Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neurotoxicology ; 99: 1-9, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37652187

RESUMO

Most teenagers mix up various psychoactive cocktail substances in combinations to get intoxicated. The role of the mixture combination of codeine (CDE), tramadol (TMD), and Cannabis sativa (CNB) on brain cognition, purinergic, cholinergic, and antioxidant enzyme activities remains unknown. This study sought to assess the mechanism of action of combinations of CDE+ TMD+ CNB on the function and activities of the brain of male Wistar rats. Forty-eight male Wistar rats were divided into 8 groups, n = 6. Group 1 served as a control, groups 2, 3, and 4 were exposed to CDE (2 mg/kg bw), TMD (10 mg/kg bw), and CNB (200 mg/kg bw), while groups 5, 6, 7, and 8 were co-administered with CDE+TMD, CNB+ TMD, CNB+CDE, and CNB+TMD+CDE orally for 28 days. This study revealed the effect of prolonged administration of CNB, TMD, and CDE on the suppression of cognitive function, acetyl-cholinesterase (AChE), butyl-cholinesterase (BChE), monoamine oxidase (MAO) enzyme activities, and antioxidant enzyme activities in rats' brains when compared against control rats (P < 0.05). However, the activities of ectonucleosides (NTPdase), adenosine deaminase (ADA), and malondialdehyde levels produced in the brain of rats were significantly elevated (P < 0.05). This study reported the mechanism behind the neurotoxicity of CNB, TMD, and CDE on rats' cognitive, cholinergic, purinergic, and antioxidant enzymes as a consequence of the drastic reduction in cholinesterase enzyme activities leading to neurotransmitter poisoning.


Assuntos
Cannabis , Tramadol , Ratos , Masculino , Animais , Ratos Wistar , Antioxidantes , Tramadol/toxicidade , Codeína , Colinesterases , Colinérgicos , Cognição
2.
Toxicol Mech Methods ; 33(7): 607-623, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37051630

RESUMO

Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1ß while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas , Tramadol , Trimetazidina , Masculino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Trimetazidina/farmacologia , Tramadol/toxicidade , Neuroproteção , Ratos Wistar , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Apoptose , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Autofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Biomarkers ; 28(4): 401-408, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932833

RESUMO

INTRODUCTION: The risk of cardiotoxicity is associated with the use of anabolic-androgenic steroids and analgesics, several deaths were attributed to such medications. OBJECTIVES: This study investigates the effects of boldenone (BOLD) and tramadol (TRAM) alone or in combination on the heart. MATERIAL AND METHODS: Forty adult male rats were divided into four groups. Normal control group, BOLD (5 mg/kg, i.m.) per week, tramadol Hcl (TRAM) (20 mg/kg, i.p.) daily and a combination of BOLD (5 mg/kg) and TRAM (20 mg/kg), respectively for two months. Serum and cardiac tissue were extracted for determination of serum, aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lipid profiles, tissue malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and histopathological examination. Troponin I gene expression was quantified in cardiac tissue using real-time polymerase chain reaction technique. RESULTS: Groups received BOLD and TRAM alone and in combination showed elevated serum biochemical parameters (AST, CPK) and deviations in lipid profiles, elevation in oxidative and inflammatory parameters (MDA, NO, TNF-α and IL-6), and decrease in GSH and SOD, up-regulated cardiac troponin I as well as distorted cardiac histopathological pictures. CONCLUSION: The current study elucidated the risk of administration of these drugs for sustained periods as well as the marked detrimental effects of using these drugs in combination.


Assuntos
Miocárdio , Tramadol , Ratos , Masculino , Animais , Miocárdio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Tramadol/toxicidade , Tramadol/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doxorrubicina , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
Neurochem Res ; 48(5): 1320-1333, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36449200

RESUMO

Boldenone and tramadol are abused among large sectors of adolescents. Therefore, the behavioral changes concerned with memory and cognitive functions and neurochemical variations were investigated in the cortex of rats treated with boldenone and/or tramadol. Rats were divided into control and rats treated with boldenone, tramadol, or both drugs. At the end of the treatment period, the memory and cognitive functions were evaluated by the Y-maze test (YMT) and elevated plus maze test (EPMT) and the motor activity was determined by the open field test (OFT). The cortex was dissected to carry out the neurochemical analyses. Rats treated with boldenone and/or tramadol showed impaired memory and cognitive functions and reduced motor activity. A significant increase in lipid peroxidation (MDA), nitric oxide (NO), and a significant decrease in reduced glutathione (GSH) were observed in the cortex of rats treated with boldenone and/or tramadol. The levels of acetylcholinesterase (AChE) and monoamine oxidase (MAO) decreased significantly. Western blot data showed a significant decrease in Bcl2 and a significant increase in caspase-3 and inducible nitric oxide synthase (iNOS) in rats treated with boldenone and/or tramadol. These changes were associated with neuronal death as indicated from the histopathological examination.The present findings indicate that boldenone and/or tramadol induced impairment in memory and cognitive functions. These changes could be mediated by the increase in oxidative stress, neuroinflammation, reduced AChE level, and reduced number of survived neurons in the cortex as indicated from the decreased Bcl2 level and the histological examination.


Assuntos
Tramadol , Ratos , Masculino , Animais , Tramadol/toxicidade , Acetilcolinesterase/metabolismo , Testosterona , Proteínas Proto-Oncogênicas c-bcl-2 , Estresse Oxidativo
5.
Neurosci Lett ; 771: 136418, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-34954113

RESUMO

Tramadol is a synthetic analogue of codeine and stimulates neurodegeneration in several parts of the brain that leads to various behavioral impairments. Despite the leading role of hippocampus in learning and memory as well as decreased function of them under influence of tramadol, there are few studies analyzing the effect of tramadol administration on gene expression profiling and structural consequences in hippocampus region. Thus, we sought to determine the effect of tramadol on both PC12 cell line and hippocampal tissue, from gene expression changes to structural alterations. In this respect, we investigated genome-wide mRNA expression using high throughput RNA-seq technology and confirmatory quantitative real-time PCR, accompanied by stereological analysis of hippocampus and behavioral assessment following tramadol exposure. At the cellular level, PC12 cells were exposed to 600 µM tramadol for 48 hrs, followed by the assessments of ROS amount and gene expression levels of neurotoxicity associated with neurodegenerative pathways such as apoptosis and autophagy. Moreover, the structural and functional alteration of the hippocampus under chronic exposure to tramadol was also evaluated. In this regard, rats were treated with tramadol at doses of 50 mg/kg for three consecutive weeks. In vitro data revealed that tramadol provoked ROS production and caused the increase in the expression of autophagic and apoptotic genes in PC12 cells. Furthermore, in-vivo results demonstrated that tramadol not only did induce hippocampal atrophy, but it also triggered microgliosis and microglial activation, causing upregulation of apoptotic and inflammatory markers as well as over-activation of neurodegeneration. Tramadol also interrupted spatial learning and memory function along with long-term potentiation (LTP). Taken all together, our data disclosed the neurotoxic effects of tramadol on both in vitro and in-vivo. Moreover, we proposed a potential correlation between disrupted biochemical cascades and memory deficit under tramadol administration.


Assuntos
Analgésicos Opioides/toxicidade , Hipocampo/efeitos dos fármacos , Memória , Tramadol/toxicidade , Animais , Apoptose , Autofagia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células PC12 , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
6.
Xenobiotica ; 51(9): 1029-1037, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34319855

RESUMO

1. The aim of this study was to compare the in vitro cytotoxic effect of tramadol and M1 metabolite in HepG2 cell line, the underlying mechanism, and PI3K/AKT/mTOR as potential target.2. Concentrations representing therapeutic level for tramadol (2 µM) and M1 metabolite (0.5 µM) were used. In addition, other increasing concentrations representing higher toxic levels were used (6, 10 µM for tramadol and 1.5, 2.5 µM for M1 metabolites). Cytotoxicity was assessed at 24, 48 and 72 h.3. Both tramadol and M1 metabolites were able to produce cytotoxicity in a dose and time dependent manner. Insignificant difference was detected between cells exposed to tramadol and M1 metabolite at therapeutic concentrations. Tramadol-induced apoptotic and autophagic cell death while M1 metabolite-induced apoptosis only. For PI3K/AKT/mTOR pathway, the therapeutic concentration of tramadol was only able to increase phosphorylation of AKT while higher toxic concentrations were able to increase phosphorylation of whole pathway; Meanwhile, M1 metabolite was able to increase the phosphorylation of the whole pathway significantly in therapeutic and toxic concentrations.4. In conclusion, both tramadol and M1 are equally cytotoxic. Apoptosis and autophagy both mediate hepatic cell death. PI3K/AKT pathway is involved in apoptosis induction while autophagy is regulated through mTOR independent pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Tramadol , Células Hep G2 , Humanos , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Tramadol/análogos & derivados , Tramadol/toxicidade
7.
Arq. bras. med. vet. zootec. (Online) ; 73(1): 99-107, Jan.-Feb. 2021. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1153067

RESUMO

This study evaluated the most common toxic agents affecting domestic cats, the clinical signs of toxicity, and the therapeutic approaches for recovery. A survey on poisoning in cats was conducted among small animal veterinary practitioners from 2017 to 2018. Of the 748 completed questionnaires, 543 (72.6%) were evaluated. Pesticides and household cleaning supplies were the most common causes of poisoning in cats. The toxicant groups included pesticides and household cleaning supplies (organophosphates), human drugs (acetaminophen), plants/plant derivatives (lily), and veterinary drugs (tramadol). The major clinical signs for these four groups of toxicants were (1) acetaminophen poisoning, which caused oxidative erythrocyte damage; (2) muscarinic and nicotinic cholinergic syndrome, which resulted from organophosphate poisoning; (3) acute kidney injury, which resulted from intoxication of lily; and (4) serotonin syndrome, which resulted from tramadol toxicosis. Interventions for treating poisoning in cats were based on the clinical presentation of animals. In the present study, the significant toxins identified to be dangerous for cats were characterized using the obtained data in Brazil as well as the main associated clinical signs and therapy recommended by veterinarians.(AU)


Objetiva-se com este trabalho caracterizar os principais toxicantes para gatos domésticos, bem como os prevalentes sinais clínicos e a terapêutica associada. Uma pesquisa sobre envenenamento em gatos foi realizada entre médicos veterinários no período de 2017 a 2018. Dos 748 questionários preenchidos, 543 (72,6%) foram avaliados. Pesticidas e domissanitários foram os principais causadores de intoxicação em gatos. Entre os grupos tóxicos, destacaram-se, na categoria pesticidas e domissanitários (organofosforados), medicamentos humanos (acetaminofeno), plantas e derivados de planta (lírio) e medicamentos veterinários (tramadol). Os principais sinais clínicos para os quatro grupos de substâncias tóxicas foram: (1) intoxicação por acetaminofeno, que causou dano eritrocitário oxidativo; (2) síndrome colinérgica muscarínica e nicotínica, resultante do envenenamento por organofosforado; (3) lesão renal aguda, causada pela intoxicação por lírio; e (4) síndrome serotoninérgica, resultante da exposição ao tramadol. As intervenções realizadas para o tratamento dos envenenamentos foram justificáveis mediante a apresentação clínica dos animais. Por meio dos dados obtidos, puderam-se caracterizar os principais tóxicos para gatos no Brasil, bem como os principais sinais clínicos associados e a terapêutica preconizada pelos médicos veterinários.(AU)


Assuntos
Animais , Gatos , Compostos Organofosforados/toxicidade , Intoxicação/etiologia , Intoxicação/veterinária , Tramadol/toxicidade , Lilium/toxicidade , Acetaminofen/toxicidade , Serotoninérgicos/toxicidade , Estresse Oxidativo , Antagonistas Muscarínicos/toxicidade , Injúria Renal Aguda/induzido quimicamente
8.
Drug Chem Toxicol ; 44(6): 613-619, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31368376

RESUMO

Tramadol (TR) is an analgesic drug used to treat moderate-to-severe pain but it induces seizure even at therapeutic doses. The exact mechanism of TR-inducing seizure is not clear but inhibition of the serotonin, GABA, and nitrous oxide (NOS) pathways are the commonly proposed mechanisms. Adenosinergic system has a crucial function in the modulation of seizure. Also, oxidative damage is an unavoidable effect of the seizure. This study was conducted to evaluate the role of the adenosinergic system on the seizure and oxidative stress biomarkers induced by TR using antagonist of the adenosinergic receptors in the Albino mice. For that purpose, generated clonic seizure, as seizure threshold, was evaluated by TR. Caffeine (CAF; 8 mg/kg, i.p.), a nonselective antagonist of adenosine receptors, was administered 1 hour before the seizure induction. The seizure threshold significantly increased by CAF-treated group when compared to TR group (p < 0.001). Oxidative stress biomarkers such as reactive oxygen species, protein carbonyl content, and lipid peroxidation significantly decreased and glutathione content significantly increased by CAF in brain mitochondria compared to the TR group, whereas oxidative biomarkers significantly increased in the TR group compared to the control group. The results of the present study suggested that the adenosinergic system is involved in seizure induced by TR and meanwhile, inhibition of adenosine receptors can decrease the TR seizure threshold and also decrease the induced oxidative damage in the brain mitochondria.


Assuntos
Cafeína , Tramadol , Animais , Encéfalo/metabolismo , Cafeína/toxicidade , Modelos Animais de Doenças , Camundongos , Mitocôndrias , Carbonilação Proteica , Convulsões/induzido quimicamente , Tramadol/metabolismo , Tramadol/toxicidade
9.
J Chem Neuroanat ; 112: 101893, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33276071

RESUMO

BACKGROUND: Reported tramadol toxicity emphasizes the necessity to recognize its mechanism of toxicity, particularly to the brain tissue. AIM: This study aimed to evaluate the protective effect of vitamin C (Vit C) in cerebrocortical toxicity mediated by tramadol in rats using biochemical and histological parameters. MATERIAL AND METHODS: Forty-eight albino rats were randomly divided into eight groups, (n = 6/group) as follow: the control group received normal saline and vitamin C group received vitamin C (200 mg/kg per oral). Tramadol 50, 100, 150 groups received tramadol in doses of (50, 100 and 150 mg/kg per oral, respectively); Tramadol 50+ Vit C, 100+ Vit C, 150+ Vit C groups received vitamin C (200 mg/kg per oral) plus tramadol in doses of (50, 100 and 150 mg/kg per oral, respectively). Rats had received vitamin C and tramadol daily for 30 days. Blood and brain tissues samples were harvested for biochemical, histopathological, immunohistochemical and electron microscopic examinations. RESULTS: Tramadol administration leads to a significant elevation of MDA, NO levels and a significant decrease in antioxidants parameters (CAT, SOD and GSH) in the tissues of cerebral cortices in rats which were directly proportional to the dose of tramadol. In histological investigations, tramadol-treated groups showed pyknotic pyramidal cells, multiple red neurons and shrinking red neurons with hallows around it and apoptotic cells were detected. These biochemical abnormalities and histological impairment were ameliorated in groups with tramadol low doses by the co-treatment with vitamin C. CONCLUSION: vitamin C has antioxidant and anti-apoptotic potentials against tramadol neurotoxicity via suppression of oxidative stress, lipid peroxidation, structural abnormalities, and down-regulation of p53 and overexpression of Bcl2 in the nervous tissues.


Assuntos
Analgésicos Opioides/toxicidade , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Córtex Cerebral/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tramadol/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Córtex Cerebral/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Superóxido Dismutase/metabolismo
10.
Bratisl Lek Listy ; 121(6): 400-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484703

RESUMO

AIM: The present study investigated the role of redox balance, inflammation, mitochondrial dysfunction, and apoptosis in Tramadol (Tra)-induced testicular toxicity. METHOD: Twenty-four male Wistar rats were randomly divided into either the control group or the groups receiving different doses of Tra (25, 50, and 75 mg/kg/day, i.p.) for 21 successive days. Testicular tissues were collected for oxidative stress, mitochondrial function, sperm assays and histopathological evaluation. Real-time polymerase chain reaction was performed to evaluate the markers of inflammation and apoptosis. RESULTS: Tra caused a significant reduction in the sperm count, motility and morphology, while it caused a marked increase in oxidative stress parameters. In addition, Tra induced testicular mitochondrial dysfunction due to the collapse of mitochondrial membrane potential and mitochondrial swelling. It also led to the significant inhibition of anti-apoptotic Bcl-2 expression, besides a significant increase in pro-apoptotic Bax expression. There was a significant increase in the level of tumour necrosis factor-α, interlukin-1ß and nuclear factor kappa B. Histopathological degenerative changes were observed in the testis after Tra exposure. CONCLUSIONS: The present results suggest that Tra exposure may lead to reproductive toxicity due to the loss of the antioxidant defence system, mitochondrial dysfunction, and activation of inflammatory and apoptotic pathways (Tab. 4, Fig. 5, Ref. 63).


Assuntos
Apoptose , Entorpecentes , Estresse Oxidativo , Tramadol , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias , NF-kappa B , Entorpecentes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espermatozoides , Testículo/efeitos dos fármacos , Tramadol/toxicidade
11.
J Mol Neurosci ; 70(12): 1934-1942, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32440822

RESUMO

The current study was performed to study the tramadol HCL toxic effects on the brain, liver, and kidney of adult male rats. Forty male adult albino rats were divided into 4 groups; the first one was considered as a control group, the others were orally administrated with 25, 50, and 100 b.wt. representing therapeutic, double therapeutic, and 4 times therapeutic doses, respectively, of tramadol HCL daily for 1 month. Serum and brain, hepatic, and renal tissues were collected for biochemical and molecular investigations. Tramadol HCL resulted in a significant increase in the brain serotonin, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malonyldialdehyde (MDA) levels with a significant decrease in the reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities. At the same line, hepatic and renal 8-OHdG and MDA levels showed a significant increase with a significant decrease in reduced glutathione (GSH), CAT, and SOD activities. In addition, hepatic and renal function parameters including serum alanine amino transferase (ALT), aspartate amino transferase (AST), urea, and creatinine were increased in a dose-dependent manner. At the molecular levels, hepatic cytochrome P5402E1 (CYP2E1), renal Kidney Injury Molecule-1 (KIM-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) showed also a significant increase in the expression levels. Histopathological evaluation of the brain confirmed the above biochemical results. In conclusion, tramadol HCL induced neurotoxic, hepatotoxic, and nephrotoxic effects in a manner relative to its concentration by affecting brain serotonin levels and hepatic and renal function, with the production of DNA damage and oxidative stress.


Assuntos
Analgésicos Opioides/toxicidade , Encéfalo/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tramadol/toxicidade , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Alanina Transaminase/sangue , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Moléculas de Adesão Celular/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Glutationa/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Ratos , Serotonina/metabolismo , Superóxido Dismutase/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
12.
Neurotox Res ; 38(2): 385-397, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378056

RESUMO

Tramadol is a synthetic analogue of codeine that is often prescribed for the treatment of mild to moderate pains. It has a number of side effects including emotional instability and anxiety. In this study, we focus on the structural and functional changes of prefrontal cortex under chronic exposure to tramadol. At the cellular level, the amounts of ROS and annexin V in PC12 cells were evidently increased upon exposure to tramadol (at a concentration of 600 µM for 48 h). To this end, the rats were daily treated with tramadol at doses of 50 mg/kg for 3 weeks. Our findings reveal that tramadol provokes atrophy and apoptosis by the induction of apoptotic markers such as Caspase 3 and 8, pro-inflammatory markers, and downregulation of GDNF. Moreover, it triggers microgliosis and astrogliosis along with neuronal death in the prefrontal cortex. Behavioral disturbance and cognitive impairment are other side effects of tramadol. Overall, our results indicate tramadol-induced neurodegeneration in the prefrontal cortex mainly through activation of neuroinflammatory response.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Tramadol/toxicidade , Animais , Anexina A5/efeitos dos fármacos , Anexina A5/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Atrofia , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Morte Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gliose/induzido quimicamente , Gliose/metabolismo , Gliose/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Células PC12 , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
13.
Toxicol Mech Methods ; 30(3): 177-188, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31618080

RESUMO

Several deleterious effects of Tramadol including deaths were reported especially when used in large doses. Being metabolized mainly in the liver, Tramadol have serious hepatotoxic effects. This study investigates the effect of vitamin E on Tramadol-induced hepatotoxicity in rats by evaluating the antioxidant biochemical markers, the histopathological and immunohistochemical changes.Thirty adult mature male albino rats were divided into five groups (Gs); G1: negative control; G2: received Tramadol 150 mg/kg, G 3-5: received Tramadol plus vitamin E in concentrations of 50 mg/kg, 100 mg/kg and 200 mg/kg respectively. Liver function parameters and oxidative markers in liver tissue (CAT, SOD, GSH, and MDA) were estimated. Liver samples were processed for histopathological and immunohistochemical (Caspase 3 and TNF[Formula: see text]) examinations. The results indicated that Sub-chronic administration of Tramadol resulted in impaired liver functions, increased oxidative stress parameters with decreased antioxidant capacity of liver tissues, severe hepatocellular damage (hydropic degeneration, steatosis and apoptosis) and strong immunoexpression to TNF[Formula: see text] and Caspase 3. All these effects were ameliorated with concomitant administration of vitamin E especially with high doses. The co-treatment of Tramadol-intoxicated rats with Vitamin E, especially in high doses, protects against hepatic toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Tramadol/toxicidade , Vitamina E/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Suplementos Nutricionais , Imuno-Histoquímica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/análise
14.
Neurotoxicology ; 67: 245-258, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29906478

RESUMO

Nicotine and tramadol concomitant drug dependence pose increasing social, economic as well as public threats. Accordingly, the present study investigated neurochemical, neurobehavioral and neuropathological changes in the brain subsequent to the interaction of nicotine and tramadol. To this end, tramadol (20 mg/kg, i.p) and nicotine (0.25 mg/kg, i.p) were administrated to male albino mice once daily for 30 days. Consequent to microglial activation, nicotine exacerbated oxidative/nitrosative stress induced by tramadol as manifest by the step-up in thiobarbituric acid reactive substances and nitric oxide subsequent to the enhanced levels of neuronal and inducible nitric oxide synthases; paralleled by decreased non-protein sulfhydryls. Increased oxidative stress by tramadol and/or nicotine sequentially augmented nuclear factor kappa B and the proinflammatory cytokine tumor necrosis factor α with the induction of apoptosis evident by the increased caspase-3 immunoreactivity. However, paradoxical to the boosted inflammation and apoptosis, heightened DA levels in the cortex parallel along with increased tyrosine hydroxylase in midbrain were apparent. Concomitant administration of tramadol and nicotine impaired spatial navigation in the Morris Water Maze test coupled with enhanced levels of acetyl- and butyryl cholinestrases. However, tramadol in association with nicotine improved social interaction while decreasing anxiety and aggression linked to chronic administration of nicotine, effects manifested by increased levels of serotonin and GABA. These results provide evidence that co-administration of tramadol and nicotine may enhance reward and dependence while reducing anxiety and aggression linked to nicotine administration. However, such combination exacerbated neurotoxic effects and elicited negative effects regarding learning and memory.


Assuntos
Analgésicos Opioides/administração & dosagem , Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Nicotina/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/metabolismo , Tramadol/administração & dosagem , Analgésicos Opioides/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Quimioterapia Combinada , Mediadores da Inflamação/antagonistas & inibidores , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Agonistas Nicotínicos/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/psicologia , Tramadol/toxicidade
15.
Toxicology ; 359-360: 1-10, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317026

RESUMO

Opioid therapy and abuse are increasing, justifying the need to study their toxicity and underlying mechanisms. Given opioid pharmacodynamics at the central nervous system, the analysis of toxic effects in neuronal models gains particular relevance. The aim of this study was to compare the toxicological effects of acute exposure to tramadol and tapentadol in the undifferentiated human SH-SY5Y neuroblastoma cell line. Upon exposure to tramadol and tapentadol concentrations up to 600µM, cell toxicity was assessed through evaluation of oxidative stress, mitochondrial and metabolic alterations, as well as cell viability and death mechanisms through necrosis or apoptosis, and related signalling. Tapentadol was observed to trigger much more prominent toxic effects than tramadol, ultimately leading to energy deficit and cell death. Cell death was shown to predominantly occur through necrosis, with no alterations in membrane potential or in cytochrome c release. Both drugs were shown to stimulate glucose uptake and to cause ATP depletion, due to changes in the expression of energy metabolism enzymes. The toxicity mechanisms in such a neuronal model are relevant to understand adverse reactions to these opioids and to contribute to dose adjustment in order to avoid neurological damage.


Assuntos
Analgésicos Opioides/toxicidade , Fenóis/toxicidade , Tramadol/toxicidade , Trifosfato de Adenosina/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Necrose/induzido quimicamente , Tapentadol , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
16.
Curr Drug Saf ; 6(3): 159-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22122391

RESUMO

Opioid use in the management of chronic pain is widespread. However, it is a recognized risk factor for the development of osteoporosis. The hypothesis of this study was to evaluate the effect of various analgesic drugs; morphine, fentanyl and tramadol, on the bone of adult female rats. Forty rats were divided into 4 groups; Control, morphine (8 mg/kg), fentanyl (32 µg/kg) and tramadol (10 mg/kg) groups. After 90 days of treatment, the serum calcium, alkaline phosphatase, osteocalcin and estradiol were assayed and the bones were prepared for histomorphometric study. In comparison to the control group, morphine and fentanyl groups showed a significant biochemical and histological osteoporotic changes while treatment with tramadol leads to non-significant osteoporotic effect. In conclusion, tramadol had the least osteoporotic effect as compared to morphine or fentanyl on chronic administration suggesting the safety use of tramadol in the treatment of patients with chronic pain particularly in association with osteoporosis.


Assuntos
Fentanila/toxicidade , Morfina/toxicidade , Osteoporose/induzido quimicamente , Tramadol/toxicidade , Fosfatase Alcalina/sangue , Analgésicos Opioides/toxicidade , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Cálcio/sangue , Estradiol/sangue , Feminino , Osteocalcina/sangue , Ratos , Ratos Sprague-Dawley , Risco
17.
Toxicol Lett ; 95(1): 63-71, 1998 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-9650647

RESUMO

The experimental toxicological findings of tramadol are reviewed and discussed. Tramadol is a centrally acting analgesic. In acute toxicity studies, LD50 values are estimated to be around 300-350 mg/kg body weight (rat, mouse, oral administration). After intravenous administration the LD50 values ranged from 50 to 100 mg/kg body weight. In subacute and chronic toxicity studies, clinical signs of intoxication are mainly behavioural disorders and convulsions, beginning at dose levels of 25 mg/kg. Clinical pathological alterations or morphological lesions, in particular neuropathological findings were not detected. Overall, the battery of mutagenicity studies shows no evidence of a genotoxic risk to man. Reproductive and developmental toxicity investigations and carcinogenicity studies were without substance-dependent findings. Toxicological and toxicokinetical data of both enantiomers did not show biologically relevant deviations in comparison to the data on tramadol. The toxicological characteristic of this compound is demonstrated.


Assuntos
Analgésicos Opioides/toxicidade , Tramadol/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Testes de Carcinogenicidade , Relação Dose-Resposta a Droga , Humanos , Dose Letal Mediana , Masculino , Testes de Mutagenicidade , Reprodução/efeitos dos fármacos , Estereoisomerismo , Tramadol/administração & dosagem , Tramadol/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA