Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Front Public Health ; 12: 1295758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590813

RESUMO

Introduction: In Nigeria, because of increasing population, urbanization, industrialization, and auto-mobilization, petrol is the most everyday non-edible commodity, and it is the leading petroleum product traded at the proliferating Nigeria's petrol stations (NPSs). However, because of inadequate occupational health and safety (OHS) regulatory measures, working at NPSs exposes petrol station workers (PSWs) to a large amount of hazardous benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Methods: Studies on BTEX exposures among Nigerian PSWs are scarce. Thus, constraints in quantifying the health risks of BTEX limit stakeholders' ability to design practical risk assessment and risk control strategies. This paper reviews studies on the OHS of Nigerian PSWs at the NPSs. Results: Although knowledge, attitude, and practices on OHS in NPSs vary from one Nigeria's study setting to another, generally, safety practices, awareness about hazards and personal protective equipment (PPE), and the use of PPE among PSWs fell below expectations. Additionally, air quality at NPSs was poor, with a high content of BTEX and levels of carbon monoxide, hydrogen sulfide, particulate matter, and formaldehyde higher than the World Health Organization guideline limits. Discussion: Currently, regulatory bodies' effectiveness and accountability in safeguarding OHS at NPSs leave much to be desired. Understanding the OHS of NPSs would inform future initiatives, policies, and regulations that would promote the health and safety of workers at NPSs. However, further studies need to be conducted to describe the vulnerability of PSWs and other Nigerians who are occupationally exposed to BTEX pollution. More importantly, controlling air pollution from hazardous air pollutants like BTEX is an essential component of OHS and integral to attaining the Sustainable Development Goals (SDG) 3, 7, and 11.


Assuntos
Derivados de Benzeno , Benzeno , Exposição Ocupacional , População da África Ocidental , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Nigéria , Exposição Ocupacional/análise , Monitoramento Ambiental
2.
J Chromatogr A ; 1721: 464823, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547679

RESUMO

This paper reports a method for determining the oil absorption value of inorganic powder based on tracer-assisted headspace gas chromatographic (HS-GC) technique. The method was carried out by adding 25 µL droplet of toluene-Dioctyl Phthalate solution onto the surface of 1.0 g inorganic powder, then sealing the headspace vial and shaking it to make the powder spherical. The amount of toluene that not been adsorbed by inorganic powder was quantified using HS-GC with the optimal equilibrium temperature and time conditions of 100 °C and 7 min, respectively. A new mathematical model shows that the oil absorption value can be determined from the signal of toluene. The results show that the employed method has good precision (the relative standard deviation < 3.6 %) and accuracy (R2 = 0.993). This method is simple and accurate, and can be an reliable tool for testing the oil absorption value of inorganic powder sample.


Assuntos
Tolueno , Pós , Cromatografia Gasosa/métodos , Temperatura , Tolueno/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38541258

RESUMO

African American women in the United States have a high risk of adverse pregnancy outcomes. DNA methylation is a potential mechanism by which exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes) may cause adverse pregnancy outcomes. Data are from the Maternal Stress Study, which recruited African American women in the second trimester of pregnancy from February 2009 to June 2010. DNA methylation was measured in archived DNA from venous blood collected in the second trimester. Trimester-specific exposure to airshed BTEX was estimated using maternal self-reported addresses and geospatial models of ambient air pollution developed as part of the Geospatial Determinants of Health Outcomes Consortium. Among the 64 women with exposure and outcome data available, 46 differentially methylated regions (DMRs) were associated with BTEX exposure (FDR adjusted p-value < 0.05) using a DMR-based epigenome-wide association study approach. Overall, 89% of DMRs consistently exhibited hypomethylation with increasing BTEX exposure. Biological pathway analysis identified 11 enriched pathways, with the top 3 involving gamma-aminobutyric acid receptor signaling, oxytocin in brain signaling, and the gustation pathway. These findings highlight the potential impact of BTEX on DNA methylation in pregnant women.


Assuntos
Poluentes Atmosféricos , Benzeno , Negro ou Afro-Americano , Metilação de DNA , Feminino , Humanos , Gravidez , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Benzeno/análise , Benzeno/toxicidade , Derivados de Benzeno/análise , Derivados de Benzeno/toxicidade , Negro ou Afro-Americano/genética , Monitoramento Ambiental , Tolueno/toxicidade , Tolueno/análise , Xilenos/toxicidade , Xilenos/análise
4.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395129

RESUMO

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Assuntos
Glioxilatos , Nefropatias , Ácidos Mandélicos , Exposição Ocupacional , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Estireno/análise , Estudos Transversais , Derivados de Benzeno/análise , Exposição Ocupacional/análise
5.
Sci Rep ; 14(1): 3873, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365800

RESUMO

This study aimed to examine the impacts of single and multiple air pollutants (AP) on the severity of breast cancer (BC). Data of 1148 diagnosed BC cases (2008-2016) were obtained from the Cancer Research Center and private oncologist offices in Tehran, Iran. Ambient PM10, SO2, NO, NO2, NOX, benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, and BTEX data were obtained from previously developed land use regression models. Associations between pollutants and stage of BC were assessed by multinomial logistic regression models. An increase of 10 µg/m3 in ethylbenzene, o-xylene, m-xylene, and 10 ppb of NO corresponded to 10.41 (95% CI 1.32-82.41), 4.07 (1.46-11.33), 2.89 (1.08-7.73) and 1.08 (1.00-1.15) increase in the odds of stage I versus non-invasive BC, respectively. Benzene (OR, odds ratio = 1.16, 95% CI 1.01-1.33) and o-xylene (OR = 1.18, 1.02-1.38) were associated with increased odds of incidence of BC stages III & IV versus non-invasive stages. BC stage I and stage III&IV in women living in low SES areas was associated with significantly higher levels of benzene, ethylbenzene, o-xylene, and m-xylene. The highest multiple-air-pollutants quartile was associated with a higher odds of stage I BC (OR = 3.16) in patients under 50 years old. This study provides evidence that exposure to AP is associated with increased BC stage at diagnosis, especially under premenopause age.


Assuntos
Poluentes Atmosféricos , Neoplasias da Mama , Poluentes Ambientais , Xilenos , Humanos , Feminino , Pessoa de Meia-Idade , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Benzeno/toxicidade , Benzeno/análise , Irã (Geográfico)/epidemiologia , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Derivados de Benzeno/análise , Tolueno/análise , Monitoramento Ambiental
6.
Sci Total Environ ; 919: 170639, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316304

RESUMO

BACKGROUND: Comprehensive research on the effects of individual benzene, toluene, ethylbenzene, and xylenes (BTEX) and their mixture measured in blood samples, on cardiovascular diseases (CVD) and related risk factors among the general population is limited. OBJECTIVES: To investigate the effects of blood individual and mixed BTEX on total CVD and its subtypes, lipid profiles, and white blood cell (WBC) count. METHODS: Survey-weighted multivariate logistic regression was used to examine the associations between blood individual and mixed BTEX with CVD and its subtypes in 17,007 participants from NHANES 1999-2018. The combined effect of BTEX mixture on CVD was estimated using weighted quantile sum modeling and quantile g-computation. Weighted multivariate linear regression assessed the effects of BTEX on lipid profiles and WBC, including its five-part differential count. RESULTS: In comparison to the reference quartile of BTEX mixture, individuals in the highest quartile had a significantly increased adjusted odds ratio of CVD risk (1.64, 95 % CI: 1.23 to 2.19, P for trend = 0.008). Positive associations were observed for benzene, toluene, ethylbenzene, and m-/p-xylene, demonstrating a monotonically increasing exposure-response relationship. Mixed BTEX was associated with congestive heart failure (CHF), angina pectoris, and heart attack. Individual benzene, toluene, and ethylbenzene were associated with CHF, while toluene, ethylbenzene, and all xylene isomers were linked to angina pectoris. Benzene, toluene, and o-xylene were associated with heart attack. Both mixed and individual BTEX showed positive associations with triglycerides, cholesterol, low-density lipoprotein, and WBC, including its five-part differential count, but a negative relationship with high-density lipoprotein. Subgroup analyses identified modifying effects of smoking, drinking, exercise, BMI, hypertension, and diabetes on the associations between specific toxicants and CVD risk. CONCLUSIONS: Exposure to BTEX was associated with cardiovascular diseases and cardiovascular risk factors. These findings emphasize the importance of considering blood BTEX levels when assessing cardiovascular health risks.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Infarto do Miocárdio , Humanos , Benzeno/análise , Tolueno/análise , Xilenos/análise , Leucocitose , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Inquéritos Nutricionais , Fumar , Derivados de Benzeno/análise , Angina Pectoris , Lipídeos
7.
Int J Occup Saf Ergon ; 30(1): 9-19, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36502281

RESUMO

Objectives. The present study aimed to assess whether occupational exposure to low concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) is associated with color vision impairment. Methods. We queried PubMed, Scopus, Embase, Web of Science and ProQuest as the main databases, as well as gray literature such as Google Scholar. A random-effects model was used to assess relative risk. A funnel plot was created to assess publication bias. Meta-regression analysis was applied to identify variables that explain the between-study variation in the reported risk estimate. Results. An overall standardized mean difference of 0.529 (95% confidence interval [0.269, 0.788]; p < 0.0001) was obtained in the random-effects model, which corresponded to a medium-size effect. Duration and the levels of exposure to benzene, toluene and xylene were the significant predictors of the magnitude of the combined risk estimate. Chronic exposure to low levels of BTEX was associated with dyschromatopsia determined by the color confusion index. Conclusions. The impairments can occur even at exposures lower than the occupational exposure limits of BTEX. However, there are several flaws in the determination of workers' exposure, which did not allow to establish how low a level of these chemicals can cause color vision impairment.


Assuntos
Derivados de Benzeno , Exposição Ocupacional , Tolueno , Humanos , Tolueno/análise , Benzeno/toxicidade , Benzeno/análise , Xilenos/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Monitoramento Ambiental/métodos
8.
Toxicol Ind Health ; 40(1-2): 33-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37936286

RESUMO

Benzene, toluene, ethyl benzene, and xylene (BTEX) are prevalent pollutants in shoe industry-related workplaces. The aim of this study was to assess exposure to BTEX and their carcinogenic and non-carcinogenic risks in shoe-industry-related workplaces. This study was carried out at different shoe manufactures, small shoe workshop units, shoe markets, and shoe stores in Tabriz, Iran in 2021. Personal inhalation exposure to BTEX was measured using the National Institute for Occupational Safety and Health (NIOSH) 1501 method. Carcinogenic and non-carcinogenic risks due to inhalation exposure to BTEX were estimated by United States Environmental Protection Agency (U.S. EPA) method based on Mont Carlo simulation. Results showed that the concentrations of benzene and toluene were higher than the threshold limit value (TLV) in both gluing and non-gluing units of shoe manufactures. The total carcinogenic risk (TCR) due to exposure to benzene and ethyl benzene was considerable in all shoe industry-related workplaces. Also, the hazard index (HI) as a non-carcinogenic index was higher than standard levels in all shoe industry-related workplaces. Therefore, shoe industry-related workers are at cancer and non-cancer risks due to exposure to BTEX. Prevention measures need to be implemented to reduce the concentration of BTEX in shoe industry-related workplaces.


Assuntos
Poluentes Atmosféricos , Benzeno , Humanos , Benzeno/toxicidade , Benzeno/análise , Xilenos/toxicidade , Xilenos/análise , Tolueno/toxicidade , Tolueno/análise , Sapatos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Derivados de Benzeno/toxicidade , Derivados de Benzeno/análise , Carcinógenos , Local de Trabalho , Carcinogênese , Medição de Risco
9.
Environ Monit Assess ; 195(12): 1507, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987919

RESUMO

The proximity of fuel stations to the roads and the activities inside the station can contribute to PM and VOCs and impose health risks on station workers. The study presents the exposure and health risk assessment of the fuel station personnel to total volatile organic compounds (TVOCs) and particulate matter (PM) during refueling operations. TVOCs and PM monitoring were carried out at a fuel station in Chennai, India, for 1 week in March 2021, covering both weekdays and weekends. The health risks were assessed using EPA's health impact assessment methodology. Exposure to TVOCs (3177.39 ± 5450.32 µg/m3) exceeded the EPA standard of 5 µg/m3, by more than 500 times, peaking during refueling operations. The average concentrations of PM10, PM2.5, and PM1 were 76.55 ± 23.08 µg/m3, 41.81 ± 9 µg/m3, and 30.38 ± 7.56 µg/m3, respectively. The concentrations were observed to be high during morning and evening hours due to the increased traffic on the adjacent road and inside the fuel station. The synergistic health risks linked with long-term exposure to high concentrations of BTEX and PM were also estimated. At the fuel station, a significant contribution to the SOA formation potential was shown by toluene, followed by m-xylene, p-xylene, o-xylene, ethylbenzene, and benzene. Furthermore, the deposition of airborne particles in the workers' respiratory tract was calculated using the Multiple Path Particle Dosimetry model while considering the daily average exposure duration of 12 h. The results showed that 59% of PM10 particles were deposited in the head region, whereas 11% and 10% of PM2.5 and PM1 particles were deposited in the pulmonary region. Hence, the health risk assessment indicated no non-cancer risk of exposure to PM (hazard quotient = 0.13) to station personnel exposed regularly for 1 year. However, prolonged exposure to VOCs for more than 1 year can result in both carcinogenic and non-carcinogenic risk (hazard quotient = 0.045 and cancer risk > 10-6) in workers.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Índia , Benzeno/análise , Tolueno/análise , Medição de Risco , Compostos Orgânicos Voláteis/análise
10.
Chemosphere ; 345: 140518, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890789

RESUMO

BACKGROUND: Volatile organic compounds, mainly BTEX, are among the pollutants of concern in beauty salons and barbershops that threaten both staff personnel and clients' health. This study aimed to determine the concentration of BTEX in barbershops and beauty salons and assess the carcinogenic and non-carcinogenic risks based on the actual risk coefficients. Also, possible sources of BTEX were determined. METHOD: Samples were collected by passive sampling. Quantitative and qualitative measurements of BTEX compounds were performed using gas chromatography-mass spectrometry (GC-MASS). Subsequently, the health risks were assessed according to the US Environmental Protection Agency. SPSS24 software and positive matrix factorization (PMF) analysis were used for statistical analysis and source apportionment respectively. RESULTS: Toluene is the most abundant compound in beauty salons, with a maximum concentration of 219.4 (µg/m3) in beauty salons. Results indicated that the mean ELCR value estimated for benzene regarding female staff exposure (1.04 × 10-5) was higher than that for men (4.05 × 10-6). Also, ELCR values of ethylbenzene for staff exposure were 2.08 × 10-6 and 3.8 × 10-6 for men and women, respectively, and possess possible carcinogenesis risks. CONCLUSION: Use of solvents and cosmetic products, improper heating systems, and type of service are the sources that probably contribute to BTEX emissions in beauty salons. It is necessary to follow health guidelines and conduct continuous monitoring for their implementation, in addition to setting a mandated occupational regulation framework or air quality requirements, to improve the health conditions in beauty salons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Masculino , Feminino , Humanos , Benzeno/análise , Xilenos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Derivados de Benzeno/análise , Tolueno/análise , Medição de Risco
11.
Huan Jing Ke Xue ; 44(10): 5418-5430, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827760

RESUMO

The situation of air pollution in Guanzhong Plain has been increasing in recent years; hence, it is very important to study the characteristics of volatile organic compounds (VOCs) and their health risks in urban functional zones. We analyzed 115 VOCs using gas chromatography-mass spectrometry/hydrogen ion flame detector (GC-MS/FID) and high performance liquid chromatography (HPLC) at four sampling sites in the traffic, comprehensive, industrial, and scenic zones of Baoji. We analyzed the main components and key species in the different functional zones. Ozone formation potential (OFP),·OH consumption rate (L·OH), and secondary organic aerosol formation potential (SOAFP) were used to evaluate the environmental impact, and the hazard index (HI) and lifetime cancer risk (LCR) methods were employed. The results revealed that the mean values of φ(TVOCs) in the traffic, comprehensive, industrial, and scenic zones were (59.63±23.85)×10-9, (42.92±11.88)×10-9, (60.27±24.09)×10-9, and (55.54±7.44)×10-9, respectively. The dominant contributors at the traffic zone were alkanes, and those at the other functional zones were OVOCs. Acetaldehyde, acetone, n-butane, and isopentane were abundant at different functional zones. According to the characteristic ratios of VOCs, the average ratio of toluene to benzene (T/B) at the traffic, comprehensive, industrial, and scenic zones were 1.84, 2.39, 1.28, and 1.64, respectively, and the ratio of iso-pentane to n-pentane (i/n) was mainly between 1 and 4. The results indicated that VOCs in Baoji were significantly affected by vehicle emissions and gasoline evaporation, biomass and coal combustion, and industrial coatings and foundry. The ratio of m/p-xylene to ethylbenzene (X/E) was lower than 2 at the four functional zones, and the minimum was 1.79 at the scenic zones; the results revealed that X/E was small, and the aging degree of air masses was high, indicating the influence of regional transport. According to the ratio of formaldehyde to acetaldehyde (C1/C2) and the ratio of acetaldehyde to propanal (C2/C3), it was suggested that there may have been evident anthropogenic emission sources, and the photochemical reaction had an important effect on aldehydes and ketones. Environmental impact assessment results revealed that OVOCs and alkenes contributed significantly to OFP and OFP from large to small was as follows:industrial zone>scenic zone>traffic zone>comprehensive zone. The range of L·OH in each functional zone was 8.77-15.82 s-1, with isoprene contributing the most in the industrial zone and acetaldehyde contributing the most at other functional zones. The SOAFP of each functional zone was as follows:scenic zone>comprehensive zone>traffic zone>industrial zone. Toluene, m/p-xylene, and isoprene were the notable species. According to the health risk assessment of EPA, the HI of toxic VOCs in all functional zones was lower than 1, which was at an acceptable level. However, the number of days with HI>1 in industrial zones accounted for 42.86% of the total sampling days, indicating a high risk. The lifetime carcinogenic risk (LCR) of the traffic, comprehensive, industrial, and scenic zones were 1.83×10-5, 1.21×10-5, 1.85×10-5, and 1.63×10-5, respectively, which were all in grade Ⅲ of the rating system, indicating a high probability of cancer risk. Species with LCR greater than 10-6 were formaldehyde; acetaldehyde; 1,2-dibromoethane; 1,2-dichloroethane; 1,2-dichloropropane; and chloroform.


Assuntos
Poluentes Atmosféricos , Neoplasias , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Tolueno/análise , Medição de Risco , Acetaldeído/análise , Formaldeído/análise , China
12.
Bull Environ Contam Toxicol ; 111(2): 25, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572109

RESUMO

The existence of several industries in Zarand, a city in Southeastern Iran, caused challenges for the residents about air pollutants and associated health effects. In the present study, the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX), spatio-temporal distribution and related health risks were evaluated. Passive samplers were used to collect 30 samples in the over the hot and cold periods in 2020. The ordinary Kriging method was used to predict the spatio-temporal distribution of BTEXs. Also, the Monte Carlo simulation was used to evaluate the related carcinogenic and non-carcinogenic risks of BTEX for adults. The ranking of mean concentration of overall toluene, xylene, ethylbenzene, and benzene followed as 82.49 ± 26.86, 30.91 ± 14.04, 4.75 ± 3.28, and 0.91 ± 0.18 µg/m3, respectively. The mean value of lifetime carcinogenic risk (LTCR) for residents related to benzene was 7.52 × 10- 6, indicating a negligible carcinogenic risk for them. Furthermore, the ranking of non-carcinogenic risk calculated through hazard quotient (HQ) for investigated BTEX compounds followed as xylene > benzene > toluene > ethylbenzene over the hot period and xylene > toluene > ethylbenzene over the cold period which all points had HQ < 1. Additionally, according to the findings of the sensitivity analysis, the concentration of benzene was the main contributor in increasing the carcinogenic risk. According to our results, it can be stated that the existence of several industries in the study area could not possibly occur the significant carcinogenic and non-carcinogenic risks to the adults residents in the study period. Human studies are recommended to determine definite results.


Assuntos
Poluentes Atmosféricos , Benzeno , Adulto , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Irã (Geográfico) , Monitoramento Ambiental/métodos , Derivados de Benzeno/análise , Poluentes Atmosféricos/análise , Carcinógenos/análise , Medição de Risco
13.
Chemosphere ; 336: 139265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339705

RESUMO

One of the current directions for sustainable development is to use waste resources to create materials that reduce environmental pollution. In this study, multi-walled carbon nanotubes (MWCNT) and their oxygen-functionalized forms (HNO3/H2SO4-oxidized MWCNT, NaOCl-oxidized MWCNT, and H2O2-oxidized MWCNT) were first synthesized from activated carbon (AC) derived from rice husk waste. A comprehensive comparison of the morphological and structural properties of these materials was conducted using FT-IR, BET, XRD, SEM, TEM, TGA, Raman spectroscopy, and surface charge analysis. The morphology study suggests that the synthesized MWCNTs have an average outer and inner diameter of about 40 and 20 nm, respectively. Additionally, the NaOCl-oxidized MWCNT possesses the largest interspaces between nanotubes, while the HNO3/H2SO4-oxidized CNT has the most oxygen-functional groups, including -COOH, (Ar)-OH, and C-OH. The adsorption capacities of these materials were also compared for the removal of benzene and toluene. Experimental results have shown that while porosity is the primary factor governing the benzene and toluene adsorption onto AC, functionalization degree and surface chemical characteristics are the determining factors in the adsorption capacity of the as-prepared MWCNTs. The adsorption capacity of these aromatic compounds in an aqueous solution increases in the following order: AC < MWCNT < HNO3/H2SO4-oxidized MWCNT < H2O2-oxidized MWCNT < NaOCl-oxidized MWCNT, and in all cases, toluene is more readily adsorbed than benzene under similar adsorption conditions. Wherein the uptake of both pollutants by the prepared adsorbents in this study is best described by the Langmuir isotherm and obeys the pseudo-second-order kinetic model. The adsorption mechanism was discussed in a detailed manner.


Assuntos
Nanotubos de Carbono , Oryza , Poluentes Químicos da Água , Tolueno/análise , Benzeno/análise , Nanotubos de Carbono/química , Adsorção , Oxigênio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxido de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 30(30): 75989-76001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37233938

RESUMO

The health risk and burden of disease induced by exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) in the outdoor air in Tehran, 2019 were assessed based on the data of five fixed stations with weekly BTEX measurements. The non-carcinogenic risk, carcinogenic risk, and disease burden from exposure to BTEX compounds were determined by hazard index (HI), incremental lifetime cancer risk (ILCR), and disability-adjusted life year (DALY), respectively. The average annual concentrations of benzene, toluene, ethylbenzene, and xylene in the outdoor air in Tehran were 6.59, 21.62, 4.68, and 20.88 µg/m3, respectively. The lowest seasonal BTEX concentrations were observed in spring and the highest ones occurred in summer. The HI values of BTEX in the outdoor air in Tehran by district ranged from 0.34 to 0.58 (less than one). The average ILCR values of benzene and ethylbenzene were 5.37 × 10-5 and 1.23 × 10-5, respectively (in the range of probable increased cancer risk). The DALYs, death, DALY rate (per 100,000 people) and death rate (per 100,000 people) induced by BTEX exposure in the outdoor air in Tehran were determined to be 180.21, 3.51, 2.07, and 0.04, respectively. The five highest attributable DALY rates in Tehran by district were observed in the districts 10 (2.60), 11 (2.43), 17 (2.41), 20 (2.32), and 9 (2.32), respectively. The corrective measures such as controlling road traffic and improving the quality of vehicles and gasoline in Tehran could reduce the burden of disease from BTEX along with the health effects of other outdoor air pollutants.


Assuntos
Poluentes Atmosféricos , Neoplasias , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Irã (Geográfico) , Monitoramento Ambiental , Derivados de Benzeno/análise , Poluentes Atmosféricos/análise , Medição de Risco
15.
Sci Total Environ ; 888: 164196, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201845

RESUMO

Occurrence of volatile organic compounds (VOCs) such as benzene in personal care products is a topic of public health concern. Sunscreen products are extensively used to protect skin and hair from UV radiation from sun light. Nevertheless, little is known about exposure doses and risks of VOCs present in sunscreens. In this study, we determined the concentrations of and exposure to three VOCs, namely benzene, toluene and styrene, in 50 sunscreen products marketed in the United States. Benzene, toluene and styrene were found in 80 %, 92 % and 58 %, respectively, of the samples analyzed at mean concentrations of 45.8 ng/g (range: 0.007-862), 89.0 ng/g (range: 0.006-470) and 161 ng/g (range: 0.006-1650), respectively. The mean dermal exposure doses (DEDs) to benzene, toluene and styrene of children/teenagers were 68.3, 133 and 441 ng/kg-bw/d, respectively, whereas those of adults were 48.7, 94.6 and 171 ng/kg-bw/d, respectively. The lifetime cancer risk from benzene concentrations present in 22 sunscreen products (44 % of the samples) for children/teenagers and 19 sunscreen products (38 %) for adults, exceeded the acceptable benchmark risk level (1.0 × 10-6). This is the first study to comprehensively assess the concentrations of and risks to benzene, toluene and styrene present in sunscreen products.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Adulto , Criança , Adolescente , Estados Unidos , Humanos , Tolueno/análise , Benzeno/análise , Protetores Solares , Estireno , Derivados de Benzeno/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise
16.
Sci Total Environ ; 892: 164511, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257601

RESUMO

Monoaromatic hydrocarbons (MACHs) are a ubiquitous category of volatile compounds found in various environmental media. Despite their prevalence, systematic studies of MACHs on a large regional scale are still lacking. Herein, a comprehensive investigation of the occurrence, seasonal variations, distribution characteristics, and health risks of MACHs was carried out by analyzing soil samples (372 surface soils and 96 soil columns) from 33 typical industrial parks in the Yangtze River Delta (YRD) region. MACHs were detected in all surface soil samples. BTEXS (benzene, toluene, ethylbenzene, xylene, and styrene) were the five predominant congeners with the highest detection frequencies (90.9 %-100 %), collectively accounting for >78.2 % of the total MACHs content. Higher residual levels of MACHs were observed in winter compared to summer (P < 0.01), with total concentrations of 24 MACHs ranging from 30.9 ng/g to 1536 ng/g (median: 135 ng/g) in winter and 16.3 ng/g to 931 ng/g (median: 87.9 ng/g) in summer. Soils collected from the northeast of Jiangsu Province and the southwest of Anhui Province exhibited relatively higher levels of MACHs. On the basis of principal component analysis, we proposed that industrial emissions and vehicle exhaust may be the main sources of MACHs contamination in the soils of YRD industrial parks. Vertically, the concentrations of total MACHs decreased with the soil depth. Soil organic matter (OM) content and the concentration of MACHs in the surface soil layer (0-15 cm) were significant factors influencing the vertical migration and distribution of MACHs (P < 0.05). It was verified that residual MACHs in the soils posed lower lifetime non-carcinogenic and carcinogenic risks to the inhabitants of the study area. The field study provides valuable evidence for the formulation of MACHs pollution control policies in the YRD region.


Assuntos
Poluentes do Solo , Solo , Monitoramento Ambiental , Rios , Estações do Ano , Poluentes do Solo/análise , China , Medição de Risco , Hidrocarbonetos/análise , Tolueno/análise
17.
J Chromatogr A ; 1696: 463980, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37060855

RESUMO

Locating underground pipeline leaks can be challenging due to their hidden nature and variable terrain conditions. To sample soil gas, solid-phase microextraction (SPME) was employed, and a portable gas chromatography/mass spectrometry (GC/MS) was used to detect the presence and concentrations of petroleum hydrocarbon volatile organic compounds (pH-VOCs), including benzene, toluene, ethylbenzene, and xylene (BTEX). We optimized the extraction method through benchtop studies using SPME. The appropriate fibre materials and exposure time were selected for each BTEX compound. Before applying SPME, we preconditioned the soil vapour samples by keeping the temperature at around 4 °C and using ethanol as a desorbing agent and moisture filters to minimize the impact of moisture. To conduct this optimisation, airbags were applied to condition the soil vapour samples and SPME sampling. By conditioning the samples using this method, we were able to improve analytical efficiency and accuracy while minimizing environmental impacts, resulting in more reliable research data in the field. The study employed portable GC/MS data to assess the concentration distribution of BTEX in soil vapour samples obtained from 1.5 m below the ground surface at 10 subsurface vapour monitoring locations at the leak site. After optimization, the detection limits of BTEX were almost 100 µg/m3, and the measurement repeatabilities were approximately 5% and 15% for BTEX standards in the laboratory and soil vapour samples in the field, respectively. The soil vapour samples showed a hotspot region with high BTEX concentrations, reaching 30 mg/m3, indicating a diesel return pipeline leak caused by a gasket failure in a flange. The prompt detection of the leak source was critical in minimizing environmental impact and worker safety hazards.


Assuntos
Petróleo , Microextração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Petróleo/análise , Derivados de Benzeno/análise , Tolueno/análise , Benzeno/análise , Xilenos/análise , Solo , Medição de Risco
18.
Ecotoxicol Environ Saf ; 256: 114873, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043945

RESUMO

Long-term exposure to volatile organic compounds (VOCs) and carbonyl compounds in beauty products may adversely impact the health of beauty salon technicians. Previous studies have focused on assessing indoor air concentrations of chemicals, such as benzene and toluene, and not on personal exposure concentrations. This study measured the indoor and personal exposure concentrations of VOCs and carbonyl compounds in fifty-three beauty salons in Korea. Non-carcinogenic and carcinogenic risks and sensitivity were analyzed using the Monte Carlo simulation technique. The indoor and personal exposure concentrations of acetone were 82.24 µg/m3 and 104.97 µg/m3, respectively, the highest among all measured chemicals. Beauty salon technicians who experienced adverse health effects had significantly higher concentrations of acetone, benzaldehyde, and toluene than those who did not experience adverse health effects (p-value < 0.05). The average hazard quotients of formaldehyde and acetaldehyde were higher than the acceptable risk level (1), and the average cancer risks of formaldehyde exceeded the acceptable risk level (10-6). Wearing personal protective equipment was the most efficient risk reduction strategy for reducing the non-cancer risks of acetaldehyde and formaldehyde and the carcinogenic risks of formaldehyde. The results of this study can be used as a basis for reducing exposure to VOCs and carbonyl compounds among salon technicians.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Exposição Ocupacional , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Acetona , Exposição Ocupacional/análise , Formaldeído , Tolueno/análise , Acetaldeído , República da Coreia , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
19.
Chemosphere ; 328: 138561, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004824

RESUMO

Benzene series are considered as air pollutants in refineries. However, the emissions of benzene series in fluid catalytic cracking (FCC) flue gas are poorly understand. In this work, we conduct stack tests on three typical FCC units. Benzene series, including benzene, toluene, xylene and ethyl benzene, are monitored in the flue gas. It shows that the coking degree of the spent catalysts affect the emissions of benzene series significantly, and there are four kinds of carbon-containing precursors in the spent catalyst. A fixed-bed reactor is used to conduct the regeneration simulation experiments, and the flue gas is monitored by TG-MS and FTIR. The emissions of toluene and ethyl benzene are mainly emitted in the early and middle stage of the reaction (250-650 °C), while the emission of benzene is mainly detected in the middle and late stage of the reaction (450-750 °C). Xylene group is not detected in the stack tests and regeneration experiments. Higher emissions of benzene series are released from the spent catalyst with lower C/H ratio during regeneration process. With the increase of oxygen content, the emissions of benzene series decrease, and the initial emission temperature is advanced. These insights can improve the refinery's awareness and control of benzene series in the future.


Assuntos
Poluentes Atmosféricos , Benzeno , Benzeno/análise , Xilenos/análise , Poluentes Atmosféricos/análise , Tolueno/análise
20.
Food Chem ; 421: 136229, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105118

RESUMO

An advanced synthesis based on the phenylalanine (Phe) and task-specific ionic liquid (TSIL) functionalized on multi-walled carbon nanotubes (Phe/TSIL@MWCNTs), was used to extract benzene, ethylbenzene, toluene, and xylene (BTEX) from cow's milk, powdered milk, and farm water samples. The BTEX was efficiently extracted by ultrasound-assisted dispersive homogenized-micro-solid phase extraction (USA-DH-µ-SPE) between 95.1% and 103.4%. By procedure, 50 mg of Phe/TSIL@MWCNTs was added to 0.2 mL of acetone and injected into 10 mL of the samples. The upper aqueous solution was vacuumed, the vial heated to 80 °C, and the BTEX desorbed in the vial. Then, using a Hamilton syringe, 1-20 µL of gas in the headspace vial was determined by injecting it into the gas chromatography with flame ionization detection (GC-FID). The linear range, LOD, and LOQ for BTEX in milk and water samples were obtained at 0.05-500 µg L-1, 15 ng L-1, and 50 ng L-1, respectively (r = 0.9997, RSD% = 2.27).


Assuntos
Benzeno , Nanotubos de Carbono , Animais , Benzeno/análise , Tolueno/análise , Xilenos/análise , Nanotubos de Carbono/química , Água/química , Leite/química , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA