Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.039
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 551, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720110

RESUMO

Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.


Assuntos
Neoplasias Colorretais , Epigenoma , Infecções por Fusobacterium , Fusobacterium nucleatum , Oxigênio , Transcriptoma , Humanos , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/patogenicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/metabolismo , Oxigênio/metabolismo , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica
2.
BMC Bioinformatics ; 25(1): 181, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720247

RESUMO

BACKGROUND: RNA sequencing combined with machine learning techniques has provided a modern approach to the molecular classification of cancer. Class predictors, reflecting the disease class, can be constructed for known tissue types using the gene expression measurements extracted from cancer patients. One challenge of current cancer predictors is that they often have suboptimal performance estimates when integrating molecular datasets generated from different labs. Often, the quality of the data is variable, procured differently, and contains unwanted noise hampering the ability of a predictive model to extract useful information. Data preprocessing methods can be applied in attempts to reduce these systematic variations and harmonize the datasets before they are used to build a machine learning model for resolving tissue of origins. RESULTS: We aimed to investigate the impact of data preprocessing steps-focusing on normalization, batch effect correction, and data scaling-through trial and comparison. Our goal was to improve the cross-study predictions of tissue of origin for common cancers on large-scale RNA-Seq datasets derived from thousands of patients and over a dozen tumor types. The results showed that the choice of data preprocessing operations affected the performance of the associated classifier models constructed for tissue of origin predictions in cancer. CONCLUSION: By using TCGA as a training set and applying data preprocessing methods, we demonstrated that batch effect correction improved performance measured by weighted F1-score in resolving tissue of origin against an independent GTEx test dataset. On the other hand, the use of data preprocessing operations worsened classification performance when the independent test dataset was aggregated from separate studies in ICGC and GEO. Therefore, based on our findings with these publicly available large-scale RNA-Seq datasets, the application of data preprocessing techniques to a machine learning pipeline is not always appropriate.


Assuntos
Aprendizado de Máquina , Neoplasias , RNA-Seq , Humanos , RNA-Seq/métodos , Neoplasias/genética , Transcriptoma/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos
3.
Mol Cancer ; 23(1): 93, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720314

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Leucaférese , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Fenótipo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Análise de Célula Única/métodos , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
4.
Sci Rep ; 14(1): 10626, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724670

RESUMO

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Assuntos
Carcinoma de Células Renais , Matriz Extracelular , Regulação Neoplásica da Expressão Gênica , Ácido Hialurônico , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Ácido Hialurônico/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Prognóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transcriptoma , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
5.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725284

RESUMO

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Prognóstico , Estresse do Retículo Endoplasmático/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , Curva ROC , Estimativa de Kaplan-Meier , Transcriptoma
6.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727265

RESUMO

Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.


Assuntos
Displasia Fibrosa Óssea , Organoides , Fenótipo , Humanos , Organoides/patologia , Organoides/metabolismo , Displasia Fibrosa Óssea/patologia , Displasia Fibrosa Óssea/genética , Displasia Fibrosa Óssea/metabolismo , Masculino , Feminino , Transcriptoma/genética , Adulto
7.
Nat Commun ; 15(1): 3899, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724548

RESUMO

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Assuntos
5-Metilcitosina , Adenosina , Análise de Sequência de RNA , Transcriptoma , Adenosina/análogos & derivados , Adenosina/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Humanos , Metilação , Análise de Sequência de RNA/métodos , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/genética
8.
Cell Death Dis ; 15(5): 326, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729966

RESUMO

Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.


Assuntos
Neoplasias Colorretais , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Perfilação da Expressão Gênica , Masculino , Feminino
9.
Parasit Vectors ; 17(1): 213, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730500

RESUMO

BACKGROUND: Toxoplasma gondii is an obligate intracellular parasite that can lead to adverse pregnancy outcomes, particularly in early pregnancy. Previous studies have illustrated the landscape of decidual immune cells. However, the landscape of decidual immune cells in the maternal-fetal microenvironment during T. gondii infection remains unknown. METHODS: In this study, we employed single-cell RNA sequencing to analyze the changes in human decidual immune cells following T. gondii infection. The results of scRNA-seq were further validated with flow cytometry, reverse transcription-polymerase chain reaction, western blot, and immunofluorescence staining. RESULTS: Our results showed that the proportion of 17 decidual immune cell clusters and the expression levels of 21 genes were changed after T. gondii infection. Differential gene analysis demonstrated that T. gondii infection induced the differential expression of 279, 312, and 380 genes in decidual NK cells (dNK), decidual macrophages (dMφ), and decidual T cells (dT), respectively. Our results revealed for the first time that several previously unknown molecules in decidual immune cells changed following infection. This result revealed that the function of maternal-fetal immune tolerance declined, whereas the killing ability of decidual immune cells enhanced, eventually contributing to the occurrence of adverse pregnancy outcomes. CONCLUSIONS: This study provides valuable resource for uncovering several novel molecules that play an important role in the occurrence of abnormal pregnancy outcomes induced by T. gondii infection.


Assuntos
Decídua , Resultado da Gravidez , Análise de Célula Única , Toxoplasma , Toxoplasmose , Feminino , Gravidez , Humanos , Decídua/imunologia , Decídua/parasitologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasma/imunologia , Perfilação da Expressão Gênica , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Transcriptoma , Linfócitos T/imunologia
10.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731835

RESUMO

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Assuntos
Leucemia Mieloide Aguda , Biologia de Sistemas , Tretinoína , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Tretinoína/farmacologia , Biologia de Sistemas/métodos , Células HL-60 , Perfilação da Expressão Gênica , Células K562 , Descoberta de Drogas/métodos , Transcriptoma , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731846

RESUMO

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas B-raf , Células Estromais , Fator de Crescimento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Mutação , Transcriptoma , Transdução de Sinais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismo
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731962

RESUMO

ADORA2A (adenosine A2a receptor) and ADORA2B propagate immunoregulatory signals, including restricting both innate and adaptive immunity, though recent data also suggest a tumor suppressor effect in certain settings. We evaluated the RNA expression from 514 tumors in a clinical-grade laboratory; 489 patients with advanced/metastatic disease had clinical outcome correlates. Transcript expression was standardized to internal housekeeping genes and ranked (0-100 scale) relative to 735 specimens from 35 different cancer types. Transcript abundance rank values were defined as "low/moderate" (0-74) or "high" (75-100) percentile RNA expression ranks. Overall, 20.8% of tumors had high ADORA2A (≥75 percentile RNA rank). The greatest proportion of high ADORA2A expressors was found in neuroendocrine and breast cancers and sarcomas, whereas the lowest was found in colorectal and ovarian cancers, albeit with patient-to-patient variability. In multivariable logistic regression analysis, there was a significant positive correlation between high ADORA2A RNA expression and a high expression of the immune checkpoint-related molecules PD-1 (p = 0.015), VISTA (p ≤ 0.001), CD38 (p = 0.031), and CD39 (p ≤ 0.001). In 217 immunotherapy-treated patients, high ADORA2A did not correlate significantly with progression-free (p = 0.51) or overall survival (OS) (p = 0.09) from the initiation of the checkpoint blockade. However, high versus not-high ADORA2A transcript expression correlated with longer OS from the time of advanced/metastatic disease (N = 489 patients; (HR 0.69 (95% CI 0.51-0.95) (p = 0.02)). Therefore, high ADORA2A transcript levels may be a favorable prognostic factor, unrelated to immunotherapy. Importantly, ascertaining co-expression patterns of ADORA2A with PD-1 and VISTA in individual tumors as a basis for the precision co-targeting of ADORA2A and these other checkpoint-related molecules warrants investigation in clinical trials.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , Receptor A2A de Adenosina , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Prognóstico , Idoso , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Apirase
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731994

RESUMO

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Estresse Salino , Plantas Tolerantes a Sal , Etilenos/biossíntese , Etilenos/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Ácido Abscísico/metabolismo , Salinidade , Transcriptoma
14.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732035

RESUMO

Intraductal carcinoma of the prostate (IDCP) has recently attracted increasing interest owing to its unfavorable prognoses. To effectively identify the IDCP-specific gene expression profile, we took a novel approach of characterizing a typical IDCP case using spatial gene expression analysis. A formalin-fixed, paraffin-embedded sample was subjected to Visium CytAssist Spatial Gene Expression analysis. IDCP within invasive prostate cancer sites was recognized as a distinct cluster separate from other invasive cancer clusters. Highly expressed genes defining the IDCP cluster, such as MUC6, MYO16, NPY, and KLK12, reflected the aggressive nature of high-grade prostate cancer. IDCP sites also showed increased hypoxia markers HIF1A, BNIP3L, PDK1, and POGLUT1; decreased fibroblast markers COL1A2, DCN, and LUM; and decreased immune cell markers CCR5 and FCGR3A. Overall, these findings indicate that the hypoxic tumor microenvironment and reduced recruitment of fibroblasts and immune cells, which reflect morphological features of IDCP, may influence the aggressiveness of high-grade prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Carcinoma Ductal/genética , Carcinoma Ductal/patologia , Carcinoma Ductal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transcriptoma , Receptores CCR5
15.
Mol Cancer ; 23(1): 87, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702773

RESUMO

BACKGROUND: Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of treatment-naïve primary PDAC samples with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC evolution and its clinical associations. RESULTS: scRNA-seq analysis revealed that even a small proportion (22%) of basal-like malignant ductal cells could lead to poor chemotherapy response and patient survival and that epithelial-mesenchymal transition programs were largely subtype-specific. The clonal homogeneity significantly increased with more prevalent and pronounced copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal-like ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively correlated with that of immunosuppressive cell populations, such as Tregs. CONCLUSION: We uncover that the proportion of basal-like subtype is a key determinant for chemotherapy response and patient outcome, and that PDAC clonally evolves with subtype-specific dosage changes of cancer-associated genes by forming immunosuppressive microenvironments in its progression and metastasis.


Assuntos
Evolução Clonal , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Evolução Clonal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Biomarcadores Tumorais/genética , Prognóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Masculino , Feminino , Análise da Expressão Gênica de Célula Única
16.
Aging (Albany NY) ; 16(8): 6898-6920, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38709170

RESUMO

BACKGROUND: Cervical squamous carcinoma (CESC) is the main subtype of cervical cancer. Unfortunately, there are presently no effective treatment options for advanced and recurrent CESC. Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells that resemble secondary lymphoid organs; nevertheless, there is no summary of the clinical importance of TLS in CESC. METHODS: A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were used to analyze the pattern of TLS and its immuno-correlations in CESC. Additionally, an independent in-house cohort was collected to validate the correlation between TLS and TME features. RESULTS: In the current study, we found that the presence of TLS could predict better prognosis in CESC and was correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations. In addition, TLS was associated with reduced proliferation activity in tumor cells, indicating the negative correlation between TLS and the degree of malignancy. Last but not least, in two independent immunotherapy cohorts, tumors with the presence of TLS were more sensitive to immunotherapy. CONCLUSION: Overall, TLS is related to an inflamed TME and identified immune-hot tumors, which could be an indicator for the identification of immunological features in CESC.


Assuntos
Carcinoma de Células Escamosas , Estruturas Linfoides Terciárias , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Feminino , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Prognóstico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Imunoterapia , Transcriptoma
17.
Gut Microbes ; 16(1): 2350149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709233

RESUMO

Mucinous colorectal cancer (CRC) is a common histological subtype of colorectal adenocarcinoma, associated with a poor response to chemoradiotherapy. The commensal facultative anaerobes fusobacteria, have been associated with poor prognosis specifically in mesenchymal CRC. Interestingly, fusobacterial infection is especially prevalent in mucinous CRC. The objective of this study was therefore to increase our understanding of beneficial and detrimental effects of fusobacterial infection, by contrasting host cell signaling and immune responses in areas of high vs. low infection, using mucinous rectal cancer as a clinically relevant example. We employed spatial transcriptomic profiling of 106 regions of interest from 8 mucinous rectal cancer samples to study gene expression in the epithelial and immune segments across regions of high versus low fusobacterial infection. Fusobacteria high regions were associated with increased oxidative stress, DNA damage, and P53 signaling. Meanwhile regions of low fusobacterial prevalence were characterized by elevated JAK-STAT, Il-17, Il-1, chemokine and TNF signaling. Immune masks within fusobacterial high regions were characterized by elevated proportions of cytotoxic (CD8+) T cells (p = 0.037), natural killer (NK) cells (p < 0.001), B-cells (p < 0.001), and gamma delta T cells (p = 0.003). Meanwhile, fusobacteria low regions were associated with significantly greater M2 macrophage (p < 0.001), fibroblast (p < 0.001), pericyte (p = 0.002), and endothelial (p < 0.001) counts.


Assuntos
Dano ao DNA , Perfilação da Expressão Gênica , Neoplasias Retais , Transdução de Sinais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/imunologia , Neoplasias Retais/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma , Idoso
18.
Front Immunol ; 15: 1323199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Biologia Computacional/métodos , Prognóstico , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Quimiocina CXCL9/genética , Perfilação da Expressão Gênica , Masculino , Feminino , Transcriptoma
19.
Front Immunol ; 15: 1369726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742117

RESUMO

Background: The inflammatory response plays an essential role in the tumor microenvironment (TME) of colorectal cancer (CRC) by modulating tumor growth, progression, and response to therapy through the recruitment of immune cells, production of cytokines, and activation of signaling pathways. However, the molecular subtypes and risk score prognostic model based on inflammatory response remain to be further explored. Methods: Inflammation-related genes were collected from the molecular signature database and molecular subtypes were identified using nonnegative matrix factorization based on the TCGA cohort. We compared the clinicopathological features, immune infiltration, somatic mutation profile, survival prognosis, and drug sensitivity between the subtypes. The risk score model was developed using LASSO and multivariate Cox regression in the TCGA cohort. The above results were independently validated in the GEO cohort. Moreover, we explored the biological functions of the hub gene, receptor interacting protein kinase 2 (RIPK2), leveraging proteomics data, in vivo, and in vitro experiments. Results: We identified two inflammation-related subtypes (inflammation-low and inflammation-high) and have excellent internal consistency and stability. Inflammation-high subtype showed higher immune cell infiltration and increased sensitivity to common chemotherapeutic drugs, while inflammation-low subtype may be more suitable for immunotherapy. Besides, the two subtypes differ significantly in pathway enrichment and biological functions. In addition, the 11-gene signature prognostic model constructed from inflammation-related genes showed strong prognostic assessment power and could serve as a novel prognostic marker to predict the survival of CRC patients. Finally, RIPK2 plays a crucial role in promoting malignant proliferation of CRC cell validated by experiment. Conclusions: This study provides new insights into the heterogeneity of CRC and provides novel opportunities for treatment development and clinical decision making.


Assuntos
Neoplasias Colorretais , Inflamação , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Microambiente Tumoral/imunologia , Prognóstico , Inflamação/imunologia , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Animais , Feminino , Masculino , Camundongos , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral
20.
Breast Cancer Res ; 26(1): 77, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745321

RESUMO

BACKGROUND: Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. METHODS: The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. RESULTS: A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635-0.741 and AUC = 0.650, 95%CI: 0.595-0.705) and tested (AUC = 0.686, 95%CI: 0.594-0.778 and AUC = 0.626, 95%CI: 0.529-0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722-0.816 and test: 0.762, 95%CI: 0.679-0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665-0.767 and test AUC = 0.695, 95%CI: 0.656-0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. CONCLUSION: Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.


Assuntos
Neoplasias da Mama , Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Terapia Neoadjuvante , Prognóstico , Curva ROC , Transcriptoma , Idoso , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA