Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Parasitol Int ; 101: 102870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38403047

RESUMO

We report a confirmed case of Toxoplasma gondii infection in the lungs of a cow exhibiting respiratory symptoms. At slaughter, white nodules were discovered in lung tissue, accompanied by enlarged hilar lymph nodes. Histological examination revealed the disappearance of alveolar structures in nodular areas, replaced by granulomas containing inflammatory cells. Immunohistochemical staining with anti-T. gondii antibody and nucleotide sequencing of 18S rDNA confirmed T. gondii infection. However, the link between T. gondii and observed symptoms remains unclear. Various factors, including host genetics, underlying diseases, infection route, and exposure level, may contribute to these uncommon symptoms. Although T. gondii infections in cattle are traditionally considered asymptomatic, our study suggests the possible existence of clinical symptoms associated with Toxoplasma infection. Beef cattle are generally not assumed to be a relevant source of human T. gondii infection; however, sporadic transmission by infected edible beef to humans cannot be completely excluded and deserves further studies.


Assuntos
Doenças dos Bovinos , Toxoplasma , Toxoplasmose Animal , Bovinos , Toxoplasma/isolamento & purificação , Toxoplasma/genética , Animais , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Toxoplasmose Animal/diagnóstico , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/patologia , Pulmão/parasitologia , Pulmão/patologia , Pneumonia/parasitologia , Pneumonia/veterinária , Feminino , Granuloma/parasitologia , Granuloma/patologia , RNA Ribossômico 18S/análise
2.
Exp Parasitol ; 239: 108311, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724932

RESUMO

Acute Toxoplasma gondii infections can influence the liver as well as other organs. Many cytokines and proteins play a role in the acute response against infection. Tumor necrosis factor alpha (TNF alpha) is a cytokine that plays a key function in stimulating hepatocytes to produce acute phase proteins. In this study, we investigated TNF alpha levels associated with the levels of macroglobulin, haptoglobin, hemopexin, C-reactive protein (CRP), albumin, serum amyloid alpha protein (SAA), and clusterin, which are acute phase proteins, in serum of mice with T. gondii infection. In the experiment, a total of 24 mice were used; 6 mice constituted the control group and 18 mice were infected with the RH strain. On the 2nd, 4th, and 6th days following the infection, 6 animals were euthanized, and their serums were collected. Compared to the control group, we observed a statistically significant decrease in albumin concentration in the group with T. gondii infection on the 6th day. Also, this group displayed a statistically significant, gradual increase in clusterin levels on the 2nd and 6th days, C-reactive protein levels on the 4th day, haptoglobin levels on the 2nd and 4th days, hemopexin levels on the 2nd day, serum amyloid A levels on the 2nd, 4th, and 6th days, and TNF-α levels on the 2nd, 4th, and 6th days (p < 0.05). TNF-α was strongly positively correlated with CRP, SAA, and clusterin, moderately positively correlated with hemopexin, and strongly negatively correlated with albumin. The increase in CRP, SAA, clusterin, and hemopexin levels on the 2nd day after infection, in parallel with the increase in TNF-α levels, indicates that these proteins can be considered as major acute phase proteins in acute T. gondii infection in mice. The data obtained here may be helpful for the diagnosis of T. gondii infection and for monitoring treatments.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Proteínas de Fase Aguda , Animais , Proteína C-Reativa , Clusterina , Citocinas/metabolismo , Haptoglobinas , Hemopexina , Camundongos , Toxoplasmose/patologia , Toxoplasmose Animal/patologia , Fator de Necrose Tumoral alfa
3.
Front Cell Infect Microbiol ; 12: 812152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372100

RESUMO

Ocular infection with Toxoplasma gondii causes toxoplasmosis in mice. However, following ocular infection with tachyzoites, the cause of the accompanying progressive changes in hippocampal-dependent tasks, and their relationship with the morphology and number of microglia, is less well understood. Here, in 6-month-old, female BALB/c mice, 5 µl of a suspension containing 48.5 × 106 tachyzoites/ml was introduced into the conjunctival sac; control received an equal volume of saline. Before and after instillation, all mice were subject to an olfactory discrimination (OD) test, using predator (cat) feces, and to an open-field (OF) task. After the behavioral tests, the animals were culled at either 22 or 44 days post-instillation (dpi), and the brains and retinas were dissected and processed for immunohistochemistry. The total number of Iba-1-immunolabeled microglia in the molecular layer of the dentate gyrus was estimated, and three-dimensional reconstructions of the cells were evaluated. Immobility was increased in the infected group at 12, 22, and 43 dpi, but the greatest immobility was observed at 22 dpi and was associated with reduced line crossing in the OF and distance traveled. In the OD test, infected animals spent more time in the compartment with feline fecal material at 14 and at 43 dpi. No OD changes were observed in the control group. The number of microglia was increased at 22 dpi but returned to control levels by 44 dpi. These changes were associated with the differentiation of T. gondii tachyzoites into bradyzoite-enclosed cysts within the brain and retina. Thus, infection of mice with T. gondii alters exploratory behavior, gives rise to a loss in predator's odor avoidance from 2 weeks after infection, increased microglia number, and altered their morphology in the molecular layer of the dentate gyrus.


Assuntos
Toxoplasma , Toxoplasmose Animal , Animais , Gatos , Túnica Conjuntiva/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neuropatologia , Toxoplasmose Animal/patologia
4.
Oxid Med Cell Longev ; 2021: 1675652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603593

RESUMO

Toxoplasma gondii is a protozoan parasite that is widely parasitic in the nucleated cells of warm-blooded animals. Bioinformatic analysis of alkyl hydroperoxide reductase 1 (AHP1) of T. gondii is a member of the Prxs family and exhibits peroxidase activity. Cys166 was certified to be a key enzyme active site of TgAHP1, indicating that the enzyme follows a cysteine-dependent redox process. TgAHP1 was present in a punctate staining pattern anterior to the T. gondii nucleus. Oxidative stress experiments showed that the ∆Ahp1 strain was more sensitive to tert-butyl hydroperoxide (tBOOH) than hydrogen peroxide (H2O2), indicating that tBOOH may be a sensitive substrate for TgAHP1. Under tBOOH culture conditions, the ∆Ahp1 strain was significantly less invasive, proliferative, and pathogenic in mice. This was mainly due to the induction of tBOOH, which increased the level of reactive oxygen species in the parasites and eventually led to apoptosis. This study shows that TgAHP1 is a peroxisomes protein with cysteine-dependent peroxidase activity and sensitive to tBOOH.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , terc-Butil Hidroperóxido/metabolismo , Animais , Feminino , Edição de Genes , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/classificação , Peroxirredoxinas/genética , Filogenia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , terc-Butil Hidroperóxido/farmacologia
5.
J Parasitol ; 107(2): 179-181, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662116

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that has a worldwide distribution and can infect almost all warm-blood animals. Serological tests are the main detection methods for T. gondii infection in animals and humans. Little is known of biological behavior, antibody responses, and virulence of T. gondii strains in mice from China. Here we document antibody responses, tissue cyst burden, and mouse virulence of T. gondii strains isolated from different hosts in China. All T. gondii strains formed tissue cysts in the brains of mice and positively correlated with the T. gondii antibody titer (R2 = 0.3345). These results should aid in the diagnosis and characterization of T. gondii isolates.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Animais , Antiprotozoários/administração & dosagem , Encéfalo/parasitologia , China , Interações Hospedeiro-Parasita/imunologia , Camundongos , Sulfadiazina/administração & dosagem , Toxoplasma/efeitos dos fármacos , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia , Virulência
6.
J Wildl Dis ; 57(1): 205-210, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635977

RESUMO

We describe a case of systemic toxoplasmosis in a female adult narrow-ridged finless porpoise (Neophocaena asiaeorientalis) found in May 2018 inside a gillnet set in the Ariake Sound, southern Japan. The main lesions observed were lymphoplasmacytic and focally necrotizing encephalitis, necrotizing to granulomatous adrenalitis, myocarditis, and inflammation in the intestinal wall, associated with protozoal tissue cysts and tachyzoites. Additionally, the individual had a 5.6 mm (crown-rump length) early-stage embryo in the left uterine horn, which had multifocal necrotizing lesions with intralesional tissue cysts and tachyzoites in the parenchyma. Immunohistochemistry and PCR and sequencing of the internal transcribed spacer 1 region confirmed a Toxoplasma gondii infection. Further genotyping revealed an atypical type II genotype with a type I pattern for the Apico locus. Narrow-ridged finless porpoises are an endangered coastal species already facing various anthropogenic threats. Toxoplasmosis, especially with its ability to transmit to an early-stage embryo, should be considered an emerging threat to this vulnerable species.


Assuntos
Embrião de Mamíferos/parasitologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Toninhas/parasitologia , Toxoplasmose Animal/parasitologia , Animais , Feminino , Toninhas/embriologia , Gravidez , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/patologia
7.
Parasitology ; 148(4): 464-476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315001

RESUMO

In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 8­11 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.


Assuntos
Toxoplasma/fisiologia , Toxoplasmose Animal/parasitologia , Animais , Antígenos CD/metabolismo , Gatos , Citocinas/metabolismo , DNA Complementar/biossíntese , DNA de Protozoário/isolamento & purificação , Feminino , Genótipo , Imuno-Histoquímica , Linfonodos/parasitologia , Linfonodos/patologia , Mesentério , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Baço/parasitologia , Baço/patologia , Toxoplasma/classificação , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia
8.
Acta Vet Hung ; 68(3): 285-288, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33128522

RESUMO

The clinical and pathological findings of a case of fatal disseminated toxoplasmosis in a captive brown-throated sloth (Bradypus variegatus) from the northern region of Brazil are reported. Clinical signs were nonspecific and included apathy, prostration, dyspnoea, and loss of appetite. Treatment with penicillin was attempted, but the animal died within five days of the onset of clinical signs. Microscopically, there was acute inflammation in the liver, spleen, and lungs associated with necrosis and a few cysts and extracytoplasmic tachyzoites, with a morphology compatible with Toxoplasma gondii. Tissue sections were submitted for immunohistochemistry that confirmed T. gondii as the aetiological agent. To the authors' knowledge, this is the first report of toxoplasmosis in B. variegatus.


Assuntos
Bichos-Preguiça , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/diagnóstico , Animais , Animais de Zoológico , Brasil , Evolução Fatal , Feminino , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia
9.
PLoS One ; 15(8): e0234169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32810131

RESUMO

Toxoplasma gondii is an obligate intracellular parasite infecting up to one third of the human population. The central event in the pathogenesis of toxoplasmosis is the conversion of tachyzoites into encysted bradyzoites. A novel approach to analyze the structure of in vivo-derived tissue cysts may be the increasingly used computational image analysis. The objective of this study was to quantify the geometrical complexity of T. gondii cysts by morphological, particle, and fractal analysis, as well as to determine if it is impacted by parasite strain, cyst age, and host type. A total of 31 images of T. gondii brain cysts of four type-2 strains (Me49, and local isolates BGD1, BGD14, and BGD26) was analyzed using ImageJ software. The parameters of interest included diameter, circularity, packing density (PD), fractal dimension (FD), and lacunarity. Although cyst diameter varied widely, its negative correlation with PD was observed. Circularity was remarkably close to 1, indicating a perfectly round shape of the cysts. PD and FD did not vary among cysts of different strains, age, and derived from mice of different genetic background. Conversely, lacunarity, which is a measure of heterogeneity, was significantly lower for BGD1 strain vs. all other strains, and higher for Me49 vs. BGD14 and BGD26, but did not differ among Me49 cysts of different age, or those derived from genetically different mice. The results indicate a highly uniform structure and occupancy of the different T. gondii tissue cysts. This study furthers the use of image analysis in describing the structural complexity of T. gondii cyst morphology, and presents the first application of fractal analysis for this purpose. The presented results show that use of a freely available software is a cost-effective approach to advance automated image scoring for T. gondii cysts.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Toxoplasma/citologia , Toxoplasmose Animal/patologia , Toxoplasmose Animal/parasitologia , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Feminino , Fractais , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Toxoplasma/patogenicidade , Toxoplasma/ultraestrutura
10.
Acta Trop ; 210: 105560, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32492398

RESUMO

Toxoplasma gondii (T. gondii) is a neurophilic and intracellular parasite that can affect plenty of vertebrate animals, including humans. Recent researches indicate that T. gondii infection is associated with neurodegenerative diseases such as Alzheimer's disease(AD). In addition, tau hyper-phosphorylation is a crucial event leading to the formation of nerve fiber tangles in AD. Despite the efforts to understand the interactions between T. gondii and AD, there are no clear results available so far. Here, we infected mice with the T. gondii of the Chinese 1 genotype Wh6 strain (TgCtwh6) for 60 days. Then we observed the formation of tissue cysts in the brain, the damage of neuron and the increased expression of phosphorylated tau (p-tau) in the hippocampal tissue of the mice. Similarly, we also found that p-tau, glycogen synthase kinase 3 beta (GSK3ß), and phosphorylated GSK3ß (p-GSK3ß) were upregulated in vitro in TgCtwh6 challenged hippocampal neuron cell strain, HT22 cells. We noted a down-regulated expression of GSK3ß,p-GSK3ß, and p-tau in HT22 cells, which were pretreated with LiCl, an inhibitor of GSK3ß. These data suggested that p-GSK3ß may mediate tau phosphorylation after TgCtwh6 infection. Furthermore, TgCtwh6 infection also caused the increased expression of Bax and Caspase3, the decreased expression of Bcl-XL in HT22 cells, which had both early and late apoptosis. In all, our results indicated that TgCtwh6 infection not only led to phosphorylation of tau via activating GSK3ß but also promoted hippocampal neuron apoptosis. Our research may partially reveal the mechanism with which TgCtwh6 induce neurofibrillary pathology.


Assuntos
Apoptose , Glicogênio Sintase Quinase 3 beta/fisiologia , Hipocampo/patologia , Toxoplasma/classificação , Toxoplasmose Animal/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação , Toxoplasma/genética , Toxoplasmose Animal/patologia
11.
Parasitol Res ; 119(7): 2299-2307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476060

RESUMO

In the intermediate hosts, tachyzoites of T. gondii predominate in the acute stage while bradyzoites persist inside tissue cysts with the potential for reactivation. The two stages exhibit different metabolic and antigenic characters. The present study aimed to investigate temporal expression of Toxoplasma SAG1 and BAG1 genes in the brain tissue and the coincident parasitological and histopathological findings in mice models of toxoplasmosis. The study included group A: mice infected with RH strain and sacrificed 7 days post-infection (p.i.); group B: mice infected with RH strain and treated with sulfamethoxazole-trimethoprim (30 mg/kg/day and 150 mg/kg/day respectively) 24 h p.i. until sacrificed at days 5, 10, or 20 post-treatment; group C: mice infected with ME-49 strain and sacrificed at days 7, 27, 47, or 67 p.i; and group D: mice infected with ME-49 strain and received dexamethasone daily starting at day 68 p.i. and scarified at days 6 or 10 post-treatment. All mice were inspected daily for abnormal physical signs. Peritoneal exudate and brain homogenate were examined for detection of Toxoplasma stages. Brain sections were examined histopathologically. SAG1 and BAG1 gene expression was evaluated using reverse transcription real-time polymerase chain reaction and the ΔΔCt method. Results revealed that marked BAG1 upregulation is consistent with detection of Toxoplasma cysts and degenerative changes while predominance of tachyzoites and inflammatory infiltrate is compatible with SAG1 upregulation. The study sheds light on the potential for using stage-specific gene expression pattern as markers for evaluation of toxoplasmosis disease progression in clinical settings.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Toxoplasma/genética , Toxoplasmose Animal/patologia , Toxoplasmose Animal/parasitologia , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Feminino , Genes de Protozoários/genética , Camundongos , Encistamento de Parasitas/genética , Toxoplasma/crescimento & desenvolvimento
12.
Vet Pathol ; 57(4): 545-549, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452287

RESUMO

Early abortion in ovine toxoplasmosis has had limited investigation. This study evaluated the immune response in the placenta of sheep orally infected with Toxoplasma gondii and euthanized between 2 and 4 weeks postinfection. Toxoplasma infection of the placenta was only found at 4 weeks after infection. Parasitic debris in foci of necrosis were immunolabeled in the maternal caruncle, whereas well-preserved intracellular parasitic vacuole-like structures were found in trophoblasts of fetal cotyledon. Early abortions had increased macrophages in caruncular septa, whereas in later abortions the placentas containing the parasite had an increase of T lymphocytes and macrophages mainly in the fetal cotyledons. This study suggests that the immune response in both the fetal and maternal compartments of the placenta may contribute to the pathogenesis of ovine toxoplasmosis and that these responses differ between early and late presentations of the disease.


Assuntos
Aborto Animal , Macrófagos/patologia , Doenças dos Ovinos/patologia , Linfócitos T/patologia , Toxoplasmose Animal , Aborto Animal/parasitologia , Aborto Animal/patologia , Animais , Feminino , Imunidade , Imuno-Histoquímica/veterinária , Necrose/parasitologia , Necrose/patologia , Placenta/imunologia , Placenta/patologia , Gravidez , Ovinos , Toxoplasma/isolamento & purificação , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia
13.
Dis Model Mech ; 13(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32461265

RESUMO

Toxoplasma gondii is an obligate intracellular parasite capable of invading any nucleated cell. Three main clonal lineages (type I, II, III) exist and murine models have driven the understanding of general and strain-specific immune mechanisms underlying Toxoplasma infection. However, murine models are limited for studying parasite-leukocyte interactions in vivo, and discrepancies exist between cellular immune responses observed in mouse versus human cells. Here, we developed a zebrafish infection model to study the innate immune response to Toxoplasma in vivo By infecting the zebrafish hindbrain ventricle, and using high-resolution microscopy techniques coupled with computer vision-driven automated image analysis, we reveal that Toxoplasma invades brain cells and replicates inside a parasitophorous vacuole to which type I and III parasites recruit host cell mitochondria. We also show that type II and III strains maintain a higher infectious burden than type I strains. To understand how parasites are cleared in vivo, we further analyzed Toxoplasma-macrophage interactions using time-lapse microscopy and three-dimensional correlative light and electron microscopy (3D CLEM). Time-lapse microscopy revealed that macrophages are recruited to the infection site and play a key role in Toxoplasma control. High-resolution 3D CLEM revealed parasitophorous vacuole breakage in brain cells and macrophages in vivo, suggesting that cell-intrinsic mechanisms may be used to destroy the intracellular niche of tachyzoites. Together, our results demonstrate in vivo control of Toxoplasma by macrophages, and highlight the possibility that zebrafish may be further exploited as a novel model system for discoveries within the field of parasite immunity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Macrófagos/parasitologia , Rombencéfalo/microbiologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/parasitologia , Toxoplasmose Cerebral/parasitologia , Peixe-Zebra/parasitologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Macrófagos/imunologia , Macrófagos/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Microscopia de Vídeo , Carga Parasitária , Rombencéfalo/imunologia , Rombencéfalo/ultraestrutura , Fatores de Tempo , Toxoplasma/imunologia , Toxoplasma/ultraestrutura , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologia , Toxoplasmose Cerebral/imunologia , Toxoplasmose Cerebral/patologia
14.
Int J Food Microbiol ; 322: 108563, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32113068

RESUMO

Toxoplasmosis is one of the most common foodborne diseases in the world. The objective of this study was to determine Toxoplasma gondii infection in lambs from Henan province, China. A total of 166 lamb hearts were collected from 2017 to 2019. T. gondii infection was determined by the Modified Agglutination Test (MAT) using heart juice of lambs. 11 isolates (TgSheepCHn3 - TgSheepCHn13) were obtained from samples with MAT titers ≥1:100. The rate of T. gondii isolation increased with antibody titer against T. gondii (P < 0.05). No isolate was obtained from samples with titer 1:25 and 1:50, suggesting the cut-off titer for MAT is better set at 1:100. With cut-off value of 1:100, IgG antibodies to T. gondii were found in 25.3% (42/166) of the lambs by MAT. T. gondii parasite was not found in IHC and HE-stained tissue sections of lamb hearts (0/166). Sixty-seven heart tissues with ≥1:25 MAT titers were subjected to acid pepsin digestion and detected T. gondii by PCR. Only 7.5% (5/67) of DNA amplified products were found in heart tissues by the primer TOX5/TOX8. Brain tissue cysts were observed in all mice infected with the 11 isolates at day 60 post infection, suggesting these isolates are non-lethal to mice. PCR-RFLP analysis revealed that 7 isolates belonged to ToxoDB#2, 4 isolates belonged to ToxoDB#4. This is the first isolation of ToxoDB#2 and ToxoDB#4 from lambs in China. Interestingly, none of these isolates belongs to the ToxoDB#9 that is common in China. Our results suggest that the genetic diversity and population structure of T. gondii from China maybe more abundant and magical than previous speculation.


Assuntos
Coração/parasitologia , Carne Vermelha/parasitologia , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/parasitologia , Animais , Anticorpos Antiprotozoários/sangue , China/epidemiologia , Genótipo , Camundongos , Carneiro Doméstico , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/patologia
15.
Nutrients ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500218

RESUMO

Omega-3 polyunsaturated fatty acids (ω3-PUFAs) have potential protective activity in a variety of infectious diseases, but their actions and underlying mechanisms in Toxoplasma gondii infection remain poorly understood. Here, we report that docosahexaenoic acid (DHA) robustly induced autophagy in murine bone marrow-derived macrophages (BMDMs). Treatment of T. gondii-infected macrophages with DHA resulted in colocalization of Toxoplasma parasitophorous vacuoles with autophagosomes and reduced intracellular survival of T. gondii. The autophagic and anti-Toxoplasma effects induced by DHA were mediated by AMP-activated protein kinase (AMPK) signaling. Importantly, BMDMs isolated from Fat-1 transgenic mice, a well-known animal model capable of synthesizing ω3-PUFAs from ω6-PUFAs, showed increased activation of autophagy and AMPK, leading to reduced intracellular survival of T. gondii when compared with wild-type BMDMs. Moreover, Fat-1 transgenic mice exhibited lower cyst burden in the brain following infection with the avirulent strain ME49 than wild-type mice. Collectively, our results revealed mechanisms by which endogenous ω3-PUFAs and DHA control T. gondii infection and suggest that ω3-PUFAs might serve as therapeutic candidate to prevent toxoplasmosis and infection with other intracellular protozoan parasites.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antiparasitários/farmacologia , Autofagia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Macrófagos/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Cerebral/prevenção & controle , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/parasitologia , Encéfalo/patologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Humanos , Macrófagos/enzimologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/parasitologia , Transdução de Sinais , Toxoplasma/patogenicidade , Toxoplasmose Animal/enzimologia , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Toxoplasmose Cerebral/enzimologia , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia
16.
Rev Bras Parasitol Vet ; 28(3): 395-402, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411314

RESUMO

Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii. In cetaceans, T. gondii infection is a significant cause of morbidity and mortality. Despite the worldwide range and broad cetacean host record of T. gondii infection, there is limited information on toxoplasmosis in cetaceans from the Southern hemisphere. We investigated the occurrence of T. gondii by histopathology and immunohistochemistry in tissue samples of 185 animals comprising 20 different cetacean species from Brazil. Three out of 185 (1.6%) animals presented T. gondii-associated lesions: a captive killer whale Orcinus orca, a free-ranging common bottlenose dolphin Tursiops truncatus and a free-ranging Guiana dolphin Sotalia guianensis. The main lesions observed in these animals were necrotizing hepatitis, adrenalitis and lymphadenitis associated with protozoal cysts or extracellular tachyzoites presenting immunolabeling with anti-T. gondii antibodies. This study widens the spectrum of species and the geographic range of this agent in Brazil, and provides the first reports of T. gondii infection in a captive killer whale and in a free-ranging common bottlenose dolphin in South America.


Assuntos
Anticorpos Antiprotozoários/sangue , Cetáceos/parasitologia , Toxoplasma/imunologia , Toxoplasmose Animal/epidemiologia , Animais , Brasil/epidemiologia , Cetáceos/classificação , Imuno-Histoquímica , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/patologia
17.
Rev. bras. parasitol. vet ; 28(3): 395-402, July-Sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1042518

RESUMO

Abstract Toxoplasmosis is a parasitic disease caused by the protozoan Toxoplasma gondii. In cetaceans, T. gondii infection is a significant cause of morbidity and mortality. Despite the worldwide range and broad cetacean host record of T. gondii infection, there is limited information on toxoplasmosis in cetaceans from the Southern hemisphere. We investigated the occurrence of T. gondii by histopathology and immunohistochemistry in tissue samples of 185 animals comprising 20 different cetacean species from Brazil. Three out of 185 (1.6%) animals presented T. gondii-associated lesions: a captive killer whale Orcinus orca, a free-ranging common bottlenose dolphin Tursiops truncatus and a free-ranging Guiana dolphin Sotalia guianensis. The main lesions observed in these animals were necrotizing hepatitis, adrenalitis and lymphadenitis associated with protozoal cysts or extracellular tachyzoites presenting immunolabeling with anti-T. gondii antibodies. This study widens the spectrum of species and the geographic range of this agent in Brazil, and provides the first reports of T. gondii infection in a captive killer whale and in a free-ranging common bottlenose dolphin in South America.


Resumo Toxoplasmose é uma doença parasitária causada pelo protozoário Toxoplasma gondii. A infecção por T. gondii é uma causa significativa de morbidade e mortalidade, nos cetáceos. Apesar da abrangência mundial e amplo registro de espécies de cetáceos infectadas por T. gondii, informações sobre toxoplasmose em cetáceos do hemisfério sul são limitadas. Neste estudo pesquisou-se por meio de histopatologia e imuno-histoquímica a ocorrência de T. gondii em amostras de tecido de 185 animais, compreendendo 20 diferentes espécies de cetáceos que ocorrem no Brasil. Três dos 185 (1,6%) animais apresentaram lesões associadas a T. gondii: uma orca Orcinus orca mantida em cativeiro, um golfinho-nariz-de-garrafa Tursiops truncatus e um boto-cinza Sotalia guianensis de vida livre. As principais lesões observadas nesses animais foram hepatite, adrenalite e linfadenite necrotizantes associadas a cistos protozoários ou taquizoítos extracelulares, marcados com anticorpos anti-T. gondii. O presente estudo amplia o espectro de espécies susceptíveis a esse agente e o seu alcance geográfico no Brasil, fornecendo o primeiro relato da infecção por T. gondii em uma orca mantida em cativeiro e em um golfinho-nariz-de-garrafa de vida livre na América do Sul.


Assuntos
Animais , Toxoplasma/imunologia , Anticorpos Antiprotozoários , Cetáceos/parasitologia , Toxoplasmose Animal/epidemiologia , Brasil/epidemiologia , Imuno-Histoquímica , Cetáceos/classificação , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/patologia
18.
PLoS Pathog ; 15(6): e1007872, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194844

RESUMO

Innate recognition of invading intracellular pathogens is essential for regulating robust and rapid CD4+ T cell effector function, which is critical for host-mediated immunity. The intracellular apicomplexan parasite, Toxoplasma gondii, is capable of infecting almost any nucleated cell of warm-blooded animals, including humans, and establishing tissue cysts that persist throughout the lifetime of the host. Recognition of T. gondii by TLRs is essential for robust IL-12 and IFN-γ production, two major cytokines involved in host resistance to the parasite. In the murine model of infection, robust IL-12 and IFN-γ production have been largely attributed to T. gondii profilin recognition by the TLR11 and TLR12 heterodimer complex, resulting in Myd88-dependent IL-12 production. However, TLR11 or TLR12 deficiency failed to recapitulate the acute susceptibility to T. gondii infection seen in Myd88-/- mice. T. gondii triggers inflammasome activation in a caspase-1-dependent manner resulting in cytokine release; however, it remains undetermined if parasite-mediated inflammasome activation impacts IFN-γ production and host resistance to the parasite. Using mice which lack different inflammasome components, we observed that the inflammasome played a limited role in host resistance when TLR11 remained functional. Strikingly, in the absence of TLR11, caspase-1 and -11 played a significant role for robust CD4+ TH1-derived IFN-γ responses and host survival. Moreover, we demonstrated that in the absence of TLR11, production of the caspase-1-dependent cytokine IL-18 was sufficient and necessary for CD4+ T cell-derived IFN-γ responses. Mechanistically, we established that T. gondii-mediated activation of the inflammasome and IL-18 were critical to maintain robust CD4+ TH1 IFN-γ responses during parasite infection in the absence of TLR11.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunidade Inata , Inflamassomos/imunologia , Interferon gama/imunologia , Receptores Toll-Like/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD4-Positivos/patologia , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interferon gama/genética , Interleucina-18/genética , Interleucina-18/imunologia , Camundongos , Camundongos Knockout , Receptores Toll-Like/genética , Toxoplasmose Animal/genética , Toxoplasmose Animal/patologia
19.
Vet Parasitol ; 269: 13-15, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31079821

RESUMO

Among the meat sources of Toxoplasma gondii, pork is considered important in the epidemiology of toxoplasmosis in the USA. How soon after infection T. gondii forms tissue cysts in pork is unknown. In the present study, eight serologically negative ˜3 months old pigs were fed mouse tissues infected with VEG (Type III) strain of T. gondii and euthanized 7 (4 pigs) and 14 days (4 pigs) post-inoculation (p.i.). Meat from the right shoulder of each pig was bioassayed in mice for T. gondii tissue cysts by peptic digestion. From each pig, the shoulder muscle was cut at random spots into 5 g, 10 g and 50 g portions. Extreme care was taken to use different scalpels and forceps to minimize cross contamination among 17 samples (6 replicates of each 5 g and 10 g portions and 5 replicates of 50 g). From the four pigs euthanized at 7 days p.i., a composite of ˜200 g of leftover meat from each shoulder was bioassayed in cats and their feces were tested for oocyst excretion. All eight pigs developed T. gondii antibodies (modified agglutination test, MAT, 1: 80 or higher) and viable T. gondii was isolated from shoulder meat of each pig. All four cats fed pork from excreted T. gondii oocysts. The density of T. gondii, based on mouse infectivity, varied within 5-50 g samples each pig, and between pigs within the same group, day 7 versus day 14 p.i. There were no significant differences in mouse bioassay results obtained with day 7 versus day 14 infected pigs. Overall, the rate of isolation of T. gondii increased with sample size of meat bioassayed. Results demonstrate that tissue cysts are formed early in infection and they are unevenly distributed.


Assuntos
Anticorpos Antiprotozoários/sangue , Doenças dos Suínos/patologia , Toxoplasma/fisiologia , Toxoplasmose Animal/patologia , Animais , Gatos , Fezes/parasitologia , Feminino , Masculino , Camundongos , Músculo Esquelético/parasitologia , Oocistos , Carne Vermelha/parasitologia , Ombro/parasitologia , Suínos , Doenças dos Suínos/parasitologia , Toxoplasmose Animal/parasitologia
20.
Korean J Parasitol ; 57(2): 93-99, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31104401

RESUMO

Both Plasmodium spp. and Toxoplasma gondii are important apicomplexan parasites, which infect humans worldwide. Genetic analyses have revealed that 33% of amino acid sequences of inner membrane complex from the malaria parasite Plasmodium berghei is similar to that of Toxoplasma gondii. Inner membrane complex is known to be involved in cell invasion and replication. In this study, we investigated the resistance against T. gondii (ME49) infection induced by previously infected P. berghei (ANKA) in mice. Levels of T. gondii-specific IgG, IgG1, IgG2a, and IgG2b antibody responses, CD4+ and CD8+ T cell populations were found higher in the mice infected with P. berghei (ANKA) and challenged with T. gondii (ME49) compared to that in control mice infected with T. gondii alone (ME49). P. berghei (ANKA) + T. gondii (ME49) group showed significantly reduced the number and size of T. gondii (ME49) cysts in the brains of mice, resulting in lower body weight loss compared to ME49 control group. These results indicate that previous exposure to P. berghei (ANKA) induce resistance to subsequent T. gondii (ME49) infection.


Assuntos
Plasmodium berghei/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/prevenção & controle , Animais , Anticorpos Antiprotozoários/sangue , Peso Corporal , Encéfalo/parasitologia , Encéfalo/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA