Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704067

RESUMO

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.


Assuntos
Antineoplásicos , Venenos de Serpentes , Humanos , Venenos de Serpentes/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Neoplasias/tratamento farmacológico , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/farmacologia , Apoptose/efeitos dos fármacos , Fosfolipases A2/metabolismo , Fosfolipases A2/química , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia
2.
Toxicon ; 238: 107588, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147939

RESUMO

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Assuntos
Venenos de Artrópodes , Bacillus thuringiensis , Inseticidas , Mariposas , Neonicotinoides , Nitrocompostos , Toxinas Biológicas , Humanos , Recém-Nascido , Animais , Inseticidas/toxicidade , Glycine max , Helicoverpa armigera , Toxinas de Bacillus thuringiensis/farmacologia , Larva , Insetos , Toxinas Biológicas/farmacologia , Venenos de Artrópodes/farmacologia , Bioensaio , Folhas de Planta , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/toxicidade , Endotoxinas , Controle Biológico de Vetores , Resistência a Inseticidas
3.
J Biol Chem ; 300(1): 105577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110035

RESUMO

Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.


Assuntos
Formigas , Mordeduras e Picadas , Dor , Peptídeos , Toxinas Biológicas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Animais , Formigas/patogenicidade , Formigas/fisiologia , Mordeduras e Picadas/complicações , Dor/induzido quimicamente , Dor/complicações , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Toxinas Biológicas/toxicidade , Vertebrados , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/metabolismo
4.
J Biol Chem ; 299(9): 105119, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527778

RESUMO

Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5ß1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5ß1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno , Integrina alfa5beta1 , Receptores Purinérgicos P2Y2 , Serratia , Toxinas Biológicas , Animais , Cricetinae , Trifosfato de Adenosina/metabolismo , Autofagia/efeitos dos fármacos , Células CHO , Cricetulus , Exocitose/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Serratia/química , Serratia/efeitos dos fármacos , Serratia/fisiologia , Toxinas Biológicas/farmacologia , Humanos
5.
Toxins (Basel) ; 15(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235375

RESUMO

Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.


Assuntos
Ansiolíticos , Proteína HMGB3 , Anêmonas-do-Mar , Toxinas Biológicas , Ratos , Camundongos , Humanos , Animais , Ansiolíticos/farmacologia , Anêmonas-do-Mar/química , Diclofenaco , Proteína HMGB2 , Peptídeos/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Toxinas Biológicas/farmacologia , Fatores de Transcrição , Roedores , Anti-Inflamatórios/farmacologia
6.
Toxins (Basel) ; 14(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36006179

RESUMO

Natural compounds have always represented an important source for new drugs. Although fungi represent one such viable source, to date, no fungal metabolite has been marketed as an anticancer drug. Based on our work with phytotoxins as potential chemical scaffolds and our recent findings involving three phytopathogenic fungi, i.e., Cochliobolus australiensis, Kalmusia variispora and Hymenoscyphus fraxineus, herein, we evaluate the in vitro anti-cancer activity of the metabolites of these fungi by MTT assays on three cancer cell models harboring various resistance levels to chemotherapeutic drugs. Radicinin, a phytotoxic dihydropyranopyran-4,5-dione produced by Cochliobolus australiensis, with great potential for the biocontrol of the invasive weed buffelgrass (Cenchrus ciliaris), showed significant anticancer activity in the micromolar range. Furthermore, a SAR study was carried out using radicinin, some natural analogues and hemisynthetic derivatives prepared by synthetic methods developed as part of work aimed at the potential application of these molecules as bioherbicides. This investigation opens new avenues for the design and synthesis of novel radicinin analogues as potential anticancer agents.


Assuntos
Alcaloides , Cenchrus , Neoplasias , Toxinas Biológicas , Alcaloides/farmacologia , Sobrevivência Celular , Cenchrus/química , Curvularia , Pironas , Relação Estrutura-Atividade , Toxinas Biológicas/farmacologia
7.
Toxins (Basel) ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35878222

RESUMO

Exposure to cyanobacterial hepatotoxins has been linked to the promotion and increased incidence of liver cancer in pre-clinical and epidemiologic studies. The family of hepatotoxins, microcystins (MCs), are produced by over 40 cyanobacterial species found in harmful algal blooms (HABs) worldwide, with MC-LR being the most common and potent MC congener. In the current study, we hypothesized that the low-dose chronic ingestion of Microcystis cyanotoxins via drinking water would promote liver carcinogenesis in pre-initiated mice. Four groups of C3H/HeJ mice received one intraperitoneal (i.p.) injection of diethylnitrosamine (DEN) at 4 weeks of age. Three weeks later, the mice were administered ad libitum drinking water containing one of the following: (1) reverse osmosis, deionized water; (2) water containing 500 mg/L phenobarbital (PB500); (3) water with purified MC-LR (10 µg/L) added; or (4) water containing lysed Microcystis aeruginosa (lysate; 10 µg/L total MCs). The exposure concentrations were based on environmentally relevant concentrations and previously established Ohio EPA recreational water MC guidelines. Throughout the 30-week exposure, mouse weights, food consumption, and water consumption were not significantly impacted by toxin ingestion. We found no significant differences in the number of gross and histopathologic liver lesion counts across the treatment groups, but we did note that the PB500 group developed lesion densities too numerous to count. Additionally, the proportion of lesions classified as hepatocellular carcinomas in the MC-LR group (44.5%; p < 0.05) and lysate group (55%; p < 0.01) was significantly higher compared to the control group (14.9%). Over the course of the study, the mice ingesting the lysate also had a significantly lower survival probability (64.4%; p < 0.001) compared to water (96.8%), PB500 (95.0%), and MC-LR (95.7%) exposures. Using cyanotoxin levels at common recreational water concentration levels, we demonstrate the cancer-promoting effects of a single cyanotoxin MC congener (MC-LR). Furthermore, we show enhanced hepatocarcinogenesis and significant mortality associated with combinatorial exposure to the multiple MCs and bioactive compounds present in lysed cyanobacterial cells­a scenario representative of the ingestion exposure route, such as HAB-contaminated water and food.


Assuntos
Água Potável , Neoplasias Hepáticas , Microcystis , Toxinas Biológicas , Animais , Carcinogênese/induzido quimicamente , Ingestão de Alimentos , Neoplasias Hepáticas/induzido quimicamente , Camundongos , Camundongos Endogâmicos C3H , Microcistinas , Toxinas Biológicas/farmacologia
8.
J Nat Prod ; 84(8): 2121-2128, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34445875

RESUMO

Peptide toxins find use in medicine, biotechnology, and agriculture. They are exploited as pharmaceutical tools, particularly for the investigation of ion channels. Here, we report the synthesis and activity of a novel family of peptide toxins: the cystine-knotted α nemertides. Following the prototypic α-1 and -2 (1 and 2), six more nemertides were discovered by mining of available nemertean transcriptomes. Here, we describe their synthesis using solid phase peptide chemistry and their oxidative folding by using an improved protocol. Nemertides α-2 to α-7 (2-7) were produced to characterize their effect on voltage-gated sodium channels (Blatella germanica BgNaV1 and mammalian NaVs1.1-1.8). In addition, ion channel activities were matched to in vivo tests using an Artemia microwell assay. Although nemertides demonstrate high sequence similarity, they display variability in activity on the tested NaVs. The nemertides are all highly toxic to Artemia, with EC50 values in the sub-low micromolar range, and all manifest preference for the insect BgNaV1 channel. Structure-activity relationship analysis revealed key residues for NaV-subtype selectivity. Combined with low EC50 values (e.g., NaV1.1: 7.9 nM (α-6); NaV1.3: 9.4 nM (α-5); NaV1.4: 14.6 nM (α-4)) this underscores the potential utility of α-nemertides for rational optimization to improve selectivity.


Assuntos
Peptídeos/farmacologia , Toxinas Biológicas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Animais , Artemia/efeitos dos fármacos , Baratas , Invertebrados/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem
9.
Stem Cells Dev ; 30(15): 758-772, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074129

RESUMO

Cytokine storm is recognized as one of the factors contributing to organ failures and mortality in patients with COVID-19. Due to chronic inflammation, COVID-19 patients with diabetes mellitus (DM) or renal disease (RD) have more severe symptoms and higher mortality. However, the factors that contribute to severe outcomes of COVID-19 patients with DM and RD have received little attention. In an effort to investigate potential treatments for COVID-19, recent research has focused on the immunomodulation functions of mesenchymal stem cells (MSCs). In this study, the correlation between DM and RD and the severity of COVID-19 was examined by a combined approach with a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that the odd of mortality in patients with both DM and RD was increased in comparison to those with a single comorbidity. In addition, in the experimental research, the data showed that high glucose and uremic toxins contributed to the induction of cytokine storm in human lung adenocarcinoma epithelial cells (Calu-3 cells) in response to SARS-CoV Peptide Pools. Of note, the incorporation of Wharton's jelly MSC-derived extracellular vesicles (WJ-EVs) into SARS-CoV peptide-induced Calu-3 resulted in a significant decrease in nuclear NF-κB p65 and the downregulation of the cytokine storm under high concentrations of glucose and uremic toxins. This clearly suggests the potential for WJ-EVs to reduce cytokine storm reactions in patients with both chronic inflammation diseases and viral infection.


Assuntos
Síndrome da Liberação de Citocina/prevenção & controle , Vesículas Extracelulares/fisiologia , Células-Tronco Mesenquimais/citologia , SARS-CoV-2/fisiologia , Geleia de Wharton/citologia , Adulto , Idoso , COVID-19/sangue , COVID-19/complicações , COVID-19/metabolismo , COVID-19/terapia , Células Cultivadas , Técnicas de Cocultura , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Citocinas/genética , Citocinas/metabolismo , Complicações do Diabetes/sangue , Complicações do Diabetes/metabolismo , Complicações do Diabetes/terapia , Complicações do Diabetes/virologia , Diabetes Mellitus/sangue , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Diabetes Mellitus/virologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Gravidez , Toxinas Biológicas/metabolismo , Toxinas Biológicas/farmacologia , Cordão Umbilical/citologia , Uremia/sangue , Uremia/complicações , Uremia/metabolismo , Uremia/terapia
10.
Molecules ; 26(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673582

RESUMO

Many cancer diseases, e.g., prostate cancer and lung cancer, develop very slowly. Common chemotherapeutics like vincristine, vinblastine and taxol target cancer cells in their proliferating states. In slowly developing cancer diseases only a minor part of the malignant cells will be in a proliferative state, and consequently these drugs will exert a concomitant damage on rapidly proliferating benign tissue as well. A number of toxins possess an ability to kill cells in all states independently of whether they are benign or malignant. Such toxins can only be used as chemotherapeutics if they can be targeted selectively against the tumors. Examples of such toxins are mertansine, calicheamicins and thapsigargins, which all kill cells at low micromolar or nanomolar concentrations. Advanced prodrug concepts enabling targeting of these toxins to cancer tissue comprise antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), lectin-directed enzyme-activated prodrug therapy (LEAPT), and antibody-drug conjugated therapy (ADC), which will be discussed in the present review. The review also includes recent examples of protease-targeting chimera (PROTAC) for knockdown of receptors essential for development of tumors. In addition, targeting of toxins relying on tumor-overexpressed enzymes with unique substrate specificity will be mentioned.


Assuntos
Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Toxinas Biológicas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Calicheamicinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Terapia Enzimática , Técnicas de Silenciamento de Genes , Humanos , Masculino , Maitansina/farmacologia , Terapia de Alvo Molecular , Peptídeo Hidrolases/genética , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Tapsigargina/farmacologia , Toxinas Biológicas/farmacologia
11.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499086

RESUMO

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Assuntos
Antivirais/farmacologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia , Toxinas Biológicas/farmacologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Humanos , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Inibidores da Síntese de Proteínas/isolamento & purificação , Proteínas Inativadoras de Ribossomos/isolamento & purificação , Toxinas Biológicas/isolamento & purificação , Viroses/metabolismo , Viroses/virologia , Vírus/metabolismo , Vírus/patogenicidade
12.
Biochem Soc Trans ; 49(1): 455-465, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33492383

RESUMO

The integrity of the plasma membranes is extremely crucial for the survival and proper functioning of the cells. Organisms from all kingdoms of life employ specialized pore-forming proteins and toxins (PFPs and PFTs) that perforate cell membranes, and cause detrimental effects. PFPs/PFTs exert their damaging actions by forming oligomeric pores in the membrane lipid bilayer. PFPs/PFTs play important roles in diverse biological processes. Many pathogenic bacteria secrete PFTs for executing their virulence mechanisms. The immune system of the higher vertebrates employs PFPs to kill pathogen-infected cells and transformed cancer cells. The most obvious consequence of membrane pore-formation by the PFPs/PFTs is the killing of the target cells due to the disruption of the permeability barrier function of the plasma membranes. PFPs/PFTs can also activate diverse cellular processes that include activation of the stress-response pathways, induction of programmed cell death, and inflammation. Upon attack by the PFTs, host cells may also activate pathways to repair the injured membranes, restore cellular homeostasis, and trigger inflammatory immune responses. In this article, we present an overview of the diverse cellular responses that are triggered by the PFPs/PFTs, and their implications in the process of pathogen infection and immunity.


Assuntos
Imunidade , Infecções/patologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Toxinas Biológicas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Infecções/imunologia , Bicamadas Lipídicas/metabolismo , Virulência/fisiologia
13.
Dokl Biochem Biophys ; 494(1): 219-221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33119820

RESUMO

In the present study, we assessed the role of annexin 13 membrane-binding protein (ANXA13) in the intracellular transport of vesicles containing type II ribosome-inactivating proteins (RIP-IIs). A modified human intestinal epithelial cell line HT29 was used, in which the expression of ANXA13 was significantly reduced. The cytotoxic effect of ricin and viscumin was evaluated by modification of 28S ribosome RNA. The observed differences in the activity of toxins on the parental and modified HT29 lines indicate that ANXA13 plays a different role in the intracellular transport of vesicles containing the RIP-IIs.


Assuntos
Anexinas/metabolismo , Substâncias para a Guerra Química/farmacologia , Neoplasias do Colo/patologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ricina/farmacologia , Toxinas Biológicas/farmacologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Células HT29 , Humanos
14.
Toxins (Basel) ; 12(10)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053750

RESUMO

Peptide toxins isolated from venomous creatures, long prized as research tools due to their innate potency for ion channels, are emerging as drugs as well. However, it remains challenging to understand why peptide toxins bind with high potency to ion channels, to identify residues that are key for activity, and to improve their affinities via mutagenesis. We use WaterMap, a molecular dynamics simulation-based method, to gain computational insight into these three questions by calculating the locations and thermodynamic properties of water molecules in the peptide toxin binding sites of five ion channels. These include an acid-sensing ion channel, voltage-gated potassium channel, sodium channel in activated and deactivated states, transient-receptor potential channel, and a nicotinic receptor whose structures were recently determined by crystallography and cryo-electron microscopy (cryo-EM). All channels had water sites in the peptide toxin binding site, and an average of 75% of these sites were stable (low-energy), and 25% were unstable (medium or high energy). For the sodium channel, more unstable water sites were present in the deactivated state structure than the activated. Additionally, for each channel, unstable water sites coincided with the positions of peptide toxin residues that previous mutagenesis experiments had shown were important for activity. Finally, for the sodium channel in the deactivated state, unstable water sites were present in the peptide toxin binding pocket but did not overlap with the peptide toxin, suggesting that future experimental efforts could focus on targeting these sites to optimize potency.


Assuntos
Descoberta de Drogas , Canais Iônicos/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Simulação de Dinâmica Molecular , Peptídeos/farmacologia , Toxinas Biológicas/farmacologia , Água/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia , Humanos , Canais Iônicos/química , Canais Iônicos/metabolismo , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica , Toxinas Biológicas/metabolismo
15.
Eur J Pharmacol ; 889: 173604, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980346

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Here, we investigated the molecular mechanisms that underpin the anticancer effects of cleistanthin A (CA) in two CRC cell lines, HCT 116, and SW480. At 48 h, CA exhibited apoptotic cytotoxic effects in both CRC cell lines, concomitant with reduction of an anti-apoptotic protein, survivin. Mechanistically, CA treatment significantly reduced the expression levels of ß-catenin and active-ß-catenin in a dose-dependent manner in both CRC cell lines. Moreover, CA suppressed the Wnt/ß-catenin signaling pathway by decreasing ß-catenin-mediated transcriptional activity and expression of ß-catenin target genes, AXIN2, CCND1, and survivin. Furthermore, CA also inhibited transcriptional activity in cells overexpressing a constitutively active ß-catenin S33Y, indicating a GSK-3ß-independent mechanism underlying the observed CA effects on CRC cells. Although cytotoxic activity was not observed with CA treatment at 24 h, cell migration and invasion were significantly reduced. In addition, CA suppressed V-type ATPase activity and focal adhesion kinase (FAK) phosphorylation. Collectively, our study reveals that CA has time-dependent effects on CRC cell phenotypes. First, short-term CA treatment inhibited CRC cell migration and invasion partly through the suppression of V-type ATPase activity. This suppression resulted in reduced FAK activation. Second, longer-term CA treatment decreased cell viability which correlated with the suppression of Wnt/ß-catenin signaling induced transcriptional activity. Altogether, our data suggest that CA has the potential to develop as an effective and novel therapeutic drug for CRC patients.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Glicosídeos/farmacologia , Lignanas/farmacologia , Toxinas Biológicas/farmacologia , Apoptose/fisiologia , Movimento Celular/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Relação Dose-Resposta a Droga , Glicosídeos/uso terapêutico , Células HCT116 , Células HEK293 , Humanos , Lignanas/uso terapêutico , Invasividade Neoplásica/patologia , Toxinas Biológicas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
16.
Dokl Biochem Biophys ; 493(1): 198-200, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32894464

RESUMO

The role of proteasome proteins and proteins of the ERAD system in the cytotoxicity of type II ribosome-inactivating proteins ricin and viscumin was investigated. For this, the cell line of colorectal adenocarcinoma HT29, as well as the HT29-sh002 line obtained on its basis, were used. On the basis on the proteome analysis of these lines and the estimation of the proportion of inactivated ribosomes, it was shown that the contribution of the proteasome to the degradation of the catalytic subunits of toxins is different. The role of the Cdc37 co-chaperone in maintaining the stability of A subunit of viscumin in the cytoplasm is shown.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Ricina/farmacologia , Toxinas Biológicas/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribossomos/metabolismo , Células Tumorais Cultivadas
17.
Biochem Pharmacol ; 181: 114082, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32524995

RESUMO

The role of voltage-gated sodium (NaV) channels in pain perception is indisputable. Of particular interest as targets for the development of pain therapeutics are the tetrodotoxin-resistant isoforms NaV1.8 and NaV1.9, based on animal as well as human genetic studies linking these ion channel subtypes to the pathogenesis of pain. However, only a limited number of inhibitors selectively targeting these channels have been reported. HSTX-I is a peptide toxin identified from saliva of the leech Haemadipsa sylvestris. The native 23-residue peptide, stabilised by two disulfide bonds, has been reported to inhibit rat NaV1.8 and mouse NaV1.9 with low micromolar activity, and may therefore represent a scaffold for development of novel modulators with activity at human tetrodotoxin-resistant NaV isoforms. We synthetically produced this hydrophobic peptide in high yield using a one-pot oxidation and single step purification and determined the three-dimensional solution structure of HSTX-I using NMR solution spectroscopy. However, in our hands, the synthetic HSTX-I displayed only very modest activity at human NaV1.8 and NaV1.9, and lacked analgesic efficacy in a murine model of inflammatory pain.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptídeos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Toxinas Biológicas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Animais , Células Cultivadas , Humanos , Hiperalgesia/prevenção & controle , Sanguessugas/química , Sanguessugas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/química , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/química , Soluções/química , Toxinas Biológicas/química , Canais de Sódio Disparados por Voltagem/genética
18.
Biochem Pharmacol ; 181: 114096, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32535105

RESUMO

Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.


Assuntos
Pesquisa Biomédica/métodos , Descoberta de Drogas/métodos , Peptídeos/farmacologia , Toxinas Biológicas/farmacologia , Peçonhas/farmacologia , Animais , Desenvolvimento de Medicamentos/métodos , Humanos , Terapia de Alvo Molecular/métodos , Peptídeos/química , Peptídeos/uso terapêutico , Conformação Proteica , Toxinas Biológicas/química , Toxinas Biológicas/uso terapêutico , Peçonhas/química , Peçonhas/metabolismo , Peçonhas/uso terapêutico
19.
Biosci Biotechnol Biochem ; 84(5): 1023-1029, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31942834

RESUMO

Indoxyl sulfate (IS), a uremic toxin, is a sulfate-conjugated metabolite originated from tryptophan. Accumulating uremic toxins may worsen renal diseases and further complicate related disorders including impaired immune functions under oxidative stress conditions. However, it has remained unclear whether or not IS can directly cause the cellular immune dysfunction. We investigated the effects of IS on the intracellular oxidation level and phagocytic activity in a HL-60-differantiated human macrophage cell model. Incubation of the cells in the presence of IS resulted in increasing intracellular oxidation level and decreasing phagocytic activity. In addition to inhibitors for NADH oxidase (NOX), organic anion transporting polypeptide2B1 (OATP2B1), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K), a representative antioxidant Trolox, was also shown to significantly relieve the IS-induced oxidation and restore weakened phagocytosis. Collectively, IS may directly down-regulate the phagocytic immune function of macrophages through the oxidation mechanisms including OATP2B1, PKC, PI3K, and NOX pathways. Abbreviations: CKD: Chronic kidney disease; IS: Indoxyl sulfate; ROS: Reactive oxygen species; NOX: NADH oxidase; OATP2B1: Organic anion transporting polypeptide2B1; PKC: Protein kinase C; PI3K: Phosphoinositide 3-kinase; 2-APT: 2-acetylphenothiazine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Indicã/farmacologia , Espaço Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Toxinas Biológicas/farmacologia , Antioxidantes/farmacologia , Cromanos/farmacologia , Células HL-60 , Humanos , Macrófagos/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Curr Pharm Biotechnol ; 21(2): 97-109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31223083

RESUMO

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


Assuntos
Biotecnologia/métodos , Portadores de Fármacos/química , Descoberta de Drogas/métodos , Nanopartículas/química , Peptídeos/farmacologia , Toxinas Biológicas/farmacologia , Peçonhas/química , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA