Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Parasitol Res ; 123(5): 217, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772951

RESUMO

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Assuntos
Autofagia , Óleos Voláteis , Origanum , Espécies Reativas de Oxigênio , Toxoplasma , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Origanum/química , Humanos , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antiprotozoários/farmacologia , Concentração Inibidora 50 , Necrose/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
Acta Parasitol ; 69(1): 567-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231312

RESUMO

PURPOSE: Pyrus boissieriana is a rich source of arbutin and has been used in herbal medicine to treat infectious diseases. This study aimed to investigate the effect of the arbutin-rich fraction of Pyrus boissieriana aerial parts on Toxoplasma gondii In Vitro and In Vivo. METHODS: An arbutin-rich fraction of P. boissieriana was prepared beforehand. Flow cytometry was used to evaluate the effect of different concentrations (1-512 µg/ml) of the P. boissieriana arbutin-rich fraction on Toxoplasma tachyzoites (RH strain). The cytotoxicity of the concentrations on the macrophage J774 cell line was also investigated by MTT assay. For In Vivo investigation, 4-6-week-old female mice infected with the RH strain of T. gondii were treated with different doses (16, 32, 64, 256, and 512 mg/kg) of the fraction using gavage. RESULTS: The highest and lowest lethality of the tachyzoites were 89.6% and 25.9% related to the concentrations of 512 µg/ml and 1 µg/ml, respectively, with an IC50 value of 18.1 µg/ml ± 0.37. The cytotoxicity test showed an IC50 value of 984.3 µg/ml ± 0.76 after 48 h incubation. The mean survival of mice at the lowest treated dose (16 mg/kg) was 6.6 days, and it was 15 days at the highest dose (512 mg/kg). The concentrations of 512, 256, 128, and 64 mg/kg of the fraction compared to the negative control (6.2 days mean survival) significantly increased the survival time of mice (P < 0.001, P = 0.009, P = 0.018, and P = 0.021, respectively). CONCLUSION: The results showed that the arbutin-rich fraction of P. boissieriana is effective against T. gondii In Vitro and In Vivo and may be a reliable alternative to conventional treatment for toxoplasmosis, although further studies are necessary.


Assuntos
Antiprotozoários , Arbutina , Extratos Vegetais , Toxoplasma , Animais , Toxoplasma/efeitos dos fármacos , Camundongos , Feminino , Extratos Vegetais/farmacologia , Linhagem Celular , Arbutina/farmacologia , Antiprotozoários/farmacologia , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Concentração Inibidora 50 , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
3.
Eur J Med Chem ; 244: 114812, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274280

RESUMO

The increasing resistance of Toxoplasma gondii to drugs and side effects of therapy indicate that specific treatment for these parasites is still needed. The 4-arylthiosemicarbazide derivatives seem to be a solution to this challenge because they have low cytotoxicity against host cells and high anti-T. gondii activity. The molecular mechanism for these compounds is related to the inhibition of tyrosine amino acids involved in the proliferation and parasitophorous vacuole formation. The pharmacokinetic analysis shows that 1-(4-Methylimidazol-5-oyl)-4-(4-nitrophenyl)thiosemicarbazide and 4-(3-Iodophenyl)-1-(4-methylimidazol-5-oyl)thiosemicarbazide administered intragastrically pass into the bloodstream and cross the blood-brain barrier, and the absorption of both compounds is first-order absorption. Toxicity analysis shows that our derivatives possess lower toxicity than the routinely used drugs trimethoprim, sulfadiazine and pyrimethamine, as was observed in the level of liver enzymes and creatinine. Both derivatives are highly potent antiparasitic agents against T. gondii, prolonged survival and cure parasite-infected mice. Additionally, significant reductions in cyst formation in the brain and heart were observed, but the highest decreases were noted in muscle and the level of bradyzoites was similar to these observed in mice treated with commercially used drugs. Collectively, the obtained results support the conclusion that both compounds are highly efficacious in a mouse model of acute and chronic toxoplasmosis.


Assuntos
Antiprotozoários , Semicarbazidas , Toxoplasma , Toxoplasmose , Animais , Camundongos , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Semicarbazidas/química , Semicarbazidas/farmacocinética , Semicarbazidas/toxicidade , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico
4.
Chem Biodivers ; 18(9): e2100381, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34197024

RESUMO

A new 3,4-difluorobenzylidene analog of curcumin, CDF, was recently reported, which demonstrated significantly enhanced bioavailability and in vivo anticancer activity compared with curcumin. For highlighting the antiparasitic behavior of CDF, we tested this compound together with its new O-methylated analog MeCDF against Leishmania major and Toxoplasma gondii parasites. Both CDF and MeCDF were tested in vitro against L. major and T. gondii. In addition, the in vitro cytotoxicity against Vero cells and macrophages was determined and selectivity indices were calculated. The DPPH radical scavenging activity assay was carried out in order to determine the antioxidant activity of the test compounds. Both compounds showed high activities against both parasite forms with EC50 values in the (sub-)micromolar range (0.35 to 0.8 µM for CDF, 0.31 to 1.2 µM for MeCDF). The higher activity of CDF against L. major amastigotes when compared with MeCDF can in parts be attributed to the antioxidant activity of CDF while MeCDF lacking any antioxidant activity was more active than CDF against T. gondii parasites. In conclusion, CDF and MeCDF are promising antiparasitic drug candidates due to their high activities against L. major and T. gondii parasites.


Assuntos
Antioxidantes/farmacologia , Antiparasitários/farmacologia , Curcumina/análogos & derivados , Diarileptanoides/farmacologia , Leishmania major/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Animais , Antioxidantes/química , Antiparasitários/química , Compostos de Bifenilo/antagonistas & inibidores , Chlorocebus aethiops , Curcumina/química , Curcumina/farmacologia , Diarileptanoides/química , Feminino , Halogenação , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Testes de Sensibilidade Parasitária , Picratos/antagonistas & inibidores , Células Vero
5.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299478

RESUMO

Treatments currently used to prevent congenital toxoplasmosis are non-specific of Toxoplasma gondii and have grievous side effects. To develop a more specific and less toxic drug, we have designed SP230, an imidazo[1,2-b]pyridazine salt targeting the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) and active against acute toxoplasmosis in mice. Efficiency of SP230 to inhibit foetal transmission of the parasite was evaluated in a mouse model of congenital toxoplasmosis. Swiss mice were infected at mid-pregnancy with tachyzoites or cysts of the ME49 strain of T. gondii by intraperitoneal and oral route, respectively, and treated with SP230 at 50 mg/kg for 5 days by the same routes. Parasite burden in organs of dams and in foetuses was measured by quantitative PCR. Intraperitoneal administration of SP230 drastically reduced the number of parasites (more than 97% of reduction) in the brain and lungs of dams, and led to a reduction of 66% of parasite burden in foetuses. Oral administration of SP230 was particularly efficient with 97% of reduction of parasite burdens in foetuses. SP230 did not impact number and weight of offspring in our conditions. This inhibitor of TgCDPK1 is a promising candidate for the development of alternative therapeutics to treat infected pregnant women.


Assuntos
Feto/efeitos dos fármacos , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Piridazinas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/prevenção & controle , Animais , Animais Recém-Nascidos , Feminino , Feto/parasitologia , Masculino , Camundongos , Gravidez , Toxoplasmose/parasitologia , Toxoplasmose/transmissão
6.
Front Immunol ; 12: 629917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767699

RESUMO

Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.


Assuntos
Imiquimode/farmacologia , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores Toll-Like/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Encéfalo/parasitologia , Células Cultivadas , Feminino , Humanos , Imiquimode/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/fisiologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/imunologia
7.
Pharmazie ; 76(2): 68-76, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33714282

RESUMO

Ocular toxoplasmosis is the major cause of infectious posterior uveitis worldwide, inducing visual field defect and/or blindness. Despite the severity of this disease, an effective treatment is still lacking. In this study, spiramycin-loaded PLGA implants were developed aiming at the treatment of ocular toxoplasmosis. Implants were manufactured by a hot-molding technique, characterized by Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, Differential Scanning Calorimetry, Scanning Electron Microscopy; evaluated in terms of ocular biocompatibility by immunofluorescence, flow cytometry, cell migration, Hen's egg test-chorioallantoic membrane (HET-CAM) irritation test; and investigated in terms of in vitro efficacy against Toxoplasma gondii . Characterization techniques indicated that spiramycin was dispersed into the polymeric chains and both substances preserved their physical structures in implants. The HET-CAM test indicated that implants did not induce hemorrhage or coagulation, being non-irritant to the CAM. ARPE-19 cells showed viability by MTT assay, and normality in cell cycle kinetics and morphology, without stimulating cell death by apoptosis. Finally, they were highly effective against intracellular parasites without inducing human retinal pigment epithelial cell death. In conclusion, spiramycin-loaded PLGA implants represent a promising therapeutic alternative for the local treatment of ocular toxoplasmosis.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espiramicina/administração & dosagem , Toxoplasmose Ocular/tratamento farmacológico , Animais , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide , Células Epiteliais , Humanos , Microscopia Eletrônica de Varredura , Epitélio Pigmentado da Retina , Espiramicina/uso terapêutico , Toxoplasma/efeitos dos fármacos
8.
J Ethnopharmacol ; 273: 114019, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33716084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sulfadiazine and pyrimethamine are the two drugs used as part of the standard therapy for toxoplasmosis, however; they may cause adverse side effects and fail to prevent relapse in many patients, rendering infected individuals at risk of reactivation upon becoming immunocompromised. Extracts from various parts of Annona muricata have been widely used medicinally for the management, control and/or treatment of several human diseases, acting against parasites that cause diseases in humans. AIM OF THE STUDY: This study was performed to investigate the action of the ethanolic extract of A. muricata (EtOHAm) and its fractions in the control of the apicomplexan parasite Toxoplasma gondii in vitro and in vivo, and the effect of EtOHAm on the inflammatory response and lipid profile alteration induced by in vivo T. gondii infection. MATERIALS AND METHODS: The cytotoxicity of EtOHAm and its fractions ethyl acetate (EtOAcAm), n-butanol (BuOHAm), aqueous (H2OAm), hexane (HexAm) and dichloromethane (CH2Cl2Am) was evaluated in NIH/3T3 fibroblasts using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cells were infected with T. gondii, treated with the extracts, and parasite proliferation was analyzed. For the in vivo experiments, C57BL/6 mice were orally infected with T. gondii and, treated with different concentrations of extract fractions that were effective in vitro (EtOHAm, EtOAcAm, HexAm and CH2Cl2Am). Tissue parasitism, histological alterations, systemic cytokine and lipid profile were investigated. RESULTS: EtOHAm, EtOAcAm, BuOHAm, H2OAm presented low cytotoxicity until doses of 200 µg/mL, while HexAm and CH2Cl2Am presented toxicity from doses of 100µg/mL. EtOHAm, HexAm and CH2Cl2Am decreased the parasitism in vitro, presenting a therapeutic index of 2.62, 2.44, and 2.96, respectively. In vivo, EtOHAm, HexAm and CH2Cl2Am improved the survival rate of infected animals, however, only EtOHAm was able to decrease the parasitism in the small intestine and lung. Additionally, EtOHAm decreased the systemic interferon (IFN)-γ and tumor necrosis factor (TNF) systemically in infected mice, and was able to maintain the triglycerides and very-low-density lipoprotein (VLDL) lipid fractions at similar levels to uninfected animals. Although treatment with EtOHAm could not control the inflammation induced by oral infection in the tissues analyzed, it was able to preserve the number of goblet cells in the small intestine. CONCLUSIONS: Ethanolic A. muricata leaf extract could be considered as a good candidate for the development of a complementary/alternative therapy against toxoplasmosis, and also as an anti-inflammatory alternative for decreasing TNF and IFN-γ concentrations and lipid fractions in specific diseases.


Assuntos
Annona/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
9.
J Parasitol ; 107(2): 179-181, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662116

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that has a worldwide distribution and can infect almost all warm-blood animals. Serological tests are the main detection methods for T. gondii infection in animals and humans. Little is known of biological behavior, antibody responses, and virulence of T. gondii strains in mice from China. Here we document antibody responses, tissue cyst burden, and mouse virulence of T. gondii strains isolated from different hosts in China. All T. gondii strains formed tissue cysts in the brains of mice and positively correlated with the T. gondii antibody titer (R2 = 0.3345). These results should aid in the diagnosis and characterization of T. gondii isolates.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Animais , Antiprotozoários/administração & dosagem , Encéfalo/parasitologia , China , Interações Hospedeiro-Parasita/imunologia , Camundongos , Sulfadiazina/administração & dosagem , Toxoplasma/efeitos dos fármacos , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia , Virulência
10.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557392

RESUMO

BACKGROUND: Myrtus communis (M. communis) is a wild aromatic plant used for traditional herbal medicine that can be demonstrated in insecticidal, antioxidant, anti-inflammatory, and antimicrobial activity of its essential oils (MCEO). AIM: The present study aimed to evaluate the prophylactic effects of M. communis essential oil (MCEO) against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice. METHODS: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of MCEO. Mice were then orally administrated with MCEO at the doses of 100, 200, and 300 mg/kg/day and also atovaquone 100 mg/kg for 21 days. On the 15th day, the mice were infected with the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12 and IFN-γ in mice of each tested group were measured. RESULTS: By GC/MS, the major constituents were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%), respectively. The results demonstrated that the mean number of T. gondii tissue cysts in experimental groups Ex1 (p < 0.05), Ex2 (p < 0.001) and Ex3 (p < 0.001) was meaningfully reduced in a dose-dependent manner compared with the control group (C2). The mean diameter of tissue cyst was significantly reduced in mice of the experimental groups Ex2 (p < 0.01) and Ex3 (p < 0.001). The results demonstrated that although the mRNA levels of IFN-γ and IL-12 were elevated in all mice of experimental groups, a significant increase (p < 0.001) was observed in tested groups of Ex2 and Ex3 when compared with control groups. CONCLUSION: The findings of the present study demonstrated the potent prophylactic effects of MCEO especially in the doses 200 and 300 mg/kg in mice infected with T. gondii. Although the exceptional anti-Toxoplasma effects of MCEO and other possessions, such as improved innate immunity and low toxicity are positive topics, there is, however, a need for more proof from investigations in this field.


Assuntos
Antiparasitários/farmacologia , Imunidade Inata/efeitos dos fármacos , Myrtus/química , Óleos Voláteis/farmacologia , Toxoplasmose/imunologia , Animais , Antiparasitários/uso terapêutico , Camundongos , Óleos Voláteis/uso terapêutico , Toxoplasma/efeitos dos fármacos , Toxoplasma/fisiologia , Toxoplasmose/tratamento farmacológico
11.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408226

RESUMO

Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Ácido Dicloroacético/farmacologia , Fibroblastos/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvatos/metabolismo , Toxoplasma/efeitos dos fármacos , Ácido Dicloroacético/química , Fibroblastos/parasitologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Oxirredutases , Toxoplasmose/tratamento farmacológico
12.
Exp Parasitol ; 219: 108010, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33007297

RESUMO

Toxoplasmosis is a zoonotic disease and a global food and water-borne infection. The disease is caused by the parasite Toxoplasma gondii, which is a highly successful and remarkable pathogen because of its ability to infect almost any nucleated cell in warm-blooded animals. The present study was done to demonstrate the effect of protease inhibitors cocktail (PIC), which inhibit both cysteine and serine proteases, on in vitro cultured T. gondii tachyzoites on HepG2 cell line. This was achieved by assessing its effect on the invasion of the host cells and the intracellular development of T.gondii tachyzoites through measuring their number and viability after their incubation with PIC. Based on the results of the study, it was evident that the inhibitory action of the PIC was effective when applied to tachyzoites before their cultivation on HepG2 cells. Pre-treatment of T.gondii tachyzoites with PIC resulted in failure of the invasion of most of the tachyzoites and decreased the intracellular multiplication and viability of the tachyzoites that succeeded in the initial invasion process. Ultrastructural studies showed morphological alteration in tachyzoites and disruption in their organelles. This effect was irreversible till the complete lysis of cell monolayer in cultures. It can be concluded that PIC, at in vitro levels, could prevent invasion and intracellular multiplication of Toxoplasma tachyzoites. In addition, it is cost effective compared to individual protease inhibitors. It also had the benefit of combined therapy as it lowered the concentration of each protease inhibitor used in the cocktail. Other in vivo experiments are required to validate the cocktail efficacy against toxoplasmosis. Further studies may be needed to establish the exact mechanism by which the PIC exerts its effect on Toxoplasma tachyzoites behavior and its secretory pathway.


Assuntos
Inibidores de Proteases/farmacologia , Toxoplasma/efeitos dos fármacos , Análise de Variância , Animais , Aprotinina/farmacologia , Meios de Cultura Livres de Soro , Inibidores de Cisteína Proteinase/farmacologia , Combinação de Medicamentos , Células Hep G2 , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Leupeptinas/farmacologia , Camundongos , Microscopia Eletrônica de Transmissão , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Projetos Piloto , Inibidores de Serina Proteinase/farmacologia , Estatísticas não Paramétricas , Sulfonas/farmacologia , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura
13.
Sci Rep ; 10(1): 15158, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938966

RESUMO

The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.


Assuntos
Antiprotozoários/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Complicações Parasitárias na Gravidez/tratamento farmacológico , Toxoplasmose/complicações , Toxoplasmose/tratamento farmacológico , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/isolamento & purificação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Fabaceae/classificação , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Transmissão , Fitoterapia , Placenta/efeitos dos fármacos , Placenta/parasitologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Toxoplasma/citologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/parasitologia
14.
Sci Rep ; 10(1): 13115, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753607

RESUMO

Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.


Assuntos
Interferon gama/biossíntese , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-2/farmacologia , Toxoplasmose/imunologia , Toxoplasmose/prevenção & controle , Animais , Encéfalo/parasitologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-2/química , Camundongos , Toxoplasma/efeitos dos fármacos , Toxoplasma/fisiologia , Toxoplasmose/metabolismo
15.
Int J Antimicrob Agents ; 56(3): 106099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32707170

RESUMO

Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 µM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 µM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 µM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Naftalenos/toxicidade , Neospora/efeitos dos fármacos , Piperidinas/toxicidade , Pirazóis/toxicidade , Pirimidinas/toxicidade , Quinolinas/toxicidade , Toxoplasma/efeitos dos fármacos , Animais , Linhagem Celular , Coccidiose/tratamento farmacológico , Feminino , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/farmacocinética , Naftalenos/farmacologia , Neospora/crescimento & desenvolvimento , Piperidinas/farmacocinética , Piperidinas/farmacologia , Gravidez , Complicações na Gravidez/induzido quimicamente , Proteínas Quinases/efeitos dos fármacos , Proteínas Quinases/metabolismo , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Quinolinas/farmacocinética , Quinolinas/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Peixe-Zebra/embriologia
16.
J Photochem Photobiol B ; 209: 111920, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505115

RESUMO

There is growing evidence that some parasitic infections can impact a variety of autoimmune diseases by disease-inducing or protecting capacities. Anti-inflammatory molecules secreted by Toxoplasma gondii and other parasites are capable of preventing some autoimmune disease like arthritis, lupus nephritis and systemic lupus erythematosus by acting on the immune system. Here we aimed to evaluate the protective efficacy of vaccination with Toxoplasma gondii (T. gondii), either gamma radiation-attenuated or not, on an adjuvant arthritis mouse model. Forty female Swiss albino mice were conducted in experiment divided into normal control; mice were injected with Complete Freund's adjuvant (CFA) into the right hind paws; mice vaccinated with irradiated T. gondii in the 3rd group and un-irradiated T. gondii in the 4th group then were injected two weeks later with CFA. Histopathological changes and IL-17, STAT6 and ROR-γ levels in the joints, as well as serum survivin and Anti-CCP, were evaluated. Also, the splenic production of TGF-ß1, TGF-ßR, IL-23, IL-1ß, IFN-γ, TFN-∞, NFKß, MMP1 and MMP3 were assessed. Results exhibited an enhancement of the histopathological changes with diminished the rise of IL-17, STAT 6 and ROR- γ within the joints of both vaccinated groups. Also, serum survivin and Anti-CCP, as well as splenic inflammatory cytokines were reduced. It can be concluded that vaccination with un-irradiated or radiation-attenuated T. gondii exerted a protective effect against adjuvant arthritis with better pathological achievement in the radiation-attenuated vaccinated group. Using gamma radiation-attenuated parasite to exclude the delirious effects of imposing infection of live one may pave the way to new preventative modality against rheumatoid arthritis.


Assuntos
Adjuvantes Imunológicos/farmacologia , Artrite Experimental/prevenção & controle , Raios gama , Toxoplasma/efeitos da radiação , Animais , Citocinas/metabolismo , Camundongos , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Baço/metabolismo , Toxoplasma/efeitos dos fármacos , Toxoplasma/imunologia
17.
Exp Parasitol ; 216: 107935, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569599

RESUMO

Toxoplasma gondii is an important pathogen that causes serious public health problems. Currently, therapeutic drugs for toxoplasmosis cause serious side effects, and more effective and novel substances with relatively low toxicity are urgently needed. Ursolic acid (UA) has many properties that can be beneficial to healthcare. In this study, we synthesized eight series of UA derivatives bearing a tetrazole moiety and evaluated their anti-T. gondii activity in vitro using spiramycin as a positive control. Most of the synthesized derivatives exhibited better anti-T. gondii activity in vitro than UA, among which compound 12a exhibited the most potent anti-T. gondii activity. Furthermore, the results of biochemical parameter determination indicated that 12a effectively restored the normal body weight of mice infected with T. gondii, reduced hepatotoxicity, and exerted significant anti-oxidative effects compared with the findings for spiramycin. Additionally, our molecular docking study indicated that the synthesized compounds could act as potential inhibitors of T. gondii calcium-dependent protein kinase 1 (TgCDPK1), with 12a possessing strong affinity for TgCDPK1 via binding to the key amino acids GLU129 and TYR131.


Assuntos
Anti-Infecciosos/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose/tratamento farmacológico , Triterpenos/farmacologia , Alanina Transaminase/sangue , Animais , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Aspartato Aminotransferases/sangue , Coccidiostáticos/química , Coccidiostáticos/farmacologia , Modelos Animais de Doenças , Feminino , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Malondialdeído/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Tamanho do Órgão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Distribuição Aleatória , Espiramicina/farmacologia , Baço/efeitos dos fármacos , Baço/patologia , Triterpenos/química , Triterpenos/uso terapêutico , Ácido Ursólico
18.
Parasitol Res ; 119(8): 2703-2711, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32537718

RESUMO

It is known that the current treatment for toxoplasmosis causes side effects. Thus, it is essential to develop new therapies with reduced adverse effects while concurrently maintaining broad coverage and prophylactic therapy. Melatonin is a hormone that participates in the circadian cycle in vertebrates and has antioxidant, immunomodulatory, and antitumoral functions. In addition, it has been shown that melatonin can modulate immune responses and parasitic development during infection by Trypanosoma cruzi and Leishmania spp. Furthermore, studies indicate that melatonin increases the number of lymphocytes in rats infected by Toxoplasma gondii. However, there is no information on the possible effects of melatonin in T. gondii-infected host cells in vitro. This study analyzed the effects of melatonin treatment in the monkey kidney cell epithelial cell line, LLC-MK2, after infection with T. gondii. LLC-MK2 cells were infected and treated/not treated with melatonin, and the infection index was then quantified. Melatonin treatment did not alter host cell viability and was able to reduce parasite proliferation in LLC-MK2 cells at 24 and 48 h and at 6 days. Analysis by scanning electron microscopy confirmed reduction of parasite proliferation and alterations of tachyzoite shapes. Transmission electron microscopy images showed parasites with ruptured plasma membranes and cytoplasmic leakage. After treatment, parasites showed positive staining for apoptotic-like cell death. These results suggest that the use of melatonin as the lead compound for the synthesis of new compounds may constitute an alternative treatment for toxoplasmosis.


Assuntos
Coccidiostáticos/farmacologia , Melatonina/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Células Epiteliais/parasitologia , Haplorrinos , Estágios do Ciclo de Vida/efeitos dos fármacos
19.
J Vis Exp ; (158)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32420988

RESUMO

Toxoplasma gondii is a protozoan pathogen that widely affects the human population. The current antibiotics used for treating clinical toxoplasmosis are limited. In addition, they exhibit adverse side effects in certain groups of people. Therefore, discovery of novel therapeutics for clinical toxoplasmosis is imperative. The first step of novel antibiotic development is to identify chemical compounds showing high efficacy in inhibition of parasite growth using a high throughput screening strategy. As an obligate intracellular pathogen, Toxoplasma can only replicate within host cells, which prohibits the use of optical absorbance measurements as a quick indicator of growth. Presented here is a detailed protocol for a luciferase-based growth assay. As an example, this method is used to calculate the doubling time of wild-type Toxoplasma parasites and measure the efficacy of morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS, a cysteine protease-targeting compound) regarding inhibition of parasite intracellular growth. Also described, is a CRISPR-Cas9-based gene deletion protocol in Toxoplasma using 50 bp homologous regions for homology-dependent recombination (HDR). By quantifying the inhibition efficacies of LHVS in wild-type and TgCPL (Toxoplasma cathepsin L-like protease)-deficient parasites, it is shown that LHVS inhibits wild-type parasite growth more efficiently than Δcpl growth, suggesting that TgCPL is a target that LHVS binds to in Toxoplasma. The high sensitivity and easy operation of this luciferase-based growth assay make it suitable for monitoring Toxoplasma proliferation and evaluating drug efficacy in a high throughput manner.


Assuntos
Bioensaio , Toxoplasma/crescimento & desenvolvimento , Animais , Antiparasitários/farmacologia , Luciferases/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética , Toxoplasmose
20.
PLoS One ; 15(5): e0225232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442170

RESUMO

Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Antiprotozoários/farmacologia , Pentosiltransferases/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Antiprotozoários/química , Chlorocebus aethiops , Relação Estrutura-Atividade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA