Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Parasitol Res ; 123(8): 303, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160298

RESUMO

This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.


Assuntos
Encéfalo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Nebivolol , Carga Parasitária , Toxoplasmose Animal , Animais , Nebivolol/farmacologia , Nebivolol/uso terapêutico , Camundongos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Encéfalo/parasitologia , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Feminino , Neurônios/efeitos dos fármacos , Neurônios/parasitologia , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Resultado do Tratamento , Óxido Nítrico/metabolismo , Toxoplasma/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo
2.
Microb Pathog ; 195: 106897, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208959

RESUMO

Toxoplasma gondii (T.gondii) is an obligate intracellular protozoan that infects warm-blooded animals and has a global distribution. Acute toxoplasmosis is commonly reported in patients with acquired/congenital toxoplasmosis and immune deficiency. New methods are needed to prevent the sideffects of classical treatment. In this study, Rosuvastatin loaded chitosan nanoparticle (CH-NP-ROS) were synthesized and zeta potential and size were determined, and an MTT assay was performed to evaluate the cell toxicity on Macrophage cells (MQ) and anti-Toxoplasma activity using Trypan-blue staining by different concentrations of Rosuvastatin (ROS), and Rosuvastatin loaded chitosan nanoparticle (CH-NP-ROS). The cell viability assay demonstrated that CH-NP-ROS had lower cell toxicity (<15 %) compared to ROS (<30 %). Statistical analysis showed that CH-NP-ROS significantly killed 98.950 ± 1.344; P < 0.05) of Toxoplasma gondii tachyzoites. In vivo results of perituneal fluid showed that CH-NP significantly reduced the parasite load in the CH-NP-ROS group, compared to that in negative control group (P < 0.001). Growth inhibition rates of tachyzoites in mice receiving free ROS and CH-NP-ROS (injection and oral form) were found to be 166.125 + 4.066, 118.750 + 4.596 and 124.875 + 2.652, respectively, compared to mice in Sulfadiazine/Pyrimethamine treated group (positive control). In the infected untreated mice (control +), the mean tachyzoite counts per oil immersion field in the spleen was 8.25 respectively. The mean survival time in all the groups treated with ROS and CH-NP-ROS was longer than that in the negative control group Therefore, nanoformulation is a promising approach for the delivery and is safe for using therapeutic effects in acute toxoplasmosis.


Assuntos
Quitosana , Nanopartículas , Rosuvastatina Cálcica , Toxoplasma , Toxoplasmose , Animais , Rosuvastatina Cálcica/farmacologia , Rosuvastatina Cálcica/uso terapêutico , Rosuvastatina Cálcica/administração & dosagem , Nanopartículas/química , Toxoplasma/efeitos dos fármacos , Camundongos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Carga Parasitária , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Feminino , Camundongos Endogâmicos BALB C
3.
Int J Parasitol Drugs Drug Resist ; 25: 100552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986389

RESUMO

Toxoplasma gondii (T. gondii) is a highly successful global parasite, infecting about one-third of the world's population and significantly affecting human life and the economy. However, current drugs for toxoplasmosis treatment have considerable side effects, and there is no specific drug to meet current needs. This study aims to evaluate the anti-T. gondii activity of broxaldine (BRO) in vitro and in vivo and explore its mechanism of action. Our results showed that compared to the control group, the invasion rate of tachyzoites in the 4 µg/mL BRO group was only 14.31%, and the proliferation rate of tachyzoites in host cells was only 1.23%. Furthermore, BRO disrupted the lytic cycle of T. gondii and reduced the size and number of cysts in vitro. A mouse model of acute toxoplasmosis reported a 41.5% survival rate after BRO treatment, with reduced parasite load in tissues and blood. The subcellular structure of T. gondii was observed, including disintegration of T. gondii, mitochondrial swelling, increased liposomes, and the presence of autophagic lysosomes. Further investigation revealed enhanced autophagy, increased neutral lipids, and decreased mitochondrial membrane potential in T. gondii treated with BRO. The results also showed a significant decrease in ATP levels. Overall, BRO demonstrates good anti-T. gondii activity in vitro and in vivo; therefore, it has the potential to be used as a lead compound for anti-T. gondii treatment.


Assuntos
Toxoplasma , Toxoplasma/efeitos dos fármacos , Animais , Camundongos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Feminino , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Modelos Animais de Doenças , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Humanos , Autofagia/efeitos dos fármacos , Carga Parasitária , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C
4.
Parasitol Res ; 123(7): 286, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046555

RESUMO

Despite being the initial choice for treating toxoplasmosis, sulfadiazine and pyrimethamine have limited effectiveness in eliminating the infection and were linked to a variety of adverse effects. Therefore, the search for new effective therapeutic strategies against toxoplasmosis is still required. The current work is the first research to assess the efficacy of spiramycin-loaded maltodextrin nanoparticles (SPM-loaded MNPs) as a novel alternative drug therapy against toxoplasmosis in a murine model. Fifty laboratory-bred Swiss albino mice were divided into five groups: normal control group (GI, n = 10), positive control group (GII, n = 10), orally treated with spiramycin (SPM) alone (GIII, n = 10), intranasal treated with SPM-loaded MNPs (GIV, n = 10), and orally treated with SPM-loaded MNPs (GV, n = 10). Cysts of Toxoplasma gondii ME-49 strain were used to infect the mice. Tested drugs were administered 2 months after the infection. Drug efficacy was assessed by counting brain cysts, histopathological examination, and measures of serum CD19 by flow cytometer. The orally treated group with SPM-loaded MNPs (GV) showed a marked reduction of brain cyst count (88.7%), histopathological improvement changes, and an increasing mean level of CD19 (80.2%) with significant differences. SPM-loaded MNPs showed potent therapeutic effects against chronic toxoplasmosis. Further research should be conducted to assess it in the treatment of human toxoplasmosis, especially during pregnancy.


Assuntos
Modelos Animais de Doenças , Nanopartículas , Polissacarídeos , Espiramicina , Toxoplasmose Animal , Animais , Espiramicina/uso terapêutico , Espiramicina/administração & dosagem , Camundongos , Polissacarídeos/administração & dosagem , Polissacarídeos/uso terapêutico , Polissacarídeos/farmacologia , Nanopartículas/química , Toxoplasmose Animal/tratamento farmacológico , Toxoplasma/efeitos dos fármacos , Feminino , Encéfalo/parasitologia , Encéfalo/patologia , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Portadores de Fármacos
5.
Acta Trop ; 258: 107339, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084481

RESUMO

Toxoplasmosis is a pervasive parasitic infection possessing a chief impact on both public health and veterinary medicine. Unfortunately, the commercially-available anti-Toxoplasma agents have either serious side effects or diminished efficiency, specifically on the Toxoplasma tissue cysts. In the present study, metformin (The first-line treatment for type 2 diabetes mellitus) was investigated for the first time against chronic cerebral toxoplasmosis in mice model experimentally-infected with ME49 strain versus spiramycin. Two metformin regimens were applied; starting one week before the infection and four weeks PI. Parasitological, ultrastructural, histopathological, immunohistochemical, immunological, and biochemical assessments were performed. The anti-parasitic effect of metformin was granted by the statistically-significant reduction in tissue-cyst burden in both treatment regimens. This was accompanied by markedly-mutilated ultrastructure and profound amelioration of the cerebral histopathology with remarkable decline in the brain CD4+ and CD8+ T cell count. Besides, diminution of anti-Toxoplasma IgG and brain GSH levels was evident. Ultimately, the present findings highlighted the powerful promising therapeutic role of metformin in the management of chronic toxoplasmosis on a basis of anti-parasitic, anti-inflammatory, and anti-oxidant possessions.


Assuntos
Encéfalo , Modelos Animais de Doenças , Metformina , Toxoplasma , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/administração & dosagem , Camundongos , Encéfalo/parasitologia , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Toxoplasmose Cerebral/tratamento farmacológico , Toxoplasmose Cerebral/parasitologia , Feminino , Toxoplasmose Animal/tratamento farmacológico , Anticorpos Antiprotozoários/sangue , Resultado do Tratamento , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Antiprotozoários/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/administração & dosagem , Doença Crônica , Espiramicina/uso terapêutico , Espiramicina/farmacologia , Imunoglobulina G/sangue
6.
Acta Parasitol ; 69(2): 1253-1266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743178

RESUMO

PURPOSE: Searching for a novel early diagnostic biomarker for toxoplasmosis, real-time-PCR was currently used to measure the serum mmu-miR-511-5p level in male Swiss-albino mice infected with either; ME49 or RH Toxoplasma gondii (T. gondii) strains. METHODS: Three mice groups were used; (GI) constituted the non-infected control group, while (GII) and (GIII) were experimentally infected with ME49 or RH strains, respectively. GII mice were orally infected using 10 or 20 ME49 cysts (ME-10 and ME-20), both were subdivided into; non-treated (ME-10-NT and ME-20-NT) and were further subdivided into; immunocompetent (ME-10-IC and ME-20-IC) [euthanized 3-days, 1, 2, 6 or 8-weeks post-infection (PI)], and immunosuppressed using two Endoxan® injections (ME-10-IS and ME-20-IS) [euthanized 6- or 8-weeks PI], and spiramycin-treated (ME-10-SP and ME-20-SP) that received daily spiramycin, for one-week before euthanasia. GIII mice individually received 2500 intraperitoneal RH strain tachyzoites, then, were subdivided into; non-treated (RH-NT) [euthanized 3 or 5-days PI], and spiramycin-treated (RH-SP) that were euthanized 5 or 10-days PI (refer to the graphical abstract). RESULTS: Revealed significant upregulation of mmu-miR-511-5p in GII, one-week PI, with gradually increased expression, reaching its maximum 8-weeks PI, especially in ME-20-NT group that received the higher infective dose. Immunosuppression increased the upregulation. Contrarily, treatment caused significant downregulation. GIII recorded significant upregulation 3-days PI, yet, treatment significantly decreased this expression. CONCLUSION: Serum mmu-miR-511-5p is a sensitive biomarker for early diagnosis of ME49 and RH infection (as early as one-week and 3-days, respectively), and its expression varies according to T. gondii infective dose, duration of infection, spiramycin-treatment and host immune status.


Assuntos
Biomarcadores , MicroRNAs , Toxoplasma , Toxoplasmose Animal , Animais , MicroRNAs/sangue , MicroRNAs/genética , Camundongos , Masculino , Toxoplasma/imunologia , Toxoplasma/genética , Biomarcadores/sangue , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/tratamento farmacológico , Espiramicina , Modelos Animais de Doenças , Toxoplasmose/diagnóstico , Toxoplasmose/imunologia , Toxoplasmose/tratamento farmacológico
7.
Acta Parasitol ; 69(1): 567-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231312

RESUMO

PURPOSE: Pyrus boissieriana is a rich source of arbutin and has been used in herbal medicine to treat infectious diseases. This study aimed to investigate the effect of the arbutin-rich fraction of Pyrus boissieriana aerial parts on Toxoplasma gondii In Vitro and In Vivo. METHODS: An arbutin-rich fraction of P. boissieriana was prepared beforehand. Flow cytometry was used to evaluate the effect of different concentrations (1-512 µg/ml) of the P. boissieriana arbutin-rich fraction on Toxoplasma tachyzoites (RH strain). The cytotoxicity of the concentrations on the macrophage J774 cell line was also investigated by MTT assay. For In Vivo investigation, 4-6-week-old female mice infected with the RH strain of T. gondii were treated with different doses (16, 32, 64, 256, and 512 mg/kg) of the fraction using gavage. RESULTS: The highest and lowest lethality of the tachyzoites were 89.6% and 25.9% related to the concentrations of 512 µg/ml and 1 µg/ml, respectively, with an IC50 value of 18.1 µg/ml ± 0.37. The cytotoxicity test showed an IC50 value of 984.3 µg/ml ± 0.76 after 48 h incubation. The mean survival of mice at the lowest treated dose (16 mg/kg) was 6.6 days, and it was 15 days at the highest dose (512 mg/kg). The concentrations of 512, 256, 128, and 64 mg/kg of the fraction compared to the negative control (6.2 days mean survival) significantly increased the survival time of mice (P < 0.001, P = 0.009, P = 0.018, and P = 0.021, respectively). CONCLUSION: The results showed that the arbutin-rich fraction of P. boissieriana is effective against T. gondii In Vitro and In Vivo and may be a reliable alternative to conventional treatment for toxoplasmosis, although further studies are necessary.


Assuntos
Antiprotozoários , Arbutina , Extratos Vegetais , Toxoplasma , Animais , Toxoplasma/efeitos dos fármacos , Camundongos , Feminino , Extratos Vegetais/farmacologia , Linhagem Celular , Arbutina/farmacologia , Antiprotozoários/farmacologia , Macrófagos/parasitologia , Macrófagos/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Concentração Inibidora 50 , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
8.
Acta Parasitol ; 68(4): 880-890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924457

RESUMO

BACKGROUND: Toxoplasmosis is a cosmopolitan parasitic infection caused by Toxoplasma gondii which is commonly treated by pyrimethamine (PYR) plus sulfadiazine (SDZ) with several adverse side effects. The present study evaluated the therapeutic effects of Urtica dioica L. aqueous extract (UDE) on acute and chronic toxoplasmosis in mice. METHODS: For this purpose, mice were infected with 20 cysts (acute infection) or 10 cysts (chronic infection) of T. gondii (Me49 strain). The mice were treated with 200 mg/kg of UDE intraperitoneally (IP) and intragastric route (IG). The UDE-treated mice were compared with the PYR + SDZ treatment. The histopathological changes, cyst count, total antioxidant capacity (TAC), malondialdehyde (MDA) assay, and serum INF-γ were also evaluated. RESULTS: In the acute toxoplasmosis, UDE by IP and IG administration significantly reduced the number of brain cysts by 93.74 and 92.55%, respectively, and increased the survival rate to 80% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 88.2 and 83.4%, respectively, for IP and IG treatments. Moreover, UDE significantly increased INF- γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were reduced in the UDE-treated subgroups compared to the untreated group. UDE treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. CONCLUSION: The results show that U. dioica possesses significant immunostimulant and antioxidant activity with a higher cyst reduction in the brain during acute toxoplasmosis. Further studies are required to investigate the fractionations of UDE against T. gondii and its combination with other standard drugs.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Urtica dioica , Animais , Camundongos , Antioxidantes/farmacologia , Infecção Persistente , Toxoplasmose/parasitologia , Imunidade , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia
9.
Parasite Immunol ; 45(12): e13014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807942

RESUMO

This study investigated a 'de Novo' medicinal herb, Ferula asafetida (FA), against toxoplasma encephalitis either alone or combined with spiramycin (SP). Female Swiss-Webster mice (n = 72) were divided into three batches. Batch-I received no DMS to serve as an immunocompetent control, batch-II was immune-suppressed with the DMS (0.25 mg/g/day) for 14 days pre-infection, whilst batch-III was immune-suppressed with the DMS on the same day of infection. All experimental mice were inoculated with Toxoplasma gondii ME49 cysts (n = 75). Each batch was split into four subgroups: Mono-SP, mono-FA, combined drug (SP + FA), or neither. Therapies were administered on day zero of infection in batches (I and II) and 35 days post-infection in batch (III). Treatments lasted for 14 days, and mice were sacrificed 60 days post-infection. Histopathological changes, cysts load, and CD4 and CD8 T-cells were counted in brain tissues. The cyst-load count in mice receiving SP + FA was significantly (p < .0001) the least compared to the mono treatments in all protocols. Interestingly, the combined therapy demolished the T-cell subsets to zero in immunocompetent and immunocompromised infected mice. In conclusion, F. asafetida might be a powerfully natural, safe vehicle of SP in the digestive system and/or across the brain-blood barrier to control toxoplasmosis even through immunodeficient conditions.


Assuntos
Encefalite , Ferula , Espiramicina , Toxoplasma , Toxoplasmose Animal , Toxoplasmose Cerebral , Feminino , Camundongos , Animais , Espiramicina/uso terapêutico , Encéfalo , Toxoplasmose Animal/tratamento farmacológico , Encefalite/tratamento farmacológico , Encefalite/patologia
10.
Trop Biomed ; 40(1): 115-123, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356011

RESUMO

Toxoplasma gondii, the etiologic agent of toxoplasmosis, infects about 30 - 50% of the world population. The currently available anti-Toxoplasma agents have serious limitations. The present study aimed to investigate the effects of two antimalarials; buparvaquone (BPQ) and chloroquine (CQ), on immunocompromised mice with chronic cerebral toxoplasmosis, using spiramycin as a reference drug. The assessed parameters included the estimation of mortality rates (MR) among mice of the different study groups, in addition to the examination of the ultrastructural changes in the brain tissues by transmission electron microscopy. The results showed that only CQ treatment could decrease the MR significantly with zero deaths, while both spiramycin and BPQ caused an insignificant reduction of MR compared to the infected non-treated group. All the used drugs decreased the number of mature ruptured cysts significantly compared to the infected non-treated group, while only CQ increased the number of atrophic and necrotic cysts significantly. Furthermore, both spiramycin and BPQ improved the microvasculopathy and neurodegeneration accompanying the infection with different degrees of reactive astrocytosis and neuronal damage with the best results regarding the repair of the microvascular damage with less active glial cells, and normal neurons in the CQ-treated group. In conclusion, this study sheds light on CQ and its excellent impact on treating chronic cerebral toxoplasmosis in an immunocompromised mouse model.


Assuntos
Cistos , Espiramicina , Toxoplasma , Toxoplasmose Animal , Toxoplasmose Cerebral , Animais , Camundongos , Espiramicina/farmacologia , Espiramicina/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Toxoplasmose Animal/tratamento farmacológico
11.
Acta Trop ; 239: 106810, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581225

RESUMO

Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Camundongos , Mefloquina/uso terapêutico , Mefloquina/farmacologia , Lipossomos , Toxoplasmose/tratamento farmacológico , Pirimetamina/farmacologia , Sulfadiazina , Toxoplasmose Animal/tratamento farmacológico
12.
Parasitol Res ; 121(12): 3513-3521, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36163518

RESUMO

Chronic Toxoplasma gondii (T. gondii) infection has been revealed to be a risk factor for neuropsychiatric diseases, including anxiety. However, there is no intervention strategy. The present study aimed to investigate the protective effect of ß-glucan on T. gondii Wh6 strain-induced anxiety-like behavior in mice. The anxiety mouse model was established by infection with 10 cysts of the T. gondii Wh6 strain. ß-Glucan was intraperitoneally administered 2 weeks before infection. Open field and elevated plus maze tests were performed to assess anxiety-like behavior. In the open field test, Wh6-infected mice spent less time in the central zone and had fewer entries into the central zone. In the elevated plus maze test, the infection reduced the frequency and time of head entries in the open arms. These results showed that Wh6 causes anxiety-like behavior in mice. Interestingly, the administration of ß-glucan significantly ameliorated anxiety-like behavioral performance. The present study shows that ß-glucan can alleviate the anxiety-like behavior induced by chronic T. gondii infection in mice, which indicates that ß-glucan may be a potential drug candidate for treating T. gondii-related mental disorders, including anxiety.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , beta-Glucanas , Animais , Camundongos , Toxoplasmose/tratamento farmacológico , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Modelos Animais de Doenças , Toxoplasmose Animal/tratamento farmacológico
13.
Acta Trop ; 232: 106508, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568067

RESUMO

BACKGROUND: Toxoplasmosis is a deleterious parasitic disease with harmful impact on both humans and animals. The present study was carried out to evaluate the antiparasitic effect of chloroquine (CQ), spiramycin (SP), and combination of both against the highly virulent RH HXGPRT (-) strain of Toxoplasma gondii (T. gondii) and to explore the mechanisms underlying such effect. METHODS: We counted the tachyzoites in the peritoneal fluid and liver smears of mice and performed scanning and transmission electron microscopy and immunofluorescence staining of tachyzoites. Moreover, relative caspase 3 gene expression was measured by real time polymerase chain reaction of liver tissues and immunoassay of anti-apoptotic markers [B cell lymphoma-2 (Bcl-2) and X-chromosome linked inhibitor of apoptosis (XIAP)] and interferon gamma (IFN-γ) was done in liver tissues by ELISA. In addition, we estimated serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) and performed histopathological examination of liver sections for scoring of inflammation. RESULTS: We found that both CQ and CQ/SP combination significantly reduced parasitic load in the peritoneal fluid and liver smears, induced apical disruption of tachyzoites, triggered host cell apoptosis through elevation of relative caspase 3 gene expression and suppression of both Bcl-2 and XIAP. Also, they upregulated IFN-γ level, reduced serum AST and ALT, and ameliorated liver inflammation. CONCLUSIONS: Either of CQ and CQ/SP combination was more effective than SP alone against T. gondii with the CQ/SP combination being more efficient. Therefore, adding CQ to other anti-Toxoplasma therapeutic regimens may be considered in future research.


Assuntos
Toxoplasma , Toxoplasmose Animal , Alanina Transaminase , Animais , Antiparasitários/uso terapêutico , Aspartato Aminotransferases , Caspase 3/farmacologia , Caspase 3/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Inflamação/tratamento farmacológico , Interferon gama/genética , Interferon gama/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Toxoplasma/genética , Toxoplasmose Animal/tratamento farmacológico
14.
Pathog Glob Health ; 116(2): 107-118, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34420500

RESUMO

Toxoplasmosis is a zoonotic disease of major significant perspectives in public health and veterinary medicine. So far, the available drugs control only the active infection, once the parasite encysts in the tissues, they lose their efficacy. Cytokines; IFN-γ and IL-10, play a critical role in the modulation of toxoplasmic encephalitis and neuro-inflammation in chronic toxoplasmosis. Antiretroviral protease inhibitors applied in the treatment of acquired immunodeficiency syndrome, revealed activity against multiple parasites. Aluvia (lopinavir/ritonavir) (L/R); an aspartyl protease inhibitor, had efficiently treated T. gondii RH strain infection. We investigated the potential activity of L/R against experimental T. gondii infection with a cystogenic Me49 strain in mice, considering the role of IFN-γ and IL-10 in the neuropathology versus pyrimethamine-sulfadiazine combination therapy. Three aluvia regimens were applied; starting on the day of infection (acute phase), 2-week PI (early chronic phase) and eight weeks PI (late chronic phase). L/R reduced the brain-tissue cyst burden significantly in all treatment regimens. It impaired the parasite infectivity markedly in the late chronic phase. Ultrastructural changes were detected in Toxoplasma cyst membrane and wall, bradyzoite membrane and nuclear envelope. The signs of bradyzoite paraptosis and cytoplasmic lipid droplets were observed. L/R had significantly reduced the brain-homogenate levels of IFN-γ and IL-10 in its three regimens however, they could not reach the normal level in chronic phases. Cerebral hypercellularity, perivascular inflammatory response, lymphoplasmacytic infiltrates and glial cellular reaction were ameliorated by L/R treatment. Herein, L/R was proved to possess promising preventive and therapeutic perspectives in chronic cerebral toxoplasmosis.


Assuntos
Inibidores da Protease de HIV , Toxoplasma , Toxoplasmose Animal , Toxoplasmose Cerebral , Animais , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Interleucina-10 , Camundongos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Cerebral/tratamento farmacológico , Toxoplasmose Cerebral/prevenção & controle
15.
Ultrastruct Pathol ; 45(6): 376-383, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34595988

RESUMO

Over one billion people worldwide are expected to have Toxoplasma gondii infection with anonymous health problems. Available therapies are ineffective for persistent chronic toxoplasmosis. So, there is an imperative need for effective therapies to eliminate chronic tissue stage. In this study, we aimed to assess the effect of a drug combination of atovaquone and proguanil hydrochloride in the treatment of experimental chronic toxoplasmosis. Fifty Swiss Webster mice were used in the study. Forty mice were infected with Me49 type II cystogenic Toxoplasma gondii strain and allocated into four groups: infected untreated (vehicle-administered), infected and treated with cotrimoxazole (CTX) 370 mg/kg/day, infected and treated with atovaquone (ATV) 100 mg/kg/day, and infected and treated with atovaquone/proguanil (ATV/PROG) 50 mg/kg/day. An additional group of uninfected mice was used as an uninfected control group. Drug treatment was initiated 8 weeks post-infection and continued for two weeks. All mice were sacrificed 12 weeks post-infection. Parasitological and histopathological parameters were assessed. Toxoplasma gondii cysts recovered from brain tissue homogenates of both infected untreated and ATV/PROG-treated groups were examined by scanning electron microscopy. Combined ATV/PROG treatment demonstrated a significant reduction of Toxoplasma gondii cyst count in brain tissue (a reduction rate of 84.87%) compared to untreated group (P < .001). Brain tissues obtained from ATV/PROG treated group showed reduction of inflammatory infiltrate and marked attenuation and deformation of recovered Toxoplasma gondii cysts. We conclude that ATV/PROG drug combination could offer a potential drug therapy for Toxoplasma gondii chronic cystic stage.


Assuntos
Naftoquinonas , Toxoplasma , Toxoplasmose Animal , Animais , Atovaquona/farmacologia , Encéfalo , Camundongos , Proguanil , Toxoplasmose Animal/tratamento farmacológico
16.
Antimicrob Agents Chemother ; 65(10): e0100321, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34339265

RESUMO

Individuals infected with Toxoplasma gondii are prone to psychobehavioral disorders, most notably schizophrenia and bipolar disorder. Valproic acid reportedly inhibits the proliferation of T. gondii tachyzoites in vitro. However, animals treated with the drug neither lived longer during acute infection nor had fewer brain cysts upon chronic infection. In this study, a quantitative real-time PCR (qPCR) method was applied to quantify copy numbers of BAG1 (a bradyzoite-specific protein), REP529 DNA (a repetitive DNA fragment of the parasite), and SAG1 (a highly expressed tachyzoite-specific surface protein) in the brains of chronically infected mice treated with valproic acid. The treatment inhibited the infection and decreased BAG1, SAG1, and REP529 copy numbers in mice brains (P < 0.0001), comparable to the effects of trimethoprim-sulfamethoxazole (TMP-SMZ), the common medication for toxoplasmosis treatment. Moreover, valproic acid decreased brain tumor necrosis factor alpha (TNF-α) expression (P < 0.0001) comparably to TMP-SMZ. Histological examination of mouse brains showed marked reductions in cyst establishment, perivascular infiltration of lymphocytes, and glial nodules to the same levels as those in the TMP-SMZ group. Our results provide direct evidence for the efficacy of valproic acid, a mood-stabilizing and antipsychotic drug, against chronic Toxoplasma infection. These results might help modulate therapeutic regimens for neuropsychiatric patients and aid in the design of more effective anti-Toxoplasma drugs.


Assuntos
Encefalite , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Encéfalo , Humanos , Camundongos , Toxoplasmose/tratamento farmacológico , Toxoplasmose Animal/tratamento farmacológico , Ácido Valproico/farmacologia
17.
Acta Parasitol ; 66(4): 1472-1479, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34050875

RESUMO

PURPOSE: Nowadays, due to the lack of an effective vaccine to prevent the toxoplasmosis, chemotherapy with the combination of pyrimethamine and sulfadiazine is considered as the "gold standard" treatment for toxoplasmosis. Recent reports have exhibited that these synthesized chemical drugs are associated with some serious side effects. The present study aims to evaluate the prophylactic effects of copper nanoparticles (CuNPs) green synthesized by Capparis spinosa fruit methanolic extract alone and combined with atovaquone against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice METHODS: Mice were then orally administrated with CuNPs at the doses of 2 and 4 mg/kg/day and in combined with atovaquone 50 mg/kg for 14 days. Male BALB/c mice were divided into two seven groups include C1 (non-treated non-infected); C2 (treated with normal saline); C3 (Infected mice treated with atovaquone 100 mg/kg/day); Ex1 (treated with CuNPs 2 mg/kg/day); Ex2 (treated with CuNPs 4 mg/kg/day); Ex3 (treated with CuNPs 2 mg/kg/day + atovaquone 50 mg/kg/day); Ex3 (treated with CuNPs 4 mg/kg/day + atovaquone 50 mg/kg/day). On the 15th day, the mice were infected with the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12, IFN-γ, and inducible nitric oxide synthase (iNOS) in mice of each tested group were measured. RESULTS: CuNPs were green synthesized by C. spinosa methanolic extract. Scanning electron microscopy showed that the particle size of CuNPs was 17 and 41 nm with maximum peak at the wavelength of 414 nm. The mean number of T. gondii tissue cysts in mice of tested groups of Ex1, Ex2, Ex3, and Ex4, significantly decreased as a dose-dependent response compared with control group. Moreover, in similar to the control group C3, no T. gondii tissue cysts was observed in mice of experimental group Ex3 and Ex4. The mRNA levels of IFN-γ, IL-12, and iNO was measured in mice of all tested groups. The mRNA levels of IFN-γ, IL-12, and iNO was increased in all mice of experimental groups in comparison with the control group C2; however, a significant enhancement was detected in mRNA level of IFN-γ, IL-12, and iNO in the tested groups of Ex3 and Ex4 when compared with control group C3. CONCLUSION: The obtained results revealed the high potency of CuNPs alone and combined with atovaquone to prevent toxoplasmosis in mice. Although, the prophylactic effects of CuNPs and other properties, such as improved cellular immunity and low toxicity, are positive topics; however, more studies are required to approve these findings especially in clinical settings.


Assuntos
Nanopartículas , Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Cobre , Irã (Geográfico) , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/prevenção & controle
18.
J Ethnopharmacol ; 273: 114019, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33716084

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sulfadiazine and pyrimethamine are the two drugs used as part of the standard therapy for toxoplasmosis, however; they may cause adverse side effects and fail to prevent relapse in many patients, rendering infected individuals at risk of reactivation upon becoming immunocompromised. Extracts from various parts of Annona muricata have been widely used medicinally for the management, control and/or treatment of several human diseases, acting against parasites that cause diseases in humans. AIM OF THE STUDY: This study was performed to investigate the action of the ethanolic extract of A. muricata (EtOHAm) and its fractions in the control of the apicomplexan parasite Toxoplasma gondii in vitro and in vivo, and the effect of EtOHAm on the inflammatory response and lipid profile alteration induced by in vivo T. gondii infection. MATERIALS AND METHODS: The cytotoxicity of EtOHAm and its fractions ethyl acetate (EtOAcAm), n-butanol (BuOHAm), aqueous (H2OAm), hexane (HexAm) and dichloromethane (CH2Cl2Am) was evaluated in NIH/3T3 fibroblasts using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cells were infected with T. gondii, treated with the extracts, and parasite proliferation was analyzed. For the in vivo experiments, C57BL/6 mice were orally infected with T. gondii and, treated with different concentrations of extract fractions that were effective in vitro (EtOHAm, EtOAcAm, HexAm and CH2Cl2Am). Tissue parasitism, histological alterations, systemic cytokine and lipid profile were investigated. RESULTS: EtOHAm, EtOAcAm, BuOHAm, H2OAm presented low cytotoxicity until doses of 200 µg/mL, while HexAm and CH2Cl2Am presented toxicity from doses of 100µg/mL. EtOHAm, HexAm and CH2Cl2Am decreased the parasitism in vitro, presenting a therapeutic index of 2.62, 2.44, and 2.96, respectively. In vivo, EtOHAm, HexAm and CH2Cl2Am improved the survival rate of infected animals, however, only EtOHAm was able to decrease the parasitism in the small intestine and lung. Additionally, EtOHAm decreased the systemic interferon (IFN)-γ and tumor necrosis factor (TNF) systemically in infected mice, and was able to maintain the triglycerides and very-low-density lipoprotein (VLDL) lipid fractions at similar levels to uninfected animals. Although treatment with EtOHAm could not control the inflammation induced by oral infection in the tissues analyzed, it was able to preserve the number of goblet cells in the small intestine. CONCLUSIONS: Ethanolic A. muricata leaf extract could be considered as a good candidate for the development of a complementary/alternative therapy against toxoplasmosis, and also as an anti-inflammatory alternative for decreasing TNF and IFN-γ concentrations and lipid fractions in specific diseases.


Assuntos
Annona/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
19.
Acta Parasitol ; 66(3): 827-836, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33555553

RESUMO

PURPOSES: Evaluate the effect of auranofin on the early and late stages of chronic infection with Toxoplasma gondii avirulent ME49 strain. METHODS: Swiss albino mice were orally inoculated with 10 cysts of Toxoplasma gondii, and orally treated with auranofin or septazole in daily doses of 20 mg/kg or 100 mg /kg, respectively, for 30 days. Treatment began either on the same day of infection and mice were sacrificed at the 60th day postinfection or the treatment started after 60 days of infection and mice were sacrificed at the 90th day postinfection. RESULTS: Auranofin significantly reduced the brain cyst burden and inflammatory reaction at both stages of infection compared to the infected non-treated control. More remarkably, auranofin significant reduced the brain cyst burden in the late stage, while septazole failed. Hydrogen peroxide level was significantly increased in the brain homogenate of mice treated with auranofin only at the early stage of infection. Ultrastructral studies revealed that the anti-Toxoplasma effect of auranofin is achieved by changing the membrane permeability and inducing apoptosis. CONCLUSIONS: Thus, auranofin could be an alternative for the standard treatment regimen of toxoplasmosis and these results are considered another achievement for the drug against parasitic infection. Being a FDA-approved drug, it can be rapidly evaluated in clinical trials.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose Cerebral , Animais , Auranofina/farmacologia , Auranofina/uso terapêutico , Encéfalo , Reposicionamento de Medicamentos , Camundongos , Toxoplasmose Animal/tratamento farmacológico
20.
Parasitol Res ; 120(2): 593-603, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415386

RESUMO

Toxoplasma gondii is a widespread zoonotic protozoan that infects most species of mammals and birds, including poultry. This study aimed to investigate the course of T. gondii infection and the efficacy of diclazuril and Artemisia annua in preventing infection in experimentally infected chickens. Seventy-five 1-month-old chickens, female and male, were randomly divided into five groups (n = 15 each) as follows: (1) uninfected untreated (negative control, NC); (2) infected with T. gondii genotype II/III isolated from a wild cat (group WC); (3) infected with T. gondii genotype II isolated from a domestic cat (group DC); (4) infected with T. gondii domestic cat strain and treated with the anticoccidial diclazuril (group DC-D); and (5) infected with T. gondii domestic cat strain and treated with the medicinal plant Artemisia annua (group DC-A). Clinical signs, body temperature, mortality rate, weight gain, feed conversion ratio, hematological parameters, and the presence of T. gondii-specific IgY antibodies were recorded in all groups. Five chickens per group were euthanized 28 days post-infection (p.i.) and their brains, hearts, and breast muscle tested for T. gondii by mouse bioassay and polymerase chain reaction (PCR). No clinical signs related to the experimental infection were observed throughout the study period. T. gondii-specific antibodies were detected by day 28 p.i., but not in all infected chickens. Overall, T. gondii DNA was detected (bioassay or tissue digests) in all infected and untreated chickens (10/10), while viable parasite (bioassay) was isolated from 7 out of 10 chickens. The parasite was most frequently identified in the brain (7/10). There were no differences in the T. gondii strains regarding clinical infection and the rate of T. gondii detection in tissues. However, higher antibody titers were obtained in chickens infected with T. gondii WC strain (1:192) comparing with T. gondii DC strain (1:48). A. annua reduced replication of the parasite in 3 out of 5 chickens, while diclazuril did not. In conclusion, broiler chickens were resistant to clinical toxoplasmosis, irrespective of the strain (domestic or wild cat strain). The herb A. annua presented prophylactic efficacy by reduced parasite replication. However, further studies are required aiming at the efficacy of diclazuril and A. annua for the prevention of T. gondii infection in chickens using quantitative analysis methods.


Assuntos
Anticorpos Antiprotozoários/imunologia , Artemisia annua , Coccidiostáticos/farmacologia , Nitrilas/farmacologia , Doenças das Aves Domésticas/prevenção & controle , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Triazinas/farmacologia , Animais , Encéfalo/parasitologia , Gatos , Galinhas , Feminino , Genótipo , Coração/parasitologia , Masculino , Camundongos , Músculos Peitorais/parasitologia , Plantas Medicinais , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/parasitologia , Distribuição Aleatória , Soroconversão , Distribuição Tecidual , Toxoplasma/genética , Toxoplasma/fisiologia , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA