Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672415

RESUMO

The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Mariposas/metabolismo , Mariposas/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Simulação de Acoplamento Molecular , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
2.
Pestic Biochem Physiol ; 198: 105744, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225087

RESUMO

Cry2Ab is one of the important alternative Bt proteins that can be used to manage insect pests resistant to Cry1A toxins and to expand the insecticidal spectrum of pyramided Bt crops. Previous studies have showed that vacuolar H+-ATPase subunits A and B (V-ATPase A and B) may be involved in Bt insecticidal activities. The present study investigated the role of V-ATPases subunit E in the toxicity of Cry2Ab in Helicoverpa amigera. RT-PCR analysis revealed that oral exposure of H. amigera larvae to Cry2Ab led to a significant reduction in the expression of H. armigera V-ATPase E (HaV-ATPase E). Ligand blot, homologous and heterologous competition experiments confirmed that HaV-ATPases E physically and specifically bound to activated Cry2Ab toxin. Heterologous expressing of HaV-ATPase E in Sf9 cells made the cell line more susceptible to Cry2Ab, whereas knockdown of the endogenous V-ATPase E in H. zea midgut cells decreased Cry2Ab's cytotoxicity against this cell line. Further in vivo bioassay showed that H. armigera larvae fed a diet overlaid with both Cry2Ab and E. coli-expressed HaV-ATPase E protein suffered significantly higher mortality than those fed Cry2Ab alone. These results support that V-ATPases E is a putative receptor of Cry2Ab and can be used to improve Cry2Ab toxicity and manage Cry2Ab resistance at least in H. armigera.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Helicoverpa armigera , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Escherichia coli , Toxinas de Bacillus thuringiensis/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/metabolismo , Resistência a Inseticidas
3.
Pest Manag Sci ; 80(4): 1728-1739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009289

RESUMO

BACKGROUND: The commercialized Bt (Bacillus thuringiensis) crops accumulate Bt protein within cells, but the intracellular interactions of foreign protein with endogenous protein inevitably result in large or small unintended effects. In this study, the Bt gene Cry1Ca was linked with the sequences of extracellular secretion signal peptide and carbohydrate binding module 11 to constitute a fusion gene SP-Cry1Ca-CBM11, and the fusion gene driven by constitutive promoters was used for secreting and anchoring onto the cell wall to minimize unintended effects. RESULTS: The transient expression in tobacco leaves demonstrated that the fusion protein was anchored on cell walls. The Cry1Ca contents of five homozygous rice transformants of single-copy insertion were different and descended in the order leaf > root > stem. The maximum content of Cry1Ca was 17.55 µg g-1 in leaves of transformant 21H037. The bioassay results revealed that the transformants exhibited high resistance to lepidopteran pests. The corrected mortality of pink stem borer (Sesamia inferens) and striped stem borer (Chilo suppressalis) ranged from 96.33% to 100%, and from 83.32% to 100%, respectively, and the corrected mortality of rice leaf roller (Cnaphalocrocis medinalis) was 92.53%. Besides, the agronomic traits of the five transformants were normal and similar to that of the recipient, and the transformants were highly resistant to glyphosate at the germination and seedling stages. CONCLUSION: The fusion Bt protein was accumulated on cell walls and endowed the rice with high resistance to lepidopteran pests without unintended effects in agronomic traits. © 2023 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Lepidópteros , Mariposas , Oryza , Animais , Lepidópteros/genética , Oryza/genética , Oryza/metabolismo , Endotoxinas/farmacologia , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Proteínas de Bactérias/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores/métodos
4.
Pestic Biochem Physiol ; 197: 105658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072533

RESUMO

Crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) are widely used in transgenic crops to control important insect pests. Bt crops have many benefits compared with traditional broad-spectrum insecticides, including improved pest control with reduced negative impacts on off-target organisms and fewer environmental consequences. Transgenic corn and cotton producing Cry2Ab Bt toxin are used globally to control several major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Resistance to the Cry2Ab toxin and to Bt crops producing Cry2Ab is associated with mutations in the midgut ATP-binding cassette transporter ABCA2 gene in several lepidopterans. Gene-editing knockout has further shown that ABCA2 plays an important functional role in Cry2Ab intoxication. However, the precise role of ABCA2 in the mode of action of Cry2Ab has yet to be reported. Here, we used two in vitro expression systems to study the roles of the H. armigera ABCA2 (HaABCA2) protein in Cry2Ab intoxication. Cry2Ab bound to cultured Sf9 insect cells producing HaABCA2, resulting in specific and dose-dependent susceptibility to Cry2Ab. In contrast, Sf9 cells expressing recombinant mutant proteins missing at least one of the extracellular loop regions 1, 3, 4, and 6 or the intracellular loop containing nucleotide-binding domain 1 lost susceptibility to Cry2Ab, indicating these regions are important for receptor function. Consistent with these results, Xenopus laevis oocytes expressing recombinant HaABCA2 showed strong ion membrane flux in the presence of Cry2Ab, suggesting that HaABCA2 is involved in promoting pore formation during Cry2Ab intoxication. Together with previously published data, our results support HaABCA2 being an important receptor of Cry2Ab where it functions to promote intoxication in H. armigera.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Helicoverpa armigera , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Toxinas de Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Mariposas/genética , Mariposas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Gossypium/metabolismo , Larva/genética
5.
Biochem Biophys Res Commun ; 685: 149144, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922785

RESUMO

In-cell protein crystals which spontaneously crystallize in living cells, have recently been analyzed in investigations of their structures and biological functions. The crystals have been challenging to analyze structurally because of their small size. Therefore, the number of in-cell protein crystals in which the native structure has been determined is limited because most of the structures of in-cell crystals have been determined by recrystallization after dissolution. Some proteins have been reported to form intermolecular disulfide bonds in natural protein crystals that stabilize the crystals. Here, we focus on Cry1Aa, a cysteine-rich protein that crystallizes in Bacillus thuringiensis (Bt) and forms disulfide bonds. Previously, the full-length structure of 135 kDa Cry1Ac, which is the same size as Cry1Aa, was determined by recrystallization of dissolved protein from crystals purified from Bt cells. However, the formation of disulfide bonds has not been investigated because it was necessary to replace cysteine residues to prevent aggregation of the soluble protein. In this work, we succeeded in direct X-ray crystallographic analysis using crystals purified from Bt cells and characterized the cross-linked network of disulfide bonds within Cry1Aa crystals.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Cisteína/metabolismo , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Proteínas Hemolisinas/metabolismo
6.
Appl Environ Microbiol ; 89(7): e0062523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37378519

RESUMO

Midgut receptors play a critical role in the specificity of Cry toxins for individual insect species. Cadherin proteins are essential putative receptors of Cry1A toxins in lepidopteran larvae. Cry2A family members share common binding sites in Helicoverpa armigera, and one of them, Cry2Aa, has been widely reported to interact with midgut cadherin. Here, we studied the binding interaction and functional role of H. armigera cadherin in the mechanism of Cry2Ab toxicity. A region spanning from cadherin repeat 6 (CR6) to the membrane-proximal region (MPR) of cadherin protein was produced as six overlapping peptides to identify the specific binding regions of Cry2Ab. Binding assays showed that Cry2Ab binds nonspecifically to peptides containing CR7 and CR11 regions in a denatured state but binds specifically only to CR7-containing peptides in the native state. The peptides CR6-11 and CR6-8 were transiently expressed in Sf9 cells to assess the functional role of cadherin. Cytotoxicity assays showed that Cry2Ab is not toxic to the cells expressing any of the cadherin peptides. However, ABCA2-expressing cells showed high sensitivity to Cry2Ab toxin. Neither increased nor decreased sensitivity to Cry2Ab was observed when the peptide CR6-11 was coexpressed with the ABCA2 gene in Sf9 cells. Instead, treating ABCA2-expressing cells with a mixture of Cry2Ab and CR6-8 peptides resulted in significantly reduced cell death compared with treatment with Cry2Ab alone. Moreover, silencing of the cadherin gene in H. armigera larvae showed no significant effect on Cry2Ab toxicity, in contrast to the reduced mortality in ABCA2-silenced larvae. IMPORTANCE To improve the efficiency of production of a single toxin in crops and to delay the evolution of insect resistance to the toxin, the second generation of Bt cotton, expressing Cry1Ac and Cry2Ab, was introduced. Understanding the mode action of the Cry proteins in the insect midgut and the mechanisms insects use to overcome these toxins plays a crucial role in developing measures to counter them. Extensive studies have been conducted on the receptors of Cry1A toxins, but relatively little has been done about those of Cry2Ab. By showing the nonfunctional binding of cadherin protein with Cry2Ab, we have furthered the understanding of Cry2Ab receptors.


Assuntos
Toxinas de Bacillus thuringiensis , Helicoverpa armigera , Proteínas de Insetos , Receptores de Superfície Celular , Helicoverpa armigera/crescimento & desenvolvimento , Helicoverpa armigera/metabolismo , Helicoverpa armigera/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Larva/metabolismo , Técnicas de Silenciamento de Genes , Células Sf9
7.
Gene ; 856: 147113, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36543309

RESUMO

Cotton has been one of the most important cash crops in Pakistan, but its production is adversely affected by biotic and abiotic stresses. Insect pests such as pink bollworm present a colossal vulnerability to such a financially important commodity. Bt toxins have been widely used to safeguard agricultural plants against notorious insect pests such as cotton bollworm and pink bollworm, and they have proven to be effective in reducing chewing insect pests. However, its efficacy has been challenged due to the development of resistance in insect pests against Bt toxins such as Cry1Ac and this poses a significant risk to the long-term adoption of these Bt crops. Resistance in insect pests against Bt toxin Cry1Ac is developed due to the mutations in the midgut receptors such as cadherin. In this study first 56 amino acids which also includes helix alpha-1 portion from N-terminus of the Cry1Ac were removed and the gene was commercially synthesized following codon optimization. Modified Cry1Ac was used to develop transgenic plants of Nicotiana tabacum and insect bioassays were conducted to check the efficacy of Cry1Ac through leaf bioassays. Cry1Ac, a modified Bt toxin, was produced pET-28a (+), and diet bioassays were performed using purified protein at various doses against Pectinophora gossypiella. Based on the insect mortality and LC50, the Cry1AcM3 form of the modified toxins was shown to be more potent than the other modified versions (Cry1AcM1, Cry1AcM2), with more than 80 % mortality against resistant pink bollworm at 1.25 g/mL and an LC50 of 0.48. The results suggest that modified toxin cry1Ac may be useful in controlling population of pink bollworm resistant against cry1Ac.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/genética , Endotoxinas/farmacologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Produtos Agrícolas/genética , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Larva/genética
8.
FEBS J ; 289(4): 965-984, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34618400

RESUMO

Little information is available regarding the region of Cry toxins involved in binding to their major receptors, the ATP-binding cassette (ABC) transporters. We analyzed which Cry1Aa amino acid residues contribute to binding to Bombyx mori ABC transporter C2 (BmABCC2). Several two oxidized double-cysteine substitution mutant toxins were made. In these, two amino acids at distant positions on toxin loop α8 and loop 2 or loop 2 and loop 3 were substituted with cysteine residues and crosslinked. These mutants exhibited a marked reduction in binding affinity to BmABCC2, suggesting that the binding site comprises complex cavities formed by loops α8, 2, and 3. Loop swapping between Cry1Aa and other BmABCC2-incompatible toxins indicated that loop 2 acts as a binding affinity-generating part of Cry1Aa toxin. Using single amino acid substitution mutants, the results of surface plasmon resonance (SPR) analysis and response assays with BmABCC2-expressing Sf9 cells indicated that Y366, R367, R368, and L447 in the Cry1Aa root and base region of loops 2 and 3 play important roles in binding. Furthermore, SPR analyses of these mutants suggested that a two-state binding model fits best the data obtained. Moreover, complex cavities and the above-mentioned amino acid residues contribute to the generation of multiple binding points and high-affinity binding. Finally, we found that the binding site of B. mori cadherin-like protein consists of complex cavities comprising loops 1, 2, and 3, partially overlapping that of BmABCC2, suggesting that the loop region of Cry1Aa toxin acts as a promiscuous binding site.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo , Animais , Toxinas de Bacillus thuringiensis/química , Bombyx , Endotoxinas/química , Proteínas Hemolisinas/química , Modelos Moleculares , Proteína 2 Associada à Farmacorresistência Múltipla/química , Ligação Proteica
9.
Int J Biol Macromol ; 194: 9-16, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861271

RESUMO

Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.


Assuntos
Bacillus thuringiensis/fisiologia , Interações Hospedeiro-Patógeno , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo , Spodoptera/metabolismo , Spodoptera/microbiologia , Animais , Toxinas de Bacillus thuringiensis/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Células Sf9 , Spodoptera/genética
10.
Nat Commun ; 12(1): 3380, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099714

RESUMO

Plant-parasitic nematodes (PPNs) are economically important pests of agricultural crops, and soybean cyst nematode (SCN) in particular is responsible for a large amount of damage to soybean. The need for new solutions for controlling SCN is becoming increasingly urgent, due to the slow decline in effectiveness of the widely used native soybean resistance derived from genetic line PI 88788. Thus, developing transgenic traits for controlling SCN is of great interest. Here, we report a Bacillus thuringiensis delta-endotoxin, Cry14Ab, that controls SCN in transgenic soybean. Experiments in C. elegans suggest the mechanism by which the protein controls nematodes involves damaging the intestine, similar to the mechanism of Cry proteins used to control insects. Plants expressing Cry14Ab show a significant reduction in cyst numbers compared to control plants 30 days after infestation. Field trials also show a reduction in SCN egg counts compared with control plants, demonstrating that this protein has excellent potential to control PPNs in soybean.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Produtos Agrícolas/parasitologia , Resistência à Doença/genética , Endotoxinas/genética , Glycine max/parasitologia , Proteínas Hemolisinas/genética , Tylenchoidea/patogenicidade , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Bioensaio , Caenorhabditis elegans , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Endotoxinas/metabolismo , Feminino , Engenharia Genética , Proteínas Hemolisinas/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/isolamento & purificação
11.
Toxins (Basel) ; 12(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049917

RESUMO

Cry proteins produced by Bacillus thuringiensis are pore-forming toxins that disrupt the membrane integrity of insect midgut cells. The structure of such pore is unknown, but it has been shown that domain I is responsible for oligomerization, membrane insertion and pore formation activity. Specifically, it was proposed that some N-terminal α-helices are lost, leading to conformational changes that trigger oligomerization. We designed a series of mutants to further analyze the molecular rearrangements at the N-terminal region of Cry1Ab toxin that lead to oligomer assembly. For this purpose, we introduced Cys residues at specific positions within α-helices of domain I for their specific labeling with extrinsic fluorophores to perform Föster resonance energy transfer analysis to fluorescent labeled Lys residues located in Domains II-III, or for disulfide bridges formation to restrict mobility of conformational changes. Our data support that helix α-1 of domain I is cleaved out and swings away from the toxin core upon binding with Manduca sexta brush border membrane vesicles. That movement of helix α-2b is also required for the conformational changes involved in oligomerization. These observations are consistent with a model proposing that helices α-2b and α-3 form an extended helix α-3 necessary for oligomer assembly of Cry toxins.


Assuntos
Bacillus cereus/metabolismo , Toxinas de Bacillus thuringiensis/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Manduca/efeitos dos fármacos , Controle Biológico de Vetores , Animais , Bacillus cereus/genética , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Manduca/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Mutação , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Relação Estrutura-Atividade
12.
Dev Comp Immunol ; 111: 103754, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32464134

RESUMO

Bt protein, produced by Bacillus thuringiensis, can bind receptors to destroy the physiological functions of the insect midgut. It is unknown whether Bt can also target the hindgut and influence its defense against fecal bacteria. Here we show that Crystal protein 1Ab (Cry1Ab), a Bt protein, was detected in the larval hindgut contents of Bombyx mori after ingestion of this toxin protein. The number of fecal bacteria that can be inhibited by the hindgut prophenoloxidase-induced melanization was significantly enhanced after oral ingestion of Cry1Ab. Although the hindgut contents became brown, the activity of hindgut phenoloxidase was decreased. LC-MS/MS analysis of the hindgut lumen contents revealed that many new proteins including several proteases were newly secreted. The enhanced secretion of proteases cleaved prophenoloxidase to decrease its activity, including the corresponding activity to inhibit the fecal bacteria. In addition, after ingestion of Cry1Ab, the pylorus (between the midgut and hindgut) could not autonomously contract due to the physical detachment of the acellular cuticle-like membrane from the epidermal cells, which prevented the movement of food from the midgut to the hindgut. Some cells in the cryptonephry of the hindgut became swollen and degraded, possibly due to the presence of Cry1Ab in the hindgut. These findings demonstrate that the inhibition of feces bacteria by the hindgut prophenoloxidase-induced melanization is out of control after Cry1Ab ingestion.


Assuntos
Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/fisiologia , Bombyx/imunologia , Sistema Digestório/metabolismo , Endotoxinas/metabolismo , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas Hemolisinas/metabolismo , Animais , Catecol Oxidase/metabolismo , Cromatografia Líquida , Sistema Digestório/patologia , Ingestão de Alimentos , Precursores Enzimáticos/metabolismo , Proteínas de Insetos/metabolismo , Larva , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA