Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Nat Commun ; 14(1): 6578, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852949

RESUMO

Large genes including several CRISPR-Cas modules like gene activators (CRISPRa) require dual adeno-associated viral (AAV) vectors for an efficient in vivo delivery and expression. Current dual AAV vector approaches have important limitations, e.g., low reconstitution efficiency, production of alien proteins, or low flexibility in split site selection. Here, we present a dual AAV vector technology based on reconstitution via mRNA trans-splicing (REVeRT). REVeRT is flexible in split site selection and can efficiently reconstitute different split genes in numerous in vitro models, in human organoids, and in vivo. Furthermore, REVeRT can functionally reconstitute a CRISPRa module targeting genes in various mouse tissues and organs in single or multiplexed approaches upon different routes of administration. Finally, REVeRT enabled the reconstitution of full-length ABCA4 after intravitreal injection in a mouse model of Stargardt disease. Due to its flexibility and efficiency REVeRT harbors great potential for basic research and clinical applications.


Assuntos
Edição de Genes , Trans-Splicing , Humanos , Animais , Camundongos , Trans-Splicing/genética , Terapia Genética , Doença de Stargardt , Vetores Genéticos/genética , Dependovirus/genética , Dependovirus/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445701

RESUMO

Adeno-associated viral (AAV) vectors represent one of the leading platforms for gene delivery. Nevertheless, their small packaging capacity restricts their use for diseases requiring large-gene delivery. To overcome this, dual-AAV vector systems that rely on protein trans-splicing were developed, with the split-intein Npu DnaE among the most-used. However, the reconstitution efficiency of Npu DnaE is still insufficient, requiring higher vector doses. In this work, two split-inteins, Cfa and Gp41-1, with reportedly superior trans-splicing were evaluated in comparison with Npu DnaE by transient transfections and dual-AAV in vitro co-transductions. Both Cfa and Gp41-1 split-inteins enabled reconstitution rates that were over two-fold higher than Npu DnaE and 100% of protein reconstitution. The impact of different vector preparation qualities in split-intein performances was also evaluated in co-transduction assays. Higher-quality preparations increased split-inteins' performances by three-fold when compared to low-quality preparations (60-75% vs. 20-30% full particles, respectively). Low-quality vector preparations were observed to limit split-gene reconstitutions by inhibiting co-transduction. We show that combining superior split-inteins with higher-quality vector preparations allowed vector doses to be decreased while maintaining high trans-splicing rates. These results show the potential of more-efficient protein-trans-splicing strategies in dual-AAV vector co-transduction, allowing the extension of its use to the delivery of larger therapeutic genes.


Assuntos
Processamento de Proteína , Trans-Splicing , Inteínas , Técnicas de Transferência de Genes , Embalagem de Medicamentos
3.
Nucleic Acids Res ; 51(15): 7777-7797, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37497782

RESUMO

Trans-spliced RNAs (ts-RNAs) are a type of non-co-linear (NCL) transcripts that consist of exons in an order topologically inconsistent with the corresponding DNA template. Detecting ts-RNAs is often interfered by experimental artifacts, circular RNAs (circRNAs) and genetic rearrangements. Particularly, intragenic ts-RNAs, which are derived from separate precursor mRNA molecules of the same gene, are often mistaken for circRNAs through analyses of RNA-seq data. Here we developed a bioinformatics pipeline (NCLscan-hybrid), which integrated short and long RNA-seq reads to minimize false positives and proposed out-of-circle and rolling-circle long reads to distinguish between intragenic ts-RNAs and circRNAs. Combining NCLscan-hybrid screening and multiple experimental validation steps successfully confirmed that four NCL events, which were previously regarded as circRNAs in databases, originated from trans-splicing. CRISPR-based endogenous genome modification experiments further showed that flanking intronic complementary sequences can significantly contribute to ts-RNA formation, providing an efficient/specific method to deplete ts-RNAs. We also experimentally validated that one ts-RNA (ts-ARFGEF1) played an important role for p53-mediated apoptosis through affecting the PERK/eIF2a/ATF4/CHOP signaling pathway in breast cancer cells. This study thus described both bioinformatics procedures and experimental validation steps for rigorous characterization of ts-RNAs, expanding future studies for identification, biogenesis, and function of these important but understudied transcripts.


Assuntos
Análise de Sequência de RNA , Trans-Splicing , Genoma , Splicing de RNA , RNA Circular , Análise de Sequência de RNA/métodos
4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901775

RESUMO

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Humanos , Trans-Splicing , Pele/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa/genética , Queratinócitos/metabolismo , Colágeno Tipo VII/genética , Mutação
5.
RNA ; 28(9): 1239-1262, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793904

RESUMO

The parasite Trypanosoma brucei grows as bloodstream forms in mammals, and as procyclic forms in tsetse flies. Transcription is polycistronic, all mRNAs are trans spliced, and polyadenylation sites are defined by downstream splicing signals. Expression regulation therefore depends heavily on post-transcriptional mechanisms. The RNA-binding protein DRBD18 was previously implicated in the export of some mRNAs from the nucleus in procyclic forms. It copurifies the outer ring of the nuclear pore, mRNA export factors and exon-junction-complex proteins. We show that for more than 200 mRNAs, DRBD18 depletion caused preferential accumulation of versions with shortened 3'-untranslated regions, arising from use of polyadenylation sites that were either undetectable or rarely seen in nondepleted cells. The shortened mRNAs were often, but not always, more abundant in depleted cells than the corresponding longer versions in normal cells. Their appearance was linked to the appearance of trans-spliced, polyadenylated RNAs containing only downstream 3'-untranslated region-derived sequences. Experiments with one mRNA suggested that nuclear retention alone, through depletion of MEX67, did not affect mRNA length, suggesting a specific effect of DRBD18 on processing. DRBD18-bound mRNAs were enriched in polypyrimidine tract motifs, and DRBD18 was found in both the nucleus and the cytoplasm. We therefore suggest that in the nucleus, DRBD18 might bind to polypyrimidine tracts in 3'-UTRs of mRNA precursors. Such binding might both prevent recognition of mRNA-internal polypyrimidine tracts by splicing factors, and promote export of the processed bound mRNAs to the cytosol.


Assuntos
Trypanosoma brucei brucei , Regiões 3' não Traduzidas/genética , Animais , Mamíferos/genética , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trans-Splicing , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491676

RESUMO

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Assuntos
Hemofilia A , Inteínas , Animais , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Inteínas/genética , Fígado , Camundongos , Trans-Splicing
7.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Biol (Mosk) ; 55(6): 982-986, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34837702

RESUMO

When expressing streptavidin recombinant polypeptide on magnetosomes (called bacterial magnetic nanoparticles, or BMPs), the presence of endogenous bacterial biotin might be detrimental. In the study, the streptavidin monomer fragment (S1-116) was fused with the intein N-terminal (termed precursor S1-116-IN), and S1-116-IN was expressed in E. coli (BL21). Meanwhile, the SA117-160 fragment was fused with the C-terminal intein, and then this chimeric polypeptide was expressed on magnetosomes by fusion with magnetosome membrance protein MamF. In the in vitro protein splicing system, the purified engineered magnetosomes (BMP-SA117-160-IC) and the S1-116-IN precursor were mixed. Intein-mediated trans-splicing reaction was induced to produce the functional magnetic beads BMP-SA. Our results indicate that intein-mediated protein trans-splicing may lead to efficient synthesis of the recombinant streptavidin on the magnetosomes, showing its promising potential to produce other functional magnetic nanoparticles.


Assuntos
Proteínas de Escherichia coli , Magnetossomos , Proteínas da Membrana Bacteriana Externa , Escherichia coli/genética , Inteínas/genética , Magnetossomos/genética , Processamento de Proteína , Estreptavidina , Trans-Splicing
9.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830054

RESUMO

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Assuntos
Fusão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide/genética , MicroRNAs/genética , Proteínas Mutantes Quiméricas/genética , Receptores Mitogênicos/genética , Trans-Splicing , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Citarabina/farmacologia , Humanos , Lectinas Tipo C/metabolismo , Leucemia Mieloide/metabolismo , MicroRNAs/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Receptores Mitogênicos/metabolismo , Ativação Transcricional
10.
PLoS Negl Trop Dis ; 15(9): e0009810, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559805

RESUMO

Hsp90 gene of G. lamblia has a split nature comprising two ORFs separated by 777 kb on chromosome 5. The ORFs of the split gene on chromosome 5 undergo transcription to generate independent pre-mRNAs that join by a unique trans-splicing reaction that remains partially understood. The canonical cis-acting nucleotide elements such as 5'SS-GU, 3'SS-AG, polypyrimidine tract and branch point adenine are present in the independent pre-mRNAs and therefore trans-splicing of Hsp90 must be assisted by spliceosomes in vivo. Using an approach of RNA-protein pull down, we show that an RNA helicase selectively interacts with HspN pre-mRNA. Our experiments involving high resolution chromosome conformation capture technology as well as DNA FISH show that the trans-spliced genes of Giardia are in three-dimensional spatial proximity in the nucleus. Altogether our study provides a glimpse into the in vivo mechanisms involving protein factors as well as chromatin structure to facilitate the unique inter-molecular post-transcriptional stitching of split genes in G. lamblia.


Assuntos
Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Trans-Splicing , Humanos , Fases de Leitura Aberta , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/genética , Spliceossomos/metabolismo
11.
Nat Commun ; 12(1): 4645, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330918

RESUMO

A major part of the transcriptome complexity is attributed to multiple types of DNA or RNA fusion events, which take place within a gene such as alternative splicing or between different genes such as DNA rearrangement and trans-splicing. In the present study, using the RNA deep sequencing data, we systematically survey a type of non-canonical fusions between the RNA transcripts from the two opposite DNA strands. We name the products of such fusion events cross-strand chimeric RNA (cscRNA). Hundreds to thousands of cscRNAs can be found in human normal tissues, primary cells, and cancerous cells, and in other species as well. Although cscRNAs exhibit strong tissue-specificity, our analysis identifies thousands of recurrent cscRNAs found in multiple different samples. cscRNAs are mostly originated from convergent transcriptions of the annotated genes and their anti-sense DNA. The machinery of cscRNA biogenesis is unclear, but the cross-strand junction events show some features related to RNA splicing. The present study is a comprehensive survey of the non-canonical cross-strand RNA junction events, a resource for further characterization of the originations and functions of the cscRNAs.


Assuntos
Perfilação da Expressão Gênica/métodos , Fusão Gênica , Splicing de RNA , RNA/genética , Trans-Splicing , Transcriptoma/genética , Células A549 , Linhagem Celular Tumoral , Biologia Computacional/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Modelos Genéticos , Células PC-3 , Precursores de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
12.
ACS Appl Mater Interfaces ; 13(31): 36757-36768, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319090

RESUMO

Lipid-bilayer nanodiscs (NDs) wrapped in membrane scaffold proteins (MSPs) have primarily been used to study membrane proteins of interest in a physiological environment. Recently, NDs have been employed in broader applications including drug delivery, cancer immunotherapy, bio-imaging, and therapeutic virucides. Here, we developed a method to synthesize a dimeric nanodisc, whose MSPs are circularly end-spliced, with long-term thermal stability and resistance to aggregation. The end-spliced nanodiscs (esNDs) were assembled using MSPs that were self-circularized inside the cytoplasm ofEscherichia colivia highly efficient protein trans-splicing. The esNDs demonstrated a consistent size and 4-5-fold higher stability against heat and aggregation than conventional NDs. Moreover, cysteine residues on trans-spliced circularized MSPs allowed us to modulate the formation of either monomeric nanodiscs (essNDs) or dimeric nanodiscs (esdNDs) by controlling the oxidation/reduction conditions and lipid-to-protein ratios. When the esdNDs were used to prepare an antiviral nanoperforator that induced the disruption of the viral membrane upon contact, antiviral activity was dramatically increased, suggesting that the dimerization of nanodiscs led to cooperativity between linked nanodiscs. We expect that controllable structures, long-term stability, and aggregation resistance of esNDs will aid the development of novel versatile membrane-mimetic nanomaterials with flexible designs and improved therapeutic efficacy.


Assuntos
Antivirais/uso terapêutico , Proteínas de Membrana/uso terapêutico , Nanoestruturas/uso terapêutico , Animais , Antivirais/química , Escherichia coli/genética , Feminino , Bicamadas Lipídicas/química , Bicamadas Lipídicas/uso terapêutico , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Orthomyxoviridae/efeitos dos fármacos , Trans-Splicing , Envelope Viral/efeitos dos fármacos
13.
Methods Enzymol ; 654: 19-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120713

RESUMO

Conventional site-directed mutagenesis and genetic code expansion approaches have been instrumental in providing detailed functional and pharmacological insight into membrane proteins such as ion channels. Recently, this has increasingly been complemented by semi-synthetic strategies, in which part of the protein is generated synthetically. This means a vast range of chemical modifications, including non-canonical amino acids (ncAA), backbone modifications, chemical handles, fluorescent or spectroscopic labels and any combination of these can be incorporated. Among these approaches, protein trans-splicing (PTS) is particularly promising for protein reconstitution in live cells. It relies on one or more split inteins, which can spontaneously and covalently link flanking peptide or protein sequences. Here, we describe the use of PTS and its variant tandem PTS (tPTS) in semi-synthesis of ion channels in Xenopus laevis oocytes to incorporate ncAAs, post-translational modifications or metabolically stable mimics thereof. This strategy has the potential to expand the type and number of modifications in ion channel research.


Assuntos
Processamento de Proteína , Trans-Splicing , Inteínas , Canais Iônicos/genética , Peptídeos , Engenharia de Proteínas
14.
Br Med Bull ; 136(1): 4-20, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010155

RESUMO

BACKGROUND: RNA trans-splicing joins exons from different pre-mRNA transcripts to generate a chimeric product. Trans-splicing can also occur at the protein level, with split inteins mediating the ligation of separate gene products to generate a mature protein. SOURCES OF DATA: Comprehensive literature search of published research papers and reviews using Pubmed. AREAS OF AGREEMENT: Trans-splicing techniques have been used to target a wide range of diseases in both in vitro and in vivo models, resulting in RNA, protein and functional correction. AREAS OF CONTROVERSY: Off-target effects can lead to therapeutically undesirable consequences. In vivo efficacy is typically low, and delivery issues remain a challenge. GROWING POINTS: Trans-splicing provides a promising avenue for developing novel therapeutic approaches. However, much more research needs to be done before developing towards preclinical studies. AREAS TIMELY FOR DEVELOPING RESEARCH: Increasing trans-splicing efficacy and specificity by rational design, screening and competitive inhibition of endogenous cis-splicing.


Assuntos
Inteínas , Trans-Splicing , Humanos , Proteínas
15.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503354

RESUMO

Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a "lectibody". Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Lectinas/metabolismo , Trans-Splicing , Brevibacillus/imunologia , Clorófitas/metabolismo , HIV/fisiologia , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Lectinas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Internalização do Vírus/efeitos dos fármacos
16.
Nat Commun ; 11(1): 2284, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385250

RESUMO

Manipulation of proteins by chemical modification is a powerful way to decipher their function. However, most ribosome-dependent and semi-synthetic methods have limitations in the number and type of modifications that can be introduced, especially in live cells. Here, we present an approach to incorporate single or multiple post-translational modifications or non-canonical amino acids into proteins expressed in eukaryotic cells. We insert synthetic peptides into GFP, NaV1.5 and P2X2 receptors via tandem protein trans-splicing using two orthogonal split intein pairs and validate our approach by investigating protein function. We anticipate the approach will overcome some drawbacks of existing protein enigineering methods.


Assuntos
Peptídeos/metabolismo , Processamento de Proteína , Trans-Splicing , Animais , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos/química , Biossíntese de Proteínas , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Xenopus laevis
17.
Sci China Life Sci ; 63(9): 1380-1393, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32221814

RESUMO

Fusion transcripts are commonly found in eukaryotes, and many aberrant fusions are associated with severe diseases, including cancer. One class of fusion transcripts is generated by joining separate transcripts through trans-splicing. However, the mechanism of trans-splicing in mammals remains largely elusive. Here we showed evidence to support an intuitive hypothesis that attributes trans-sphcing to the spatial proximity between premature transcripts. A novel trans-splicing detection tool (TSD) was developed to reliably identify intra-chromosomal trans-splicing events (iTSEs) from RNA-seq data. TSD can maintain a remarkable balance between sensitivity and accuracy, thus distinguishing it from most state-of-the-art tools. The accuracy of TSD was experimentally demonstrated by excluding potential false discovery from mosaic genome or template switching during PCR. We showed that iTSEs identified by TSD were frequently found between genomic regulatory elements, which are known to be more prone to interact with each other. Moreover, iTSE sites may be more physically adjacent to each other than random control in the tested human lymphoblastoid cell line according to Hi-C data. Our results suggest that trans-splicing and 3D genome architecture may be coupled in mammals and that our pipeline, TSD, may facilitate investigations of trans-splicing on a systematic and accurate level previously thought impossible.


Assuntos
Cromossomos/genética , Genoma/genética , Trans-Splicing/genética , Sequência de Bases , Mapeamento Cromossômico , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Genômica , Humanos , Linfócitos/citologia , Análise de Sequência de DNA , Transcrição Gênica
18.
Mol Ther ; 28(4): 1177-1189, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31991108

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal disorder that can be caused by mutations in the superoxide dismutase 1 (SOD1) gene. Although ALS is currently incurable, CRISPR base editors hold the potential to treat the disease through their ability to create nonsense mutations that can permanently disable the expression of the mutant SOD1 gene. However, the restrictive carrying capacity of adeno-associated virus (AAV) vectors has limited their therapeutic application. In this study, we establish an intein-mediated trans-splicing system that enables in vivo delivery of cytidine base editors (CBEs) consisting of the widely used Cas9 protein from Streptococcus pyogenes. We show that intrathecal injection of dual AAV particles encoding a split-intein CBE engineered to trans-splice and introduce a nonsense-coding substitution into a mutant SOD1 gene prolonged survival and markedly slowed the progression of disease in the G93A-SOD1 mouse model of ALS. Adult animals treated by this split-intein CRISPR base editor had a reduced rate of muscle atrophy, decreased muscle denervation, improved neuromuscular function, and up to 40% fewer SOD1 immunoreactive inclusions at end-stage mice compared to control mice. This work expands the capabilities of single-base editors and demonstrates their potential for gene therapy.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Proteína 9 Associada à CRISPR/metabolismo , Dependovirus/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Animais , Códon sem Sentido , Modelos Animais de Doenças , Edição de Genes , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Injeções Espinhais , Inteínas , Masculino , Camundongos , Camundongos Transgênicos , Streptococcus pyogenes/enzimologia , Trans-Splicing , Resultado do Tratamento
19.
Hum Gene Ther ; 31(1-2): 47-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916856

RESUMO

Gene therapy with adeno-associated viral (AAV) vectors has reached the clinical stage for many inherited and acquired diseases. However, due to a cargo capacity limited to <5 kb, AAV-mediated treatment of diseases that require transfer of larger genes still appears elusive. This is a major drawback of a platform that has otherwise been repeatedly found to be safe and effective. Thus, great efforts have been directed toward the identification of strategies to overcome this limitation. Among the most studied approaches is the use of dual vectors, in which a transgene is split across two separate AAV vectors. Mechanisms acting at either the DNA, pre-mRNA, or protein levels have been explored to restore full-length transgene expression in infected cells. Here, we will review them as well as additional strategies developed to deliver large genes with AAV. We discuss the pros and cons of these strategies and the aspects that still need to be addressed.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Transgenes , Animais , Expressão Gênica , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Tamanho do Genoma , Humanos , RNA Mensageiro/genética , Trans-Splicing
20.
Cancer Biother Radiopharm ; 35(1): 26-32, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31746630

RESUMO

Background: Trans-splicing ribozymes (TSR) are useful anticancer agents targeting cancer-specific transcripts and replacing the RNA to induce anticancer gene expression specifically and selectively in cancer cells. Similar to other gene therapy methods, it is also important to evaluate the transgene expression for target specificity and ribozyme activity. Materials and Methods: In this study, the authors performed in vivo small animal positron emission tomography (PET) imaging and biodistribution assay to evaluate human telomerase reverse transcriptase (hTERT) RNA-targeting-specific TSR, which directs the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene selectively in hTERT-positive tumors through targeted RNA replacement of the hTERT transcript. Results: The hTERT RNA-targeted HSV1-tk expression with TSR was monitored by PET imaging with 124I labeled 2'-fluoro-2'-deoxy-1-ß-D-arabinofuranosyl-5-iodouracil, which is one of the thymidine derivatives acting as substrates for HSV1-tk, in hTERT-positive tumor-bearing mice. Conclusions: Imaging of hTERT RNA-targeted HSV1-tk expression by TSR could be used in the development of advanced gene therapy using tumor-specific TSR.


Assuntos
Expressão Gênica/genética , Terapia Genética/métodos , Herpesvirus Humano 1/genética , Tomografia por Emissão de Pósitrons/métodos , RNA Catalítico/genética , Trans-Splicing/genética , Animais , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA