Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Biomater Sci Eng ; 9(8): 4794-4804, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37390118

RESUMO

Microbes entrenched within biofilms can withstand 1000-fold higher concentrations of antibiotics, in part due to the viscous extracellular matrix that sequesters and attenuates antimicrobial activity. Nanoparticle (NP)-based therapeutics can aid in delivering higher local concentrations throughout biofilms as compared to free drugs alone, thereby enhancing the efficacy. Canonical design criteria dictate that positively charged nanoparticles can multivalently bind to anionic biofilm components and increase biofilm penetration. However, cationic particles are toxic and are rapidly cleared from circulation in vivo, limiting their use. Therefore, we sought to design pH-responsive NPs that change their surface charge from negative to positive in response to the reduced biofilm pH microenvironment. We synthesized a family of pH-dependent, hydrolyzable polymers and employed the layer-by-layer (LbL) electrostatic assembly method to fabricate biocompatible NPs with these polymers as the outermost surface. The NP charge conversion rate, dictated by polymer hydrophilicity and the side-chain structure, ranged from hours to undetectable within the experimental timeframe. LbL NPs with an increasingly fast charge conversion rate more effectively penetrated through, and accumulated throughout, wildtype (PAO1) and mutant overexpressing biomass (ΔwspF) Pseudomonas aeruginosa biofilms. Finally, tobramycin, an antibiotic known to be trapped by anionic biofilm components, was loaded into the final layer of the LbL NP. There was a 3.2-fold reduction in ΔwspF colony forming units for the fastest charge-converting NP as compared to both the slowest charge converter and free tobramycin. These studies provide a framework for the design of biofilm-penetrating NPs that respond to matrix interactions, ultimately increasing the efficacious delivery of antimicrobials.


Assuntos
Antibacterianos , Nanopartículas em Multicamadas , Antibacterianos/farmacologia , Antibacterianos/química , Tobramicina/química , Tobramicina/farmacologia , Biofilmes , Polímeros , Concentração de Íons de Hidrogênio
2.
Biomater Sci ; 11(3): 1031-1041, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36545821

RESUMO

Pseudomonas aeruginosa (PA) biofilms cause many persistent chronic infections in humans, especially in cystic fibrosis (CF) patients. The biofilms form a strong barrier which may inhibit antimicrobial agents from penetrating the biofilms and killing PA bacteria that reside deep within the biofilms. Concomitant therapies based on tobramycin (TOB) and azithromycin (AZM) have demonstrated beneficial effects in CF patients with chronic PA infections. However, the co-delivery of TOB and AZM has rarely been reported. In this study, we constructed a self-assembled pH-sensitive nano-assembly (DPNA) based on a dimeric prodrug (AZM-Cit-TOB) by simply inserting citraconic amide bonds between AZM and TOB. Moreover, the cationic surface of DPNA was further modified with anionic albumin (HSA) via electrostatic interactions to form an electrostatic complex (termed HSA@DPNA) for better biocompatibility. Upon arrival at the infected tissues, the citraconic amide bonds would be cleaved at acidic pH, resulting in the release of TOB and AZM for bacteria killing and biofilm eradication. As expected, HSA@DPNA showed comparable antibacterial abilities against the P. aeruginosa strain PAO1 in both planktonic and biofilm modes of growth compared to the TOB/AZM mixture in vitro. Moreover, HSA@DPNA exhibited excellent therapeutic efficacy on mice with PAO1-induced lung infection compared to the TOB/AZM mixture, and no detectable toxicity to mammalian cells/animals was observed during the therapeutic process. In summary, our study provides a promising method for the co-delivery of AZM and TOB in concomitant therapies against PAO1-related infection.


Assuntos
Fibrose Cística , Pró-Fármacos , Humanos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Tobramicina/química , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Biofilmes , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Mamíferos
3.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948352

RESUMO

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.


Assuntos
Antibacterianos/administração & dosagem , Prótese Vascular , Sistemas de Liberação de Medicamentos , Tobramicina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/química , Tobramicina/farmacologia , Enxerto Vascular
4.
Eur J Pharmacol ; 902: 174098, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848541

RESUMO

Current cystic fibrosis (CF) treatment strategies are primarily focused on oral/inhaled anti-inflammatories and antibiotics, resulting in a considerable treatment burden for CF patients. Therefore, combination treatments consisting of anti-inflammatories with antibiotics could reduce the CF treatment burden. However, there is an imperative need to understand the potential drug-drug interactions of these combination treatments to determine their efficacy. Thus, this study aimed to determine the interactions of the anti-inflammatory agent Ibuprofen with each of the CF-approved inhaled antibiotics (Tobramycin, Colistin and its prodrug colistimethate sodium/Tadim) and anti-bacterial and anti-inflammatory efficacy. Chemical interactions of the Ibuprofen:antibiotic combinations were elucidated using High-Resolution Mass-Spectrometry (HRMS) and 1H NMR. HRMS showed pairing of Ibuprofen and Tobramycin, further confirmed by 1H NMR whilst no pairing was observed for either Ibuprofen:Colistin or Ibuprofen:Tadim combinations. The anti-bacterial activity of the combinations against Pseudomonas aeruginosa showed that neither paired nor non-paired Ibuprofen:antibiotic therapies altered the anti-bacterial activity. The anti-inflammatory efficacy of the combination therapies was next determined at two different concentrations (Low and High) using in vitro models of NuLi-1 (healthy) and CuFi-1 (CF) cell lines. Differential response in the anti-inflammatory efficacy of Ibuprofen:Tobramycin combination was observed between the two concentrations due to changes in the structural conformation of the paired Ibuprofen:Tobramycin complex at High concentration, confirmed by 1H NMR. In contrast, the non-pairing of the Ibuprofen:Colistin and Ibuprofen:Tadim combinations showed a significant decrease in IL-8 secretion at both the concentrations. Importantly, all antibiotics alone showed anti-inflammatory properties, highlighting the inherent anti-inflammatory properties of these antibiotics.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Colistina/farmacologia , Fibrose Cística/tratamento farmacológico , Tobramicina/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colistina/análogos & derivados , Colistina/química , Colistina/toxicidade , Combinação de Medicamentos , Humanos , Ibuprofeno/química , Ibuprofeno/farmacologia , Ibuprofeno/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/química , Tobramicina/toxicidade
5.
Eur J Pharm Biopharm ; 157: 200-210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33222771

RESUMO

Nowadays, the resistance of bacterial biofilms towards the available antibiotics is a severe problem. Therefore, many efforts were devoted to develop new formulations using nanotechnology. We have developed an inhalable microparticle formulation using spray-drying combining multiple drugs: an antibiotic (tobramycin, ciprofloxacin or azithromycin), N-acetylcysteine (NAC), and curcumin (Cur). The use of PLGA nanoparticles (NP) also allowed incorporating curcumin to facilitate spray drying and modify the release of some compounds. The aerosolizable microparticles formulations were characterized in terms of size, morphology, and aerodynamic properties. Biocompatibility when tested on macrophage-like cells was acceptable after 20 h exposure for concentrations up to at least 32 µg/mL. Antibacterial activity of free drugs versus drugs in the multiple drug formulations was evaluated on P. aeruginosa in the same range. When co-delivered the efficacy of tobramycin was enhanced compared to the free drug for the 1 µg/mL concentration. The combinations of azithromycin and ciprofloxacin with NAC and Cur did not show an improved antibacterial activity. Bacteria-triggered cytokine release was not inhibited by free antibiotics, except for TNF-α. In contrast, the application of NAC and the addition of curcumin-loaded PLGA NPs showed a higher potential to inhibit TNF-α, IL-8, and IL-1ß release. Overall, the approach described here allows simultaneous delivery of antibacterial, mucolytic, and anti-inflammatory compounds in a single inhalable formulation and may therefore pave the way for a more efficient therapy of pulmonary infections.


Assuntos
Acetilcisteína/administração & dosagem , Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos , Expectorantes/administração & dosagem , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Infecções por Pseudomonas/tratamento farmacológico , Acetilcisteína/química , Acetilcisteína/metabolismo , Administração por Inalação , Antibacterianos/química , Antibacterianos/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Azitromicina/administração & dosagem , Azitromicina/química , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Curcumina/química , Curcumina/metabolismo , Citocinas/metabolismo , Combinação de Medicamentos , Composição de Medicamentos , Expectorantes/química , Expectorantes/metabolismo , Liofilização , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Muco/metabolismo , Permeabilidade , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Células THP-1 , Tobramicina/administração & dosagem , Tobramicina/química
6.
ACS Chem Biol ; 15(3): 686-694, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32100995

RESUMO

Aminoglycoside antibiotics have lost much of their effectiveness due to widespread resistance, primarily via covalent modification. One of the most ubiquitous enzymes responsible for aminoglycoside resistance is aminoglycoside O-nucleotidyltransferase(2″), which catalyzes a nucleotidylation reaction. Due to its clinical importance, much research has focused on dissecting the mechanism of action, some of it dating back more than 30 years. Here, we present structural data for catalytically informative states of the enzyme, i.e., ANT(2″) in complex with adenosine monophosphate (AMP) and tobramycin (inactive-intermediate state) and in complex with adenylyl-2″-tobramycin, pyrophosphate, and Mn2+(product-bound state). These two structures in conjunction with our previously reported structure of ANT(2″)'s substrate-bound complex capture clinical states along ANT(2″)'s reaction coordinate. Additionally, isothermal titration calorimetry (ITC)-based studies are presented that assess the order of substrate binding and product release. Combined, these results outline a kinetic mechanism for ANT(2″) that contradicts what has been previously reported. Specifically, we show that the release of adenylated aminoglycoside precedes pyrophosphate. Furthermore, the ternary complex structures provide additional details on the catalytic mechanism, which reveals extensive similarities to the evolutionarily related DNA polymerase-ß superfamily.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Monofosfato de Adenosina/química , Sequência de Aminoácidos , Catálise , Difosfatos/química , Cinética , Manganês/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Especificidade por Substrato , Tobramicina/química
7.
J Nanobiotechnology ; 18(1): 35, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070354

RESUMO

BACKGROUND: Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS: We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS: Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.


Assuntos
Alginatos/química , Antibacterianos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Infecções por Pseudomonas/tratamento farmacológico , Tobramicina/química , Antibacterianos/farmacologia , Biofilmes , Fibrose Cística , Portadores de Fármacos/química , Desenho de Fármacos , Quimioterapia Combinada , Humanos , Campos Magnéticos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Prata/farmacologia , Propriedades de Superfície , Tobramicina/farmacologia
8.
J Biomater Sci Polym Ed ; 30(13): 1115-1141, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31043130

RESUMO

Delivery of drugs from contact lens materials is attractive for a number of reasons. However, the controlled delivery of hydrophilic drugs can be difficult to achieve due to the burst release of drug that is associated with materials of high water content, such as hydrogels. Silicone hydrogels have significant potential for drug delivery due to their increased hydrophobicity and the tortuous nature of the pores, overcoming some of the limitations associated with conventional hydrogel materials. The aim of this study was to examine the potential of model poly(ethylene glycol) (PEG) containing silicone hydrogels for delivery of hydrophilic aminoglycoside antibiotics. It was hypothesized that PEG, a polymer that has seen extensive use in biomedical applications, will provide in addition to hydrophilicity and protein repulsion, a mechanism for controlling the delivery of this hydrophilic antibiotic. PEG was combined with the macromer TRIS to create the model silicone hydrogel materials. The optical and physical properties of the novel TRIS-co-PEG silicone hydrogels exhibited excellent transparency, appropriate refractive index and high transmittance indicating minimal phase separation. Desirable properties such as wettability and protein repulsion were maintained across a wide range of formulations. The water content was found to be highly correlated with the ethylene oxide content. Drug release could be influenced through PEG content and was found to fit Higuchi-like kinetics. Overall, the study demonstrates that incorporation of PEG into a model silicone hydrogel could be used to control the release of a hydrophilic compound. Data suggests this is related to the unique structure and properties of PEG, which alter the types of water found in each formulation and the water content.


Assuntos
Lentes de Contato , Hidrogéis/química , Polietilenoglicóis/química , Silicones/química , Tobramicina/química , Sistemas de Liberação de Medicamentos/métodos , Molhabilidade
9.
J Antimicrob Chemother ; 74(9): 2640-2648, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31139830

RESUMO

OBJECTIVES: To develop a multifunctional adjuvant molecule that can rescue ß-lactam antibiotics and ß-lactam/ß-lactamase inhibitor combinations from resistance in carbapenem-resistant Pseudomonas aeruginosa clinical isolates. METHODS: Preparation of adjuvant was guided by structure-activity relationships, following standard protocols. Susceptibility and chequerboard studies were assessed using serial 2-fold dilution assays. Toxicity was evaluated against porcine erythrocytes, human embryonic kidney (HEK293) cells and liver carcinoma (HepG2) cells via MTS assay. Preliminary in vivo efficacy was evaluated using a Galleria mellonella infection model. RESULTS: Conjugation of tobramycin and cyclam abrogates the ribosomal effects of tobramycin but confers a potent adjuvant property that restores full antibiotic activity of meropenem and aztreonam against carbapenem-resistant P. aeruginosa. Therapeutic levels of susceptibility, as determined by CLSI susceptibility breakpoints, were attained in several MDR clinical isolates, and time-kill assays revealed a synergistic dose-dependent pharmacodynamic relationship. A triple combination of the adjuvant with ceftazidime/avibactam (approved), aztreonam/avibactam (Phase III) and meropenem/avibactam enhances the efficacies of ß-lactam/ß-lactamase inhibitors against recalcitrant strains, suggesting rapid access of the combination to their periplasmic targets. The newly developed adjuvants, and their combinations, were non-haemolytic and non-cytotoxic, and preliminary in vivo evaluation in G. mellonella suggests therapeutic potential for the double and triple combinations. CONCLUSIONS: Non-ribosomal tobramycin-cyclam conjugate mitigates the effect of OprD/OprF porin loss in P. aeruginosa and potentiates ß-lactam/ß-lactamase inhibitors against carbapenem-resistant clinical isolates, highlighting the complexity of resistance to ß-lactam antibiotics. Our strategy presents an avenue to further preserve the therapeutic utility of ß-lactam antibiotics.


Assuntos
Antibacterianos/uso terapêutico , Compostos Heterocíclicos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/uso terapêutico , Inibidores de beta-Lactamases/uso terapêutico , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/uso terapêutico , Animais , Antibacterianos/química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/uso terapêutico , Carbapenêmicos/química , Carbapenêmicos/uso terapêutico , Ceftazidima/química , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Eritrócitos , Células HEK293 , Compostos Heterocíclicos/química , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Suínos , Tobramicina/química , Inibidores de beta-Lactamases/química
10.
Adv Healthc Mater ; 8(2): e1800889, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30474285

RESUMO

Nucleic acid (NA)-based therapy is promising for tissue repair, such as skin and bone defect therapy. However, bacterial infections often occur in the process of tissue healing. The ideal treatment of tissue repair requires both anti-infection and simultaneous tissue healing. The epidermal growth factor (EGF) plays an important role in wound healing processes. In this work, degradable antibacterial gene vectors based on tobramycin (clinically relevant antibiotic) conjugated poly(aspartic acid) (TPT) are proposed as multifunctional delivery nanosystems of plasmid encoding EGF (pEGF) to realize the antibacterial therapy and tissue healing of infected skin defects. TPT has low cytotoxicity and good degradability, which is helpful in the NA delivery process. TPT demonstrates good transfection performances and hemocompatibility, as well as excellent antibacterial activities in vitro. The outstanding pEGF delivery ability of TPT and the bioactivity of expressed EGF facilitate the proliferation of fibroblast cells. The effective in vivo infected skin defect therapy is also demonstrated with TPT/pEGF nanocomplexes, where skin tissue healing is promoted. The present work opens new avenues for the design of multifunctional delivery nanosystems with antibacterial ability to treat infected tissue defect.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/administração & dosagem , Pele/lesões , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/genética , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Células NIH 3T3 , Nanoestruturas/química , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/química , Cicatrização
11.
Ann Clin Microbiol Antimicrob ; 17(1): 46, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593272

RESUMO

BACKGROUND: Osteomyelitis is an acute or chronic inflammatory process of the bone following infection with pyogenic organisms like Staphylococcus aureus. Tobramycin (TOB) is a promising aminoglycoside antibiotic used to treat various bacterial infections, including S. aureus. The aim of this study was to investigate the efficacy of tobramycin-loaded calcium phosphate beads (CPB) in a rabbit osteomyelitis model. METHODS: Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n = 5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus + CPB (group 4), and S. aureus + TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies. RESULTS: Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth. CONCLUSIONS: TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.


Assuntos
Antibacterianos/administração & dosagem , Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos/métodos , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/administração & dosagem , Animais , Antibacterianos/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Masculino , Coelhos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Tobramicina/química
12.
Int J Pharm ; 552(1-2): 130-138, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267753

RESUMO

Tobramycin (TOB) and clarithromycin (CLA) can potentially be used synergistically for the treatment of respiratory infections caused by Pseudomonas aeruginosa (P. aeruginosa) in cystic fibrosis (CF) patients. This study aimed to develop a novel combination proliposome formulation (TOB/CLA-CPROLips) containing both hydrophilic TOB and hydrophobic CLA via a core-carrier approach. The combination proliposomes were produced by spray drying a suspension comprising spray-driedmannitol (SD-MAN, 0.45%) and spray-dried tobramycin (SD-TOB, 0.05%) particles suspended in an ethanolic lipid solution of CLA (0.05%). The lipid layer coated on the surface of the dry proliposome particles conferred moisture protection and sustained drug release properties in comparison to the pure drugs. The optimized TOB/CLA-CPROLips formulation was stable after 3 months of storage at 60% relative humidity (RH) and 25 °C. The combination drug proliposomes showed a synergistic antimicrobial activity against planktonic cells and biofilm cultures of P. aeruginosa. In conclusion, the core-carrier method coupled with spray-drying provided a novel approach for the preparation of combination antibiotics proliposomes.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Claritromicina/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/administração & dosagem , Antibacterianos/química , Claritromicina/química , Dessecação , Combinação de Medicamentos , Composição de Medicamentos , Liberação Controlada de Fármacos , Lipossomos , Pseudomonas aeruginosa/fisiologia , Tobramicina/química
13.
Eur J Pharm Biopharm ; 131: 120-129, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30063969

RESUMO

Pulmonary infections with Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) are difficult to treat and related with high mortality in some diseases like cystic fibrosis due to the recurrent formation of biofilms. The biofilm formation hinders efficient treatment with inhaled antibiotics due to a low penetration of the antibiotics through the polyanionic biofilm matrix and increased antimicrobial resistance of the biofilm-embedded bacteria. In this study, tobramycin (Tb) was encapsulated in particles based on poly(d,l,-lactide-co-glycolide) (PLGA) and poly(ethylene glycol)-co-poly(d,l,-lactide-co-glycolide) diblock (PEG-PLGA) to overcome the biofilm barrier with particle sizes of 225-231 nm (nanoparticles) and 896-902 nm (microparticles), spherical shape and negative zeta potentials. The effectiveness against biofilms of P. aeruginosa and B. cepacia was strongly enhanced by the encapsulation under fluidic experimental condition as well as under static conditions in artificial mucus. The biofilm-embedded bacteria were killed by less than 0.77 mg/l encapsulated Tb, whereas 1,000 mg/l of free Tb or the bulk mixtures of Tb and the particles were ineffective against the biofilms. Moreover, encapsulated Tb was even effective against biofilms of the intrinsically aminoglycoside-resistant B. cepacia, indicating a supportive effect of PEG and PLGA on Tb. No cytotoxicity was detected in vitro in human lung epithelial cells with any formulation.


Assuntos
Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Muco/metabolismo , Tobramicina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/metabolismo , Portadores de Fármacos , Humanos , Pulmão/microbiologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Nanopartículas , Tamanho da Partícula , Poliésteres , Polietilenoglicóis , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/química , Tobramicina/farmacocinética
14.
Int J Pharm ; 548(1): 182-191, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883795

RESUMO

The purpose of this work was to study a new dry powder inhaler (DPI) of tobramycin capable to simplify the dose administration maneuvers to maximize the cystic fibrosis (CF) patient care in antibiotic inhalation therapy. For the purpose, tobramycin/sodium stearate powder (TobraPS) having a high drug content, was produced by spray drying, characterized and the aerodynamic behavior was investigated in vitro using different RS01 DPI inhalers. The aerosols produced with 28, 56 or 112 mg of tobramycin in TobraPS powder using capsules size #3, #2 or #0 showed that there was quasi linear relationship between the amount loaded in the device and the FPD. An in vivo study in healthy human volunteers showed that 3-6 inhalation acts were requested by the volunteers to inhale 120 mg of TobraPS powder loaded in a size #0 capsule aerosolized with a prototype RS01 device, according to their capability to inhale. The amount of powder emitted at 4 kPa pressure drop at constant air flow well correlated with the in vivo emission at dynamic flow, when the same volume of air passed through the device. The novel approach for the administration of 112 mg of tobramycin in one capsule could improve the convenience and adherence of the CF patient to the antibiotic therapy.


Assuntos
Antibacterianos/administração & dosagem , Inaladores de Pó Seco , Tobramicina/administração & dosagem , Administração por Inalação , Adulto , Idoso , Antibacterianos/química , Feminino , Humanos , Masculino , Assistência ao Paciente , Pós , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Tobramicina/química
15.
Mater Sci Eng C Mater Biol Appl ; 90: 693-705, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853141

RESUMO

To endow orthopaedic implants with satisfactory antibacterial properties, the design and development of antibiotic coating on the surface of implants is highly desired. In this work a novel and facile strategy was developed to form pH-responsive layer-by-layer (LbL) films implanted with polymeric micelles as nano-vehicles loaded with charge-weak antibiotic drugs, enabling high drug loading efficiency. Negatively charged tobramycin (Tob)-embeded heparin miscells (HET) and positively charged chitosan (CHT) were exploited as a pH-responsive LBL multilayer building block, respectively. The formation mechanism and pH-stimulated release behavior of the Tob-contained heparin micelles were studied. The characterization on the morphologies, chemical compositions and hydrophilicity of the modified surface confirmed the successuful deposition of the Tob-loaded CHT/HET multilayers coatings on the polydopamine-modified Ti surface. The drug release profiles displayed fast release at pH 7.4 and slow release after exposure to weakly acidic environments. Antibacterial tests indicated that the Tob-embed CHT/HET nanostructured multilayers not only strongly inhibited initial bacterial adhesion, but also disruptted biofilm formation. Particularly, this functional coatings showed "long-term antibacterial" pattern in acid condition. Meanwhile, MC3T3 cells showed acceptable adhesion, spread and proliferation on the multilayer coatings in cytocompatible studies. In a word, these multilayer coatings incorporated with a wide variety of antibiotics show promisiong applications in preventing postoperative infection and resolving unmet clinical need.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Heparina/química , Micelas , Nanoestruturas/química , Tobramicina/química , Animais , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Gentamicinas/química , Gentamicinas/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/farmacologia
16.
Mol Pharm ; 15(4): 1643-1652, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29514003

RESUMO

Pseudomonas aeruginosa is the predominant pathogen in the persistent lung infections of cystic fibrosis (CF) patients among other diseases. One of the mechanisms of resistance of P. aeruginosa infections is the formation and presence of biofilms. Previously, we demonstrated that PEGylated-tobramycin (Tob-PEG) had superior antimicrobial activity against P. aeruginosa biofilms compared to tobramycin (Tob). The goal of this study was to optimize the method of PEGylation of Tob and assess its activity in an in vitro CF-like mucus barrier biofilm model. Tob was PEGylated using three separate chemical conjugation methods and analyzed by 1H NMR. A comparison of the Tob-PEG products from the different conjugation methods showed significant differences in the reduction of biofilm proliferation after 24 h of treatment. In the CF-like mucus barrier model, Tob-PEG was significantly better than Tob in reducing P. aeruginosa proliferation after only 5 h of treatment ( p < 0.01). Finally, Tob-PEG caused a reduction in the number of surviving P. aeruginosa biofilm colonies higher than that of Tob ( p < 0.0001). We demonstrate the significantly improved antimicrobial activity of Tob-PEG against P. aeruginosa biofilms compared to Tob using two PEGylation methods. Tob-PEG had better in vitro activity compared to that of Tob against P. aeruginosa biofilms growing in a CF-like mucus barrier model.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Muco/metabolismo , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Animais , Antibacterianos/química , Galinhas , Fibrose Cística/tratamento farmacológico , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Suínos , Tobramicina/química
17.
Pharm Res ; 35(1): 10, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294187

RESUMO

PURPOSE: It is unknown if inactive pharmaceutical ingredients influence the activity of antibiotics they are co-formulated with. Recently it was found that materials acting as carbon nutrient sources for bacteria can promote bacterial dispersion from a biofilm and/or reverse the persister state of a subpopulation of bacteria within the biofilms. Both can make bacteria more susceptible to antibiotics. Thus, the aim was to identify potential excipients to improve antibiotic activity in Pseudomonas aeruginosa biofilms. METHODS: We screened 190 potential excipients alone, and in combination with tobramycin sulfate against P. aeruginosa (strain PAO1) grown planktonically or as biofilms. After the excipient screening stage, we investigated the effect of 10 selected excipients against a more virulent strain (luminescent strain UCBPP-PA14). Temporal changes in luminescence, as an indicator of bacterial proliferation, and surviving colony forming units (CFUs) from the treated PA14 biofilms were quantified. RESULTS: Forty-eight materials tested caused a reduction of PAO1 proliferation either alone or combined with tobramycin. L-alanine (p < 0.05), D-alanine (p > 0.05), and N-acetyl-D-glucosaminitol (p > 0.05) improved the activity of tobramycin measured by PA14 luminometry. Additionally, L-alanine and succinic acid significantly reduced the survival of PA14 biofilms (p < 0.05). CONCLUSIONS: L-alanine, succinic acid, and N-acetyl-D-glucosaminitol may be useful as antibiotic adjuvants in future tobramycin anti-biofilm formulations.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Excipientes/química , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/química , Alanina/química , Alanina/farmacologia , Anti-Infecciosos/química , Proliferação de Células , Química Farmacêutica/métodos , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/farmacologia , Humanos
18.
J Biomed Mater Res B Appl Biomater ; 106(8): 2827-2840, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29282858

RESUMO

The influence of calcium polyphosphate (CPP) gel incorporation on the release of vancomycin and tobramycin from polymethyl methacrylate (PMMA) cement (Simplex P, SP) has been studied. Adding 10% CPP gel to SP led to a much lower burst release of vancomycin and considerably extended release of both vancomycin and tobramycin up to 24 weeks. Antibiotics released from this new material retain their bactericidal activity for up to 15 weeks. The improvement in the antibiotic release is mainly due to the molecular interactions of antibiotics with embedded CPP polyphosphate chains as confirmed by Raman spectroscopy analysis. The inclusion of CPP hydrogel also increased the SP surface roughness and pore sizes, leading to a higher release rate of antibiotics. The new material is biocompatible and has similar handling properties and mechanical strength as compared to SP cements. We believe that incorporating CPP gel provides a better and usable drug carrier for PMMA cement. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2827-2840, 2018.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Ácidos Polimetacrílicos , Polifosfatos , Tobramicina , Vancomicina , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Polifosfatos/química , Polifosfatos/farmacologia , Tobramicina/química , Tobramicina/farmacocinética , Tobramicina/farmacologia , Vancomicina/química , Vancomicina/farmacocinética , Vancomicina/farmacologia
19.
Mol Pharm ; 14(6): 1950-1960, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28418683

RESUMO

Tobramycin Inhalation Powder (TIP) is a spray-dried engineered particle formulation used in TOBI Podhaler, a drug-device combination for treatment of cystic fibrosis (CF). A TIP particle consists of two phases: amorphous, glassy tobramycin sulfate and a gel-phase phospholipid (DSPC). The objective of this work was to characterize both the amorphous and gel phases following exposure of TIP to a broad range of RH and temperature. Because, in principle, changes in either particle morphology or the solid-state form of the drug could affect drug delivery or biopharmaceutical properties, understanding physical stability was critical to development and registration of this product. Studies included morphological assessments of particles, thermal analysis to measure the gel-to-liquid crystalline phase transition (Tm) of the phospholipid and the glass transition temperature (Tg) of tobramycin sulfate, enthalpy relaxation measurements to estimate structural relaxation times, and gravimetric vapor sorption to measure moisture sorption isotherms of TIP and its components. Collectively, these data enabled development of a state diagram for TIP-a map of the environmental conditions under which physical stability can be expected. This diagram shows that, at long-term storage conditions, TIP is at least 50 °C below the Tg of the amorphous phase and at least 40 °C below the Tm of the gel phase. Enthalpy relaxation measurements demonstrate that the characteristic structural relaxation times under these storage conditions are many orders of magnitude greater than that at Tg. These data, along with long-term physicochemical stability studies conducted during product development, demonstrate that TIP is physically stable, remaining as a mechanical solid over time scales and conditions relevant to a pharmaceutical product. This met a key design goal in the development of TIP: a room-temperature-stable formulation (3-year shelf life) that obviates the need for refrigeration for long-term storage. This has enabled development of TOBI Podhaler-an approved inhaled drug product that meaningfully reduces the treatment burden of CF patients worldwide.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Tobramicina/química , Administração por Inalação , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Inaladores de Pó Seco , Vidro/química , Microscopia Eletrônica de Varredura , Tecnologia Farmacêutica , Termogravimetria , Tobramicina/administração & dosagem
20.
Nanomedicine (Lond) ; 12(1): 25-42, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27879162

RESUMO

AIM: Efficacy of antibiotics in cystic fibrosis (CF) is compromised by the poor penetration through mucus barrier. This work proposes a new 'nano-into-micro' approach, used to obtain a combinatorial effect: achieve a sustained delivery of tobramycin and overcome mucus barrier. METHODS: Mannitol microparticles (MPs) were loaded with a tobramycin polymeric nanocomplex and characterized in presence of CF artificial mucus. RESULTS & DISCUSSION: MPs are able to alter the rheological properties of CF artificial mucus, enhancing drug penetration into it and allowing a prolonged drug release. MPs resulted to be effective in Pseudomonas aeruginosa infections if compared with free tobramycin. CONCLUSION: MPs resulted to be a formulation of higher efficacy, with potential positive implications, as lower required dose, administration frequency, side effects and antibiotic resistance problems.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/complicações , Polímeros , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacocinética , Linhagem Celular , Portadores de Fármacos , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Manitol/química , Muco , Nanocompostos/química , Polieletrólitos , Polímeros/síntese química , Infecções por Pseudomonas/etiologia , Tobramicina/administração & dosagem , Tobramicina/química , Tobramicina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA