in a patient with marrow features most consistent with atypical chronic myeloid leukemia; the second case involving ETV6-FLT3 fusion was observed in a case with bone marrow features most consistent with chronic myelomonocytic leukemia. Notably, we observed that samples from both patients demonstrated FLT3 inhibitor (quizartinib and sorafenib) sensitivity in ex vivo drug screening assay.


Assuntos
Leucemia Mieloide/genética , Doenças Mieloproliferativas-Mielodisplásicas/genética , Tirosina Quinase 3 Semelhante a fms/genética , Benzotiazóis/farmacologia , Medula Óssea/patologia , Eosinofilia/genética , Humanos , Leucemia Mieloide/fisiopatologia , Leucemia Mielomonocítica Crônica/genética , Linfoma/genética , Masculino , Pessoa de Meia-Idade , Miosinas/genética , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-ets/genética , Recombinação Genética/genética , Proteínas Repressoras/genética , Sorafenibe/farmacologia , Tirosina Quinase 3 Semelhante a fms/fisiologia , Variante 6 da Proteína do Fator de Translocação ETS
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(5): 1350-1355, 2017 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29070106

RESUMO

OBJECTIVE: To explore the clinical value of PKC412 (midostaurin) in treatment of AML patients with FLT3-. METHODS: The bone marrow or peripheral blood were collected and heparinized from 21 newly diagnosed FLT3- AML patients, then the mononuclear cells from bone marrow or peripheral blood were isolated by density-gradient method. The sensitivity of leukemia cells to PKC412 of 8 concentration in vitro was detected by ATP-bioluminescence-tumor chemosensitivity assay (ATP-TCA), and the relationship among sensitivity results in vitro, risk stratification and therapeutic efficacy was analyzed. RESULTS: The leukemia cells of 21 patients with AML displayed different sensitivities to PKC412 in vitro. The rate of sensitivity in vitro was 42.9%, and sensitive concentration in vitro were between 1 µmol/L and 5 µmol/L. There was no significant relationship between risk stratification and sensitivity results of PKC412 in vitro. There was also no significant relationship between clinical efficacy and sensitivity results of PKC412 in vitro. The survival of patients in low-risk and intermediate-risk groups was better than that of patients in high-risk groups (P=0.015). CONCLUSION: PKC412 can be one of the effective therapeutic method for AML patients without FLT3 mutation. The sensitivity of leukemia cells to PKC412 may become a prognostic marker for evaluating clinical efficacy of PKC412, which is independent of other factors.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Estaurosporina/análogos & derivados , Tirosina Quinase 3 Semelhante a fms/fisiologia , Linhagem Celular Tumoral , Humanos , Mutação , Estaurosporina/farmacologia
12.
Leukemia ; 31(10): 2143-2150, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28194038

RESUMO

Internal tandem duplication (ITD) mutation in Fms-like tyrosine kinase 3 gene (FLT3/ITD) represents an unfavorable genetic change in acute myeloid leukemia (AML) and is associated with poor prognosis. Metabolic alterations have been involved in tumor progression and attracted interest as a target for therapeutic intervention. However, few studies analyzed the adaptations of cellular metabolism in the context of FLT3/ITD mutation. Here, we report that FLT3/ITD causes a significant increase in aerobic glycolysis through AKT-mediated upregulation of mitochondrial hexokinase (HK2), and renders the leukemia cells highly dependent on glycolysis and sensitive to pharmacological inhibition of glycolytic activity. Inhibition of glycolysis preferentially causes severe ATP depletion and massive cell death in FLT3/ITD leukemia cells. Glycolytic inhibitors significantly enhances the cytotoxicity induced by FLT3 tyrosine kinase inhibitor sorafenib. Importantly, such combination provides substantial therapeutic benefit in a murine model bearing FLT3/ITD leukemia. Our study suggests that FLT3/ITD mutation promotes Warburg effect, and such metabolic alteration can be exploited to develop effective therapeutic strategy for treatment of AML with FLT3/ITD mutation via metabolic intervention.


Assuntos
Glicólise/genética , Repetições de Microssatélites , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Tirosina Quinase 3 Semelhante a fms/genética , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular , Transformação Celular Neoplásica , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Hexoquinase/biossíntese , Hexoquinase/genética , Humanos , Hidrocarbonetos Bromados/farmacologia , Leucemia Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/enzimologia , Proteínas de Neoplasias/fisiologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sorafenibe , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia
13.
J Exp Med ; 214(3): 737-752, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213513

RESUMO

Acute myeloid leukemia (AML) is induced by the cooperative action of deregulated genes that perturb self-renewal, proliferation, and differentiation. Internal tandem duplications (ITDs) in the FLT3 receptor tyrosine kinase are common mutations in AML, confer poor prognosis, and stimulate myeloproliferation. AML patient samples with FLT3-ITD express high levels of RUNX1, a transcription factor with known tumor-suppressor function. In this study, to understand this paradox, we investigated the impact of RUNX1 and FLT3-ITD coexpression. FLT3-ITD directly impacts on RUNX1 activity, whereby up-regulated and phosphorylated RUNX1 cooperates with FLT3-ITD to induce AML. Inactivating RUNX1 in tumors releases the differentiation block and down-regulates genes controlling ribosome biogenesis. We identified Hhex as a direct target of RUNX1 and FLT3-ITD stimulation and confirmed high HHEX expression in FLT3-ITD AMLs. HHEX could replace RUNX1 in cooperating with FLT3-ITD to induce AML. These results establish and elucidate the unanticipated oncogenic function of RUNX1 in AML. We predict that blocking RUNX1 activity will greatly enhance current therapeutic approaches using FLT3 inhibitors.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Leucemia Mieloide Aguda/etiologia , Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética
14.
Leuk Res ; 50: 132-140, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27760406

RESUMO

Current therapy for acute myeloid leukemia (AML) primarily includes high-dose cytotoxic chemotherapy with or without allogeneic stem cell transplantation. Targeting unique cellular metabolism of cancer cells is a potentially less toxic approach. Monotherapy with mitochondrial inhibitors like metformin have met with limited success since escape mechanisms such as increased glycolytic ATP production, especially in hyperglycemia, can overcome the metabolic blockade. As an alternative strategy for metformin therapy, we hypothesized that the combination of 6-benzylthioinosine (6-BT), a broad-spectrum metabolic inhibitor, and metformin could block this drug resistance mechanism. Metformin treatment alone resulted in significant suppression of ROS and mitochondrial respiration with increased glycolysis accompanied by modest cytotoxicity (10-25%). In contrast, 6-BT monotherapy resulted in inhibition of glucose uptake, decreased glycolysis, and decreased ATP with minimal changes in ROS and mitochondrial respiration. The combination of 6-BT with metformin resulted in significant cytotoxicity (60-70%) in monocytic AML cell lines and was associated with inhibition of FLT3-ITD activated STAT5 and reduced c-Myc and GLUT-1 expression. Therefore, although the anti-tumor and metabolic effects of metformin have been limited by the metabolic reprogramming within cells, the novel combination of 6-BT and metformin targets this bypass mechanism resulting in reduced glycolysis, STAT5 inhibition, and increased cell death.


Assuntos
Morte Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Metformina/uso terapêutico , Tioinosina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Sangue Fetal/citologia , Glicólise/efeitos dos fármacos , Humanos , Sequências Repetidas Invertidas , Leucemia Mieloide Aguda/genética , Fator de Transcrição STAT5/antagonistas & inibidores , Tioinosina/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/fisiologia
16.
Ann Hematol ; 95(5): 783-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891877

RESUMO

The novel FMS-like tyrosine kinase 3 (FLT3)-N676K point mutation within the FLT3 kinase domain-1 was recently identified in 6 % of de novo acute myeloid leukemia (AML) patients with inv(16). Because FLT3-N676K was encountered almost exclusively in inv(16) AML, we investigated the transforming potential of FLT3-N676K, the cooperation between FLT3-N676K and core binding factor ß-smooth muscle myosin heavy chain (CBFß-SMMHC) (encoded by the inv(16) chimeric gene CBFB-MYH11) in inducing acute leukemia, and tested the sensitivity of FLT3-N676K-positive leukemic cells to FLT3 inhibitors. Retroviral expression of FLT3-N676K in myeloid 32D cells induced AML in syngeneic C3H/HeJ mice (n = 11/13, median latency 58 days), with a transforming activity similar to FLT3-internal tandem duplication (ITD) (n = 8/8), FLT3-TKD D835Y (n = 8/9), and FLT3-ITD-N676K (n = 9/9) mutations. Three out of 14 (21.4 %) C57BL/6J mice transplanted with FLT3-N676K-transduced primary hematopoietic progenitor cells developed acute leukemia (latency of 68, 77, and 273 days), while no hematological malignancy was observed in the control groups including FLT3-ITD. Moreover, co-expression of FLT3-N676K/CBFß-SMMHC did not promote acute leukemia in three independent experiments (n = 16). In comparison with FLT3-ITD, FLT3-N676K induced much higher activation of FLT3 and tended to trigger stronger phosphorylation of MAPK and AKT. Importantly, leukemic cells carrying the FLT3-N676K mutant in the absence of an ITD mutation were highly sensitive to FLT3 inhibitors AC220 and crenolanib, and crenolanib even retained activity against the AC220-resistant FLT3-ITD-N676K mutant. Taken together, the FLT3-N676K mutant is potent to transform murine hematopoietic stem/progenitor cells in vivo. This is the first report of acute leukemia induced by an activating FLT3 mutation in C57BL/6J mice. Moreover, further experiments investigating molecular mechanisms for leukemogenesis induced by FLT3-N676K mutation and clinical evaluation of FLT3 inhibitors in FLT3-N676K-positive AML seem warranted.


Assuntos
Leucemia Experimental/genética , Mutação de Sentido Incorreto , Mutação Puntual , Tirosina Quinase 3 Semelhante a fms/genética , Substituição de Aminoácidos , Animais , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Benzotiazóis/uso terapêutico , Transplante de Medula Óssea , Transformação Celular Neoplásica/genética , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Vetores Genéticos , Humanos , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/enzimologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Células-Tronco Neoplásicas/transplante , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/fisiologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional/genética , Quimera por Radiação , Retroviridae , Sequências de Repetição em Tandem , Transgenes , Ensaio Tumoral de Célula-Tronco , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia
17.
Int J Hematol ; 103(1): 95-106, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26590920

RESUMO

Internal tandem duplication in the FLT3 gene (FLT3/ITD), which is found in patients with acute myeloid leukemia (AML), causes resistance to FLT3 inhibitors. We found that RUNX1, a transcription factor that regulates normal hematopoiesis, is up-regulated in patients with FLT3/ITD(+) AML. While RUNX1 can function as a tumor suppressor, recent data have shown that RUNX1 is required for AML cell survival. In the present study, we investigated the functional role of RUNX1 in FLT3/ITD signaling. FLT3/ITD induced growth factor-independent proliferation and impaired G-CSF mediated myeloid differentiation in 32D hematopoietic cells, coincident with up-regulation of RUNX1 expression. Silencing of RUNX1 expression significantly decreased proliferation and secondary colony formation, and partially abrogated the impaired myeloid differentiation of FLT3/ITD(+) 32D cells. Although the number of FLT3/ITD(+) 32D cells declined after incubation with the FLT3/ITD inhibitor AC220, the cells became refractory to AC220, concomitant with up-regulation of RUNX1. Silencing of RUNX1 abrogated the emergence and proliferation of AC220-resistant FLT3/ITD(+) 32D cells in the presence of AC220. Our data indicate that FLT3/ITD deregulates cell proliferation and differentiation and confers resistance to AC220 by up-regulating RUNX1 expression. These findings suggest an oncogenic role for RUNX1 in FLT3/ITD(+) cells and that inhibition of RUNX1 function represents a potential therapeutic strategy in patients with refractory FLT3/ITD(+) AML.


Assuntos
Benzotiazóis/farmacologia , Diferenciação Celular/genética , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/citologia , Compostos de Fenilureia/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Duplicação Gênica/genética , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Camundongos , Terapia de Alvo Molecular , Sequências de Repetição em Tandem , Regulação para Cima , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/fisiologia
18.
Leukemia ; 30(2): 473-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26308771

RESUMO

Activating mutations of FMS-like tyrosine kinase 3 (FLT3), notably internal tandem duplications (ITDs), are associated with a grave prognosis in acute myeloid leukemia (AML). Transforming FLT3ITD signal transduction causes formation of reactive oxygen species (ROS) and inactivation of the protein-tyrosine phosphatase (PTP) DEP-1/PTPRJ, a negative regulator of FLT3 signaling. Here we addressed the underlying mechanisms and biological consequences. NADPH oxidase 4 (NOX4) messenger RNA and protein expression was found to be elevated in FLT3ITD-positive cells and to depend on FLT3ITD signaling and STAT5-mediated activation of the NOX4 promoter. NOX4 knockdown reduced ROS levels, restored DEP-1 PTP activity and attenuated FLT3ITD-driven transformation. Moreover, Nox4 knockout (Nox4(-/-)) murine hematopoietic progenitor cells were refractory to FLT3ITD-mediated transformation in vitro. Development of a myeloproliferative-like disease (MPD) caused by FLT3ITD-transformed 32D cells in C3H/HeJ mice, and of a leukemia-like disease in mice transplanted with MLL-AF9/ FLT3ITD-transformed murine hematopoietic stem cells were strongly attenuated by NOX4 downregulation. NOX4-targeting compounds were found to counteract proliferation of FLT3ITD-positive AML blasts and MPD development in mice. These findings reveal a previously unrecognized mechanism of oncoprotein-driven PTP oxidation, and suggest that interference with FLT3ITD-STAT5-NOX4-mediated overproduction of ROS and PTP inactivation may have therapeutic potential in a subset of AML.


Assuntos
Transformação Celular Neoplásica , Leucemia Mieloide Aguda/patologia , NADPH Oxidases/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , NADPH Oxidase 4 , NADPH Oxidases/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/análise , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-26365931

RESUMO

OBJECTIVES: Acute myeloid leukemia (AML) cells are highly resistant to therapy. The presumed molecular basis of this resistance is the effect of tumor necrosis factor alpha (TNF-α) and other cytokines on endothelial adhesion molecule expression. The aim of this study was to test the hypothesis that cytokines and soluble adhesion molecules correlate in AML. METHODS: Baseline serum levels of 17 cytokines and 5 soluble adhesion molecules were measured in 53 AML patients using biochip array technology. Age, leukocyte count, secondary AML, CRP, FLT3-ITD and remission were variables. Statistical analysis was performed in R version 3.1.2. RESULTS: VCAM-1 correlated with ICAM-1 (P < 0.0001), E-selectin (P < 0.0001), leukocyte count (P = 0.0005) and TNF-α (P = 0.0035). E-selectin correlated with leukocyte count (P < 0.0001), P-selectin (P = 0.0032) and MCP-1 (P = 0.0119). CRP correlated with IL-6 (P < 0.0001), leukocyte count negatively correlated with IL-7 (P = 0.0318). FLT3-ITD was associated with higher E-selectin (P = 0.0010) and lower IL-7 (P = 0.0252). Secondary AML patients were older. Failure of induction therapy was associated with significantly higher CRP and lower P-selectin. Leukocyte count (P < 0.0001), FLT3-ITD (P = 0.0017) and secondary AML (P = 0.0439) influenced the principal component. CONCLUSIONS: Leukemic cells can modulate the microenvironment. Cytokine, adhesion molecule levels and leukocyte count correlate in AML. Understanding these mechanisms may form the basis of novel therapeutic approaches.


Assuntos
Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Fator de Necrose Tumoral alfa/fisiologia , Tirosina Quinase 3 Semelhante a fms/fisiologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Leucemia Mieloide Aguda/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Estudos Prospectivos
20.
Proc Natl Acad Sci U S A ; 112(48): E6644-53, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627255

RESUMO

Switched antibody classes are important for efficient immune responses. Aberrant antibody production to otherwise harmless antigens may result in autoimmunity. The protein kinase fms-like tyrosine kinase 3 receptor (Flt3) has an important role during early B-cell development, but the role of Flt3 in peripheral B cells has not been assessed before. Herein we describe a previously unappreciated role for Flt3 in IgG1 class-switch recombination (CSR) and production. We show that Flt3 is reexpressed on B-cell lymphoma 6(+) germinal center B cells in vivo and following LPS activation of peripheral B cells in vitro. Absence of Flt3 signaling in Flt3 ligand-deficient mice results in impaired IgG1 CSR and accumulation of IgM-secreting plasma cells. On activated B cells, Flt3 is coexpressed and functions in synergy with the common-gamma chain receptor family. B cells from Flt3 ligand-deficient mice have impaired IL-4R signaling, with reduced phosphorylation of signal transducer and activator of transcription (Stat) 6, and demonstrate a failure to initiate CSR to IgG1 with low expression of γ1 germ-line transcripts, resulting in impaired IgG1 production. Thus, functional synergy between Flt3 and IL-4R signaling is critical for Stat-mediated regulation of sterile γ1 germ-line transcripts and CSR to IgG1.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Switching de Imunoglobulina , Imunoglobulina G/imunologia , Tirosina Quinase 3 Semelhante a fms/fisiologia , Animais , Apoptose , Regulação da Expressão Gênica , Imunoglobulina M/imunologia , Ligantes , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Receptores de Interleucina-4/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA