Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710711

RESUMO

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/enzimologia , Toxoplasma/genética , Glicosilação , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Humanos , Cristalografia por Raios X , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Parede Celular/metabolismo , Animais
2.
BMC Res Notes ; 15(1): 188, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597992

RESUMO

OBJECTIVE: Toxoplasma gondii is a ubiquitous parasite of medical and veterinary importance; however, there exists no cure for chronic toxoplasmosis. Metabolic enzymes required for the production and maintenance of tissue cysts represent promising targets for novel therapies. Here, we use reverse genetics to investigate the role of Toxoplasma phosphoglucomutase 1, PGM1, in Toxoplasma growth and cystogenesis. RESULTS: We found that disruption of pgm1 did not significantly affect Toxoplasma intracellular growth and the lytic cycle. pgm1-defective parasites could differentiate into bradyzoites and produced cysts containing amylopectin in vitro. However, cysts produced in the absence of pgm1 were significantly smaller than wildtype. Together, our findings suggest that PGM1 is dispensable for in vitro growth but contributes to optimal Toxoplasma cyst development in vitro, thereby necessitating further investigation into the function of this enzyme in Toxoplasma persistence in its host.


Assuntos
Fosfoglucomutase , Toxoplasma , Toxoplasmose , Humanos , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasmose/parasitologia
3.
Microbiol Spectr ; 10(3): e0189121, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35446124

RESUMO

Toxoplasma gondii (T. gondii) bradyzoites facilitate chronic infections that evade host immune response. Furthermore, reactivation in immunocompromised individuals causes severe toxoplasmosis. The presence of abundant granules containing the branched starch amylopectin is major characteristic of bradyzoites that is nearly absent from tachyzoites that drive acute disease. T. gondii genome encodes to potential Starch branching enzyme 1 (SBE1) that creates branching during amylopectin biosynthesis. However, the physiological function of the amylopectin in T. gondii remains unclear. In this study, we generated a SBE1 knockout parasites and revealed that deletion of SBE1 caused amylopectin synthesis defects while having no significant impact on the growth of tachyzoites under normal culture conditions in vitro as well as virulence and brain cyst formation. Nevertheless, SBE1 knockout decreased the influx of exogenous glucose and reduced tachyzoites proliferation in nutrition-deficient conditions. Deletion of SBE1 together with the α-amylase (α-AMY), responsible for starch digestion, abolished amylopectin production and attenuated virulence while restoring brain cyst formation. In addition, cysts with defective amylopectin metabolism showed abnormal morphology and were avirulent to mice. In conclusion, SBE1 is essential for the synthesis of amylopectin, which serves as energy storage during the development and reactivation of bradyzoites. IMPORTANCE Toxoplasmosis has become a global, serious public health problem due to the extensiveness of the host. There are great differences in the energy metabolism in the different stages of infection. The most typical difference is the abundant accumulation of amylopectin granules in bradyzoites, which is almost absent in tachyzoites. Until now, the physiological functions of amylopectin have not been clearly elucidated. We focused on starch branching enzyme 1 (SBE1) in the synthesis pathway to reveal the exact physiological significance of amylopectin. Our study clarified the role of SBE1 in the synthesis pathway and amylopectin in tachyzoites and bradyzoites, and demonstrated that amylopectin, as an important carbon source, was critical to parasites growth under an unfavorable environment and the reactivation of bradyzoites to tachyzoites. The findings obtained from our study provides a new avenue for the development of Toxoplasma vaccines and anti-chronic toxoplasmosis drugs.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Amilopectina , Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/biossíntese , Animais , Camundongos , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/genética , Virulência
4.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946588

RESUMO

FR235222 is a natural tetra-cyclopeptide with a strong inhibition effect on histone deacetylases, effective on mammalian cells as well as on intracellular apicomplexan parasites, such as Toxoplasma gondii, in the tachyzoite and bradyzoite stages. This molecule is characterized by two parts: the zinc-binding group, responsible for the binding to the histone deacetylase, and the cyclic tetrapeptide moiety, which plays a crucial role in cell permeability. Recently, we have shown that the cyclic tetrapeptide coupled with a fluorescent diethyl-amino-coumarin was able to maintain properties of cellular penetration on human cells. Here, we show that this property can be extended to the crossing of the Toxoplasma gondii cystic cell wall and the cell membrane of the parasite in its bradyzoite form, while maintaining a high efficacy as a histone deacetylase inhibitor. The investigation by molecular modeling allows a better understanding of the penetration mechanism.


Assuntos
Cumarínicos/farmacologia , Corantes Fluorescentes/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Peptídeos Cíclicos/farmacologia , Cumarínicos/química , Corantes Fluorescentes/química , Inibidores de Histona Desacetilases/química , Modelos Moleculares , Peptídeos Cíclicos/química , Toxoplasma/citologia , Toxoplasma/enzimologia
5.
Oxid Med Cell Longev ; 2021: 1675652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603593

RESUMO

Toxoplasma gondii is a protozoan parasite that is widely parasitic in the nucleated cells of warm-blooded animals. Bioinformatic analysis of alkyl hydroperoxide reductase 1 (AHP1) of T. gondii is a member of the Prxs family and exhibits peroxidase activity. Cys166 was certified to be a key enzyme active site of TgAHP1, indicating that the enzyme follows a cysteine-dependent redox process. TgAHP1 was present in a punctate staining pattern anterior to the T. gondii nucleus. Oxidative stress experiments showed that the ∆Ahp1 strain was more sensitive to tert-butyl hydroperoxide (tBOOH) than hydrogen peroxide (H2O2), indicating that tBOOH may be a sensitive substrate for TgAHP1. Under tBOOH culture conditions, the ∆Ahp1 strain was significantly less invasive, proliferative, and pathogenic in mice. This was mainly due to the induction of tBOOH, which increased the level of reactive oxygen species in the parasites and eventually led to apoptosis. This study shows that TgAHP1 is a peroxisomes protein with cysteine-dependent peroxidase activity and sensitive to tBOOH.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , terc-Butil Hidroperóxido/metabolismo , Animais , Feminino , Edição de Genes , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/classificação , Peroxirredoxinas/genética , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , terc-Butil Hidroperóxido/farmacologia
6.
Parasitol Res ; 120(9): 3335-3339, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405281

RESUMO

"Bug as drug" is a concept recognized over a century ago and has gained significant research attention recently for fighting diseases such as immune disorders and others. Bacteria and viruses are constantly studied for this purpose, but the use of parasitic organisms is still rare. Recently, we found that Toxoplasma gondii mutants lacking two lactate dehydrogenases (ME49 Δldh1-Δldh2) were avirulent in mice but able to stimulate high levels of Th1 immunity. This outcome prompted us to determine whether Δldh mutants also displayed antitumor activities. Using a mouse melanoma model, we showed that intratumoral administration of Δldh1-Δldh2 repressed the growth of established tumors and helped to inhibit lethal tumor development in the mice. The sera of parasite-treated mice had high levels of TNF-α and INF-γ, which likely contributed to the tumor-repressing activity. We also found that chronic Toxoplasma infection, which is common in animals and humans, also led to antitumor activity. In addition, pre-existing chronic infections did not affect the antitumor efficiency of the Δldh1-Δldh2 mutant. Together, these results suggest that the attenuated T. gondii mutant Δldh1-Δldh2 has the potential to be a good antitumor therapy and provide new insights into the development of novel tumor therapeutics.


Assuntos
Melanoma/terapia , Toxoplasma , Animais , L-Lactato Desidrogenase/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/terapia , Toxoplasma/enzimologia , Toxoplasma/genética
7.
Parasit Vectors ; 14(1): 400, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384491

RESUMO

BACKGROUND: Metacaspases are multifunctional proteins found in plants, fungi and protozoa, and are involved in processes such as insoluble protein aggregate clearance and cell proliferation. Our previous study demonstrated that metacaspase-1 (MCA1) contributes to parasite apoptosis in Toxoplasma gondii. Deletion of MCA1 from T. gondii has no effect on the growth and virulence of the parasites. Three metacaspases were identified in the ToxoDB Toxoplasma Informatics Resource, and the function of metacaspase-2 (MCA2) and metacaspase-3 (MCA3) has not been demonstrated. METHODS: In this study, we constructed MCA1, MCA2 and MCA1/MCA2 transgenic strains from RHΔku80 (Δku80), including overexpressing strains and knockout strains, to clarify the function of MCA1 and MCA2 of T. gondii. RESULTS: MCA1 and MCA2 were distributed in the cytoplasm with punctuated aggregation, and part of the punctuated aggregation of MCA1 and MCA2 was localized on the inner membrane complex of T. gondii. The proliferation of the MCA1/MCA2 double-knockout strain was significantly reduced; however, the two single knockout strains (MCA1 knockout strain and MCA2 knockout strain) exhibited normal growth rates as compared to the parental strain, Δku80. In addition, endodyogeny was impaired in the tachyzoites whose MCA1 and MCA2 were both deleted due to multiple nuclei and abnormal expression of IMC1. We further found that IMC1 of the double-knockout strain was detergent-soluble, indicating that MCA1 and MCA2 are associated with IMC1 maturation. Compared to the parental Δku80 strain, the double-knockout strain was more readily induced from tachyzoites to bradyzoites in vitro. Furthermore, the double-knockout strain was less pathogenic in mice and was able to develop bradyzoites in the brain, which formed cysts and established chronic infection. CONCLUSION: MCA1 and MCA2 are important factors which participate in IMC1 maturation and endodyogeny of T. gondii. The double-knockout strain has slower proliferation and was able to develop bradyzoites both in vitro and in vivo.


Assuntos
Caspases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Animais , Caspases/classificação , Caspases/genética , Chlorocebus aethiops , Feminino , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/fisiologia , Células Vero , Virulência
8.
Mol Microbiol ; 115(5): 1054-1068, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793004

RESUMO

Ca2+ is a universal intracellular signal that regulates many cellular functions. In Toxoplasma gondii, the controlled influx of extracellular and intracellular Ca2+ into the cytosol initiates a signaling cascade that promotes pathogenic processes like tissue destruction and dissemination. In this work, we studied the role of proton transport in cytosolic Ca2+ homeostasis and the initiation of Ca2+ signaling. We used a T. gondii mutant of the V-H+ -ATPase, a pump previously shown to transport protons to the extracellular medium, and to control intracellular pH and membrane potential and we show that proton gradients are important for maintaining resting cytosolic Ca2+ at physiological levels and for Ca2+ influx. Proton transport was also important for Ca2+ storage by acidic stores and, unexpectedly, the endoplasmic reticulum. Proton transport impacted the amount of polyphosphate (polyP), a phosphate polymer that binds Ca2+ and concentrates in acidocalcisomes. This was supported by the co-localization of the vacuolar transporter chaperone 4 (VTC4), the catalytic subunit of the VTC complex that synthesizes polyP, with the V-ATPase in acidocalcisomes. Our work shows that proton transport regulates plasma membrane Ca2+ transport and control acidocalcisome polyP and Ca2+ content, impacting Ca2+ signaling and downstream stimulation of motility and egress in T. gondii.


Assuntos
Ácidos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transporte Biológico , Membrana Celular/genética , Citosol/metabolismo , Polifosfatos/metabolismo , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
9.
mBio ; 12(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500345

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not yet clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eukaryotic initiation factor 2 (eIF2). Here, we show that the Toxoplasma eIF2 kinase TgIF2K-B is activated in response to oxidative stress and affords protection. Knockout of the TgIF2K-B gene, Δtgif2k-b, disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite's ability to establish persistent infection in its host.IMPORTANCEToxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite's oxidative stress response and its ability to persist in the host as a latent infection.


Assuntos
Interações Hospedeiro-Parasita , Estresse Oxidativo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Técnicas de Inativação de Genes , Humanos , Masculino , Fosforilação , Estresse Fisiológico , Toxoplasma/enzimologia , Virulência
10.
J Biol Chem ; 296: 100315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485966

RESUMO

Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.


Assuntos
Adenosina Trifosfatases/genética , Bicamadas Lipídicas/metabolismo , Toxoplasma/genética , Toxoplasmose/genética , Adenosina Trifosfatases/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citometria de Fluxo , Glicerofosfolipídeos/metabolismo , Complexo de Golgi/química , Complexo de Golgi/enzimologia , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Lipídeos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
11.
Cell Microbiol ; 23(3): e13283, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33108050

RESUMO

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Assuntos
Junções Intercelulares/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Junções Íntimas/metabolismo , Toxoplasma/fisiologia , Animais , Caderinas/metabolismo , Claudina-1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cães , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Hidrazonas/farmacologia , Junções Intercelulares/ultraestrutura , Células Madin Darby de Rim Canino , Metaloproteases/metabolismo , Movimento , Naftóis/farmacologia , Ocludina/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Proteína da Zônula de Oclusão-1/metabolismo
12.
PLoS Pathog ; 16(12): e1008771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370417

RESUMO

The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/metabolismo , Vacúolos/metabolismo , Fatores de Virulência/metabolismo , Animais , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Transporte Proteico
13.
Exp Parasitol ; 219: 108010, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33007297

RESUMO

Toxoplasmosis is a zoonotic disease and a global food and water-borne infection. The disease is caused by the parasite Toxoplasma gondii, which is a highly successful and remarkable pathogen because of its ability to infect almost any nucleated cell in warm-blooded animals. The present study was done to demonstrate the effect of protease inhibitors cocktail (PIC), which inhibit both cysteine and serine proteases, on in vitro cultured T. gondii tachyzoites on HepG2 cell line. This was achieved by assessing its effect on the invasion of the host cells and the intracellular development of T.gondii tachyzoites through measuring their number and viability after their incubation with PIC. Based on the results of the study, it was evident that the inhibitory action of the PIC was effective when applied to tachyzoites before their cultivation on HepG2 cells. Pre-treatment of T.gondii tachyzoites with PIC resulted in failure of the invasion of most of the tachyzoites and decreased the intracellular multiplication and viability of the tachyzoites that succeeded in the initial invasion process. Ultrastructural studies showed morphological alteration in tachyzoites and disruption in their organelles. This effect was irreversible till the complete lysis of cell monolayer in cultures. It can be concluded that PIC, at in vitro levels, could prevent invasion and intracellular multiplication of Toxoplasma tachyzoites. In addition, it is cost effective compared to individual protease inhibitors. It also had the benefit of combined therapy as it lowered the concentration of each protease inhibitor used in the cocktail. Other in vivo experiments are required to validate the cocktail efficacy against toxoplasmosis. Further studies may be needed to establish the exact mechanism by which the PIC exerts its effect on Toxoplasma tachyzoites behavior and its secretory pathway.


Assuntos
Inibidores de Proteases/farmacologia , Toxoplasma/efeitos dos fármacos , Análise de Variância , Animais , Aprotinina/farmacologia , Meios de Cultura Livres de Soro , Inibidores de Cisteína Proteinase/farmacologia , Combinação de Medicamentos , Células Hep G2 , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Leupeptinas/farmacologia , Camundongos , Microscopia Eletrônica de Transmissão , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Projetos Piloto , Inibidores de Serina Proteinase/farmacologia , Estatísticas não Paramétricas , Sulfonas/farmacologia , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/ultraestrutura
14.
Sci Rep ; 10(1): 14657, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887901

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the condensation of serine and homocysteine to water and cystathionine, which is then hydrolyzed to cysteine, α-ketobutyrate and ammonia by cystathionine γ-lyase (CGL) in the reverse transsulfuration pathway. The protozoan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, includes both CBS and CGL enzymes. We have recently reported that the putative T. gondii CGL gene encodes a functional enzyme. Herein, we cloned and biochemically characterized cDNA encoding CBS from T. gondii (TgCBS), which represents a first example of protozoan CBS that does not bind heme but possesses two C-terminal CBS domains. We demonstrated that TgCBS can use both serine and O-acetylserine to produce cystathionine, converting these substrates to an aminoacrylate intermediate as part of a PLP-catalyzed ß-replacement reaction. Besides a role in cysteine biosynthesis, TgCBS can also efficiently produce hydrogen sulfide, preferentially via condensation of cysteine and homocysteine. Unlike the human counterpart and similar to CBS enzymes from lower organisms, the TgCBS activity is not stimulated by S-adenosylmethionine. This study establishes the presence of an intact functional reverse transsulfuration pathway in T. gondii and demonstrates the crucial role of TgCBS in biogenesis of H2S.


Assuntos
Cistationina beta-Sintase/metabolismo , Cisteína/biossíntese , Sulfeto de Hidrogênio/metabolismo , Toxoplasma/enzimologia , Toxoplasma/genética , Biocatálise , Cistationina/biossíntese , Cistationina beta-Sintase/genética , Cistationina gama-Liase/metabolismo , DNA Complementar , Genes de Protozoários , Heme/metabolismo , Homocisteína/metabolismo , Cinética , Serina/análogos & derivados , Serina/metabolismo
15.
PLoS Pathog ; 16(5): e1008499, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407406

RESUMO

Heme, an iron-containing organic ring, is essential for virtually all living organisms by serving as a prosthetic group in proteins that function in diverse cellular activities ranging from diatomic gas transport and sensing, to mitochondrial respiration, to detoxification. Cellular heme levels in microbial pathogens can be a composite of endogenous de novo synthesis or exogenous uptake of heme or heme synthesis intermediates. Intracellular pathogenic microbes switch routes for heme supply when heme availability fluctuates in their replicative environment throughout infection. Here, we show that Toxoplasma gondii, an obligate intracellular human pathogen, encodes a functional heme biosynthesis pathway. A chloroplast-derived organelle, termed apicoplast, is involved in heme production. Genetic and chemical manipulation revealed that de novo heme production is essential for T. gondii intracellular growth and pathogenesis. Surprisingly, the herbicide oxadiazon significantly impaired Toxoplasma growth, consistent with phylogenetic analyses that show T. gondii protoporphyrinogen oxidase is more closely related to plants than mammals. This inhibition can be enhanced by 15- to 25-fold with two oxadiazon derivatives, lending therapeutic proof that Toxoplasma heme biosynthesis is a druggable target. As T. gondii has been used to model other apicomplexan parasites, our study underscores the utility of targeting heme biosynthesis in other pathogenic apicomplexans, such as Plasmodium spp., Cystoisospora, Eimeria, Neospora, and Sarcocystis.


Assuntos
Heme/genética , Filogenia , Protoporfirinogênio Oxidase/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Heme/biossíntese , Humanos , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Plantas/genética , Protoporfirinogênio Oxidase/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/enzimologia
16.
Parasitol Res ; 119(7): 2287-2298, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468190

RESUMO

Toxoplasma gondii is an important zoonotic protozoan of the phylum Apicomplexa that can infect nearly all warm-blooded animals. The parasite can exist as the interconvertible tachyzoite or bradyzoite forms, leading to acute or latent infection, respectively. No drug has been reported to penetrate the cyst wall and reduce bradyzoite survival and proliferation till now. The transcriptional level of metacaspases 2 (TgMCA2) in T. gondii is significantly upregulated during the formation of bradyzoites in the Pru strain, indicating that it may play an important role in the formation of bradyzoites. To further explore the function of TgMCA2, we constructed a TgMCA2 gene-knockout variant of the Pru strain (Δmca2). Comparative analysis revealed that the proliferative capacity of Pru Δmca2 increased, while the invasion and egressing properties were not affected by the knockout. Further data shows that the tachyzoites of Δmca2 failed to induce differentiation and form bradyzoites in vitro, and the transcriptional levels of some of the bradyzoite-specific genes (such as BAG1, LDH2, and SAG4A) in Δmca2 were significantly lower compared with that in the Pru strain at the bradyzoite stage. In vivo, no cysts were detected in Δmca2-infected mice. Further determination of parasite burden in Δmca2- and Pru-infected mice brain tissue at the genetic level showed that the gene load was significantly lower than that in Pru. In summary, we confirmed that TgMCA2 contributes to the formation of bradyzoites, and could provide an important foundation for the development of attenuated vaccines for the prevention of T. gondii infection.


Assuntos
Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Animais , Encéfalo/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Camundongos , Encistamento de Parasitas/genética , Carga Parasitária , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose Animal/parasitologia
17.
Annu Rev Biochem ; 89: 667-693, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169021

RESUMO

Myosins are among the most fascinating enzymes in biology. As extremely allosteric chemomechanical molecular machines, myosins are involved in myriad pivotal cellular functions and are frequently sites of mutations leading to disease phenotypes. Human ß-cardiac myosin has proved to be an excellent target for small-molecule therapeutics for heart muscle diseases, and, as we describe here, other myosin family members are likely to be potentially unique targets for treating other diseases as well. The first part of this review focuses on how myosins convert the chemical energy of ATP hydrolysis into mechanical movement, followed by a description of existing therapeutic approaches to target human ß-cardiac myosin. The next section focuses on the possibility of targeting nonmuscle members of the human myosin family for several diseases. We end the review by describing the roles of myosin in parasites and the therapeutic potential of targeting them to block parasitic invasion of their hosts.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Miosinas/metabolismo , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/enzimologia , Inibidores Enzimáticos/química , Expressão Gênica , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Família Multigênica , Mutação , Miosinas/antagonistas & inibidores , Miosinas/classificação , Miosinas/genética , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Infecções por Protozoários/enzimologia , Infecções por Protozoários/genética , Infecções por Protozoários/patologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia
18.
mSphere ; 5(1)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051238

RESUMO

The lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in the accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system were not well defined. Here, we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB-deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation, and it resides in the T. gondii VAC, where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis.IMPORTANCE Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection.


Assuntos
Ácido Aspártico Proteases/metabolismo , Catepsina B/metabolismo , Lisossomos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Humanos , Estágios do Ciclo de Vida , Proteólise , Toxoplasma/crescimento & desenvolvimento , Vacúolos/metabolismo
19.
Transbound Emerg Dis ; 67 Suppl 2: 165-174, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31880101

RESUMO

Meat of the South American camelids (SACs) llama and alpaca is an important source of animal protein and income for rural families in the Andes, and a product with significant growth potential for local and international markets. However, infestation with macroscopic cysts of the coccidian protozoon Sarcocystis aucheniae, a parasitosis known as SAC sarcocystosis, significantly hampers its commercialization. There are no validated methods to diagnose the presence of S. aucheniae cysts other than carcass examination. Moreover, there are no available drugs or vaccines to cure or prevent SAC sarcocystosis. Identification of relevant molecules that act at the host-pathogen interface can significantly contribute to the control of this disease. It has been shown for other pathogenic protozoa that glycosylphosphatidylinositol (GPI) is a critical molecule implicated in parasite survival and pathogenicity. This study focused on the identification of the enzymes that participate in the S. aucheniae GPI biosynthetic pathway and the repertoire of the parasite GPI-anchored proteins (GPI-APs). To this aim, RNA was extracted from parasite cysts and the transcriptome was sequenced and translated into amino acid sequences. The generated database was mined using sequences of well-characterized GPI biosynthetic enzymes of Saccharomyces cerevisiae and Toxoplasma gondii. Eleven enzymes predicted to participate in the S. aucheniae GPI biosynthetic pathway were identified. On the other hand, the database was searched for proteins carrying an N-terminal signal peptide and a single C-terminal transmembrane region containing a GPI anchor signal. Twenty-four GPI-anchored peptides were identified, of which nine are likely S. aucheniae-specific, and 15 are homologous to membrane proteins of other coccidians. Among the latter, 13 belong to the SRS domain superfamily, an extensive group of coccidian GPI-anchored proteins that mediate parasite interaction with their host. Phylogenetic analysis showed a great degree of intra- and inter-specific divergence among SRS family proteins. In vitro and in vivo experiments are needed to validate S. aucheniae GPI biosynthetic enzymes and GPI-APs as drug targets and/or as vaccine or diagnostic antigens.


Assuntos
Camelídeos Americanos/parasitologia , Proteínas Ligadas por GPI/genética , Glicosilfosfatidilinositóis/metabolismo , Carne/parasitologia , Sarcocystis/imunologia , Sarcocistose/veterinária , Transcriptoma , Animais , Glicosilfosfatidilinositóis/química , Imunoterapia/veterinária , Filogenia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sarcocystis/genética , Sarcocystis/isolamento & purificação , Sarcocistose/parasitologia , Sarcocistose/terapia , Toxoplasma/enzimologia , Toxoplasma/genética
20.
Mol Biochem Parasitol ; 232: 111203, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31381949

RESUMO

Toxoplasma gondii is a protozoan parasite that has a tremendous impact on human health and livestock. High seroprevalence among humans and other animals is facilitated by the conversion of rapidly proliferating tachyzoites into latent bradyzoites that are housed in tissue cysts, which allow transmission through predation. Epigenetic mechanisms contribute to the regulation of gene expression events that are crucial in both tachyzoites as well as their development into bradyzoites. Acetylation of histones is one of the critical histone modifications that is linked to active gene transcription. Unlike most early-branching eukaryotes, Toxoplasma possesses two GCN5 homologues, one of which, GCN5b, is essential for parasite viability. Surprisingly, GCN5b does not associate with most of the well-conserved proteins found in the GCN5 complexes of other eukaryotes. Of particular note is that GCN5b interacts with multiple putative transcription factors that have plant-like DNA-binding domains denoted as AP2. To understand the function of GCN5b and its role(s) in epigenetic gene regulation of stage switching, we performed co-immunoprecipitation of GCN5b under normal and bradyzoite induction conditions. We report the greatest resolution of the GCN5b complex to date under these various culture conditions. Moreover, reciprocal co-IPs were performed with distinct GCN5b-interacting AP2 factors (AP2IX-7 and AP2XII-4) to delineate the interactomes of each putative transcription factor. Our findings suggest that GCN5b is associated with at least two distinct complexes that are characterized by two different pairs of AP2 factors, and implicate up to four AP2 proteins to be involved with GCN5b-mediated gene regulation.


Assuntos
Histona Acetiltransferases/metabolismo , Lisina Acetiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina Acetiltransferases/genética , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/enzimologia , Toxoplasma/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA