Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.366
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2848: 169-186, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39240523

RESUMO

The retinal explant culture system is a valuable tool for studying the pharmacological, toxicological, and developmental aspects of the retina. It is also used for translational studies such as gene therapy. While no photoreceptor-like cell lines are available for in vitro studies of photoreceptor cell biology, the retinal explant culture maintains the laminated retinal structure ex vivo for as long as a month. Human and nonhuman primate (NHP) postmortem retinal explants cut into small pieces offer the possibility of testing multiple conditions for safety and adeno-associated viral (AAV) vector optimization. In addition, the cone-enriched foveal area can be studied using the retinal explants. Here, we present a detailed working protocol for retinal explant isolation and culture from mouse, human, and NHP for testing drug efficacy and AAV transduction. Future applications of this protocol include combining live imaging and multiwell retinal explant culture for high-throughput drug screening systems in rodent and human retinal explants to identify new drugs against retinal degeneration.


Assuntos
Dependovirus , Retina , Animais , Humanos , Camundongos , Retina/citologia , Dependovirus/genética , Primatas , Vetores Genéticos/genética , Técnicas de Cultura de Tecidos/métodos , Transdução Genética
2.
Cell Rep Methods ; 4(10): 100878, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39406231

RESUMO

A key step in developing engineered B cells for therapeutic purposes is evaluation in immunocompetent, large-animal models. Therefore, we developed methods to purify, expand, and differentiate non-human primate (NHP; rhesus macaque) B cells. After 7 days in culture, B cells expanded 10-fold, differentiated into a plasma cell phenotype (CD38, CD138), and secreted immunoglobulin G. Using single-cell sequencing and flow cytometry, we verified the presence of plasma cell genes in differentiated NHP B cells and unearthed less-recognized markers, such as CD59 and CD79A. In contrast with human cells, we found that the immune checkpoint molecule CD274 (PD-L1) and major histocompatibility complex (MHC) class I molecules were upregulated in NHP plasma cells in the transcriptional data. Lastly, we established the conditions for efficient transduction of NHP B cells with adeno-associated virus (AAV) vectors, achieving a delivery rate of approximately 60%. We envision that this work will accelerate proof-of-concept studies using engineered B cells in NHPs.


Assuntos
Dependovirus , Técnicas de Transferência de Genes , Macaca mulatta , Plasmócitos , Análise de Célula Única , Animais , Análise de Célula Única/métodos , Dependovirus/genética , Plasmócitos/metabolismo , Plasmócitos/imunologia , Linfócitos B/metabolismo , Diferenciação Celular , Humanos , Vetores Genéticos , Transdução Genética/métodos
3.
Sci Rep ; 14(1): 26004, 2024 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472618

RESUMO

Cartilage rarely heals spontaneously once damaged. Osteoarthritis (OA) is the most common degenerative joint disease among the elderly; however, effective treatment for OA is currently lacking. Autologous chondrocyte implantation (ACI), an innovative regenerative technology involving the implantation of healthy chondrocytes, may restore damaged lesions. Chondrocytes for ACI may potentially be induced from differentiated somatic cells using retrovirus (RV)-mediated transduction of three reprogramming factors (SOX9, KLF4, and c-MYC). However, the efficiency of the current induction system needs to be improved and the safety issues arising from the genomic integration of the vector DNA have to be addressed. To solve these problems, we used an RNA vector, termed the replication-defective and persistent Sendai virus vector (SeVdp), to express reprogramming factors for chondrocyte induction. Our results showed that the SeVdp-based vector induced chondrocytes more efficiently than the RV vector, probably because of robust and rapid expression of the transgenes, without any apparent integration of the SeVdp vector. The induced chondrocytes formed cartilage-like tissues when injected subcutaneously into mice. Thus, the SeVdp-based system for inducing chondrocytes may act as a foundation for developing safer and more effective treatments for damaged cartilage.


Assuntos
Reprogramação Celular , Condrócitos , Vetores Genéticos , Fator 4 Semelhante a Kruppel , Vírus Sendai , Condrócitos/metabolismo , Condrócitos/citologia , Animais , Vírus Sendai/genética , Vetores Genéticos/genética , Camundongos , Fator 4 Semelhante a Kruppel/metabolismo , Reprogramação Celular/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Condrogênese/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Humanos , Transdução Genética , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , Diferenciação Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Curr Protoc ; 4(11): e70040, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39475383

RESUMO

Cellular immunotherapy has emerged as one of the most potent approaches to treating cancer patients. Adoptive transfer of chimeric antigen receptor (CAR) T cells as well as the use of haploidentical natural killer (NK) cells can induce remission in patients with lymphoma and leukemia. Although the use of CAR T cells has been established, this approach is currently limited for wider use by the risk of severe adverse events, including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Moreover, the risk of triggering graft vs host reactions in settings of allogeneic T cell infusion limits the use to autologous CAR T cells if advanced CRISPR engineering is not applied. In contrast, NK cell-based cancer immunotherapy has emerged as a safe approach even in allogeneic settings. However, efficient transduction of primary blood NK cells with vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentivirus commonly used for T cell modification remains challenging. This article presents a detailed method that significantly enhances the transduction efficiency of NK cells by utilizing a short-term culture in cytokine-supplemented medium. It also encompasses the preparation of high-titer and high-quality lentiviral particles for optimal NK cell transduction. Overall, this protocol details the step-by-step culture of NK cells in cytokine-supplemented medium, their transduction with VSV-G lentiviral vectors, and subsequent expansion for functional assays. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Isolation of NK cells from human peripheral blood mononuclear cells (PBMCs) Basic Protocol 2: NK cell expansion and transduction with lentivirus for generating CAR-NK cells Support Protocol 1: Plasmid amplification Support Protocol 2: Lentivirus preparation Support Protocol 3: Lentivirus titration.


Assuntos
Citocinas , Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Transdução Genética , Humanos , Células Matadoras Naturais/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Citocinas/metabolismo , Transdução Genética/métodos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Vetores Genéticos , Técnicas de Cultura de Células/métodos
5.
Viruses ; 16(9)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339951

RESUMO

Baculoviral vectors (BVs) derived from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) are an attractive tool for multigene delivery in mammalian cells, which is particularly relevant for CRISPR technologies. Most applications in mammalian cells rely on BVs that are pseudotyped with vesicular stomatitis virus G-protein (VSV-G) to promote efficient endosomal release. VSV-G expression typically occurs under the control of the hyperactive polH promoter. In this study, we demonstrate that polH-driven VSV-G expression results in BVs characterised by reduced stability, impaired morphology, and VSV-G induced toxicity at high multiplicities of transduction (MOTs) in target mammalian cells. To overcome these drawbacks, we explored five alternative viral promoters with the aim of optimising VSV-G levels displayed on the pseudotyped BVs. We report that Orf-13 and Orf-81 promoters reduce VSV-G expression to less than 5% of polH, rescuing BV morphology and stability. In a panel of human cell lines, we elucidate that BVs with reduced VSV-G support efficient gene delivery and CRISPR-mediated gene editing, at levels comparable to those obtained previously with polH VSV-G-pseudotyped BVs (polH VSV-G BV). These results demonstrate that VSV-G hyperexpression is not required for efficient transduction of mammalian cells. By contrast, reduced VSV-G expression confers similar transduction dynamics while substantially improving BV integrity, structure, and stability.


Assuntos
Vetores Genéticos , Nucleopoliedrovírus , Regiões Promotoras Genéticas , Transdução Genética , Proteínas do Envelope Viral , Humanos , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vetores Genéticos/genética , Animais , Linhagem Celular , Baculoviridae/genética , Edição de Genes/métodos , Células HEK293 , Sistemas CRISPR-Cas , Glicoproteínas de Membrana
6.
Bull Exp Biol Med ; 177(4): 552-558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39266922

RESUMO

A new gene-cell construct expressing nerve growth factor (NGF) has been developed. After obtaining engineered adenovectors Ad5-RGD-CAG-NGF and Ad5-RGD-CAG-EGFP, transduction efficiency and transgene expression were studied and multiplicity of infection was determined. The efficacy of transduced human olfactory ensheathing cells expressing NGF in restoring motor activity in rats has been shown in a limited period of time. Improved rat hindlimb mobility and cyst size reduction after gene-cell construct transplantation were more likely due to the cellular component of the construct.


Assuntos
Cistos , Vetores Genéticos , Fator de Crescimento Neural , Mucosa Olfatória , Animais , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Ratos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/citologia , Humanos , Cistos/terapia , Cistos/genética , Cistos/patologia , Cistos/metabolismo , Vetores Genéticos/genética , Transdução Genética , Terapia Genética/métodos , Adenoviridae/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
7.
Breast Cancer Res ; 26(1): 131, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256827

RESUMO

BACKGROUND: Breast cancer is the second leading cause of death in women, with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) as the two most common forms of invasive breast cancer. While estrogen receptor positive (ER+) IDC and ILC are treated similarly, the multifocality of ILC presents challenges in detection and treatment, worsening long-term clinical outcomes in patients. With increasing documentation of chemoresistance in ILC, additional treatment options are needed. Oncolytic adenoviral therapy may be a promising option, but cancer cells must express the coxsackievirus & adenovirus receptor (CAR) for adenoviral therapy to be effective. The present study aims to evaluate the extent to which CAR expression is observed in ILC in comparison to IDC, and how the levels of CAR expression correlate with adenovirus transduction efficiency. The effect of liposome encapsulation on transduction efficiency is also assessed. METHODS: To characterize CAR expression in invasive breast carcinoma, 36 formalin-fixed paraffin-embedded (FFPE) human breast tumor samples were assayed by CAR immunohistochemistry (IHC). Localization of CAR in comparison to other junctional proteins was performed using a multiplex immunofluorescence panel consisting of CAR, p120-catenin, and E-cadherin. ILC and IDC primary tumors and cell lines were transduced with E1- and E3-deleted adenovirus type 5 inserted with a GFP transgene (Ad-GFP) and DOTAP liposome encapsulated Ad-GFP (DfAd-GFP) at various multiplicities of infection (MOIs). Transduction efficiency was measured using a fluorescence plate reader. CAR expression in the human primary breast carcinomas and cell lines was also evaluated by IHC. RESULTS: We observed membranous CAR, p120-catenin and E-cadherin expression in IDC. In ILC, we observed cytoplasmic expression of CAR and p120-catenin, with absent E-cadherin. Adenovirus effectively transduced high-CAR IDC cell lines, at MOIs as low as 12.5. Ad-GFP showed similar transduction as DfAd-GFP in high-CAR IDC cell lines. Conversely, Ad-GFP transduction of ILC cell lines was observed only at MOIs of 50 and 100. Furthermore, Ad-GFP did not transduce CAR-negative IDC cell lines even at MOIs greater than 100. Liposome encapsulation (DfAd-GFP) improved transduction efficiency 4-fold in ILC and 17-fold in CAR-negative IDC cell lines. CONCLUSION: The present study demonstrates that oncolytic adenoviral therapy is less effective in ILC than IDC due to differences in spatial CAR expression. Liposome-enhanced delivery may be beneficial for patients with ILC and tumors with low or negative CAR expression to improve adenoviral therapeutic effectiveness.


Assuntos
Adenoviridae , Neoplasias da Mama , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Transdução Genética , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adenoviridae/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Linhagem Celular Tumoral , Carcinoma Lobular/metabolismo , Carcinoma Lobular/terapia , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Caderinas/metabolismo , Caderinas/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Lipossomos
8.
J Transl Med ; 22(1): 824, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237935

RESUMO

Highly efficient adeno associated viruses (AAVs) targeting the central nervous system (CNS) are needed to deliver safe and effective therapies for inherited neurological disorders. The goal of this study was to compare the organ-specific transduction efficiencies of two AAV capsids across three different delivery routes. We compared AAV9-CBA-fLucYFP to AAV-DJ-CBA-fLucYFP using the following delivery routes in mice: intracerebroventricular (ICV) 1 × 1012 vg/kg, intrathecal (IT) 1 × 1012 vg/kg, and intravenous (IV) 1 × 1013 vg/kg body weight. Our evaluations revealed that following ICV and IT administrations, AAV-DJ demonstrated significantly increased vector genome (vg) uptake throughout the CNS as compared to AAV9. Through the IV route, AAV9 demonstrated significantly increased vg uptake in the CNS. However, significantly fewer vgs were detected in the off-target organs (kidney and liver) following administration of AAV-DJ using the IT and IV delivery routes as compared to AAV9. Distributions of vgs correlate well with transgene transcript levels, luciferase enzyme activities, and immunofluorescence detection of YFP. Overall, between the two vectors, AAV-DJ resulted in better targeting and expression in CNS tissues paired with de-targeting and reduced expression in liver and kidneys. Our findings support further examination of AAV-DJ as a gene therapy capsid for the treatment of neurological disorders.


Assuntos
Encéfalo , Dependovirus , Vetores Genéticos , Fígado , Medula Espinal , Animais , Dependovirus/genética , Fígado/metabolismo , Encéfalo/metabolismo , Vetores Genéticos/administração & dosagem , Medula Espinal/metabolismo , Transgenes , Camundongos , Transdução Genética , Técnicas de Transferência de Genes
9.
Nat Commun ; 15(1): 7965, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261465

RESUMO

Current adeno-associated virus (AAV) gene therapy using nature-derived AAVs is limited by non-optimal tissue targeting. In the treatment of muscular diseases (MD), high doses are often required but can lead to severe adverse effects. Here, we rationally design an AAV capsid that specifically targets skeletal muscle to lower treatment doses. We computationally integrate binding motifs of human integrin alphaV beta6, a skeletal muscle receptor, into a liver-detargeting capsid. Designed AAVs show higher productivity and superior muscle transduction compared to their parent. One variant, LICA1, demonstrates comparable muscle transduction to other myotropic AAVs with reduced liver targeting. LICA1's myotropic properties are observed across species, including non-human primate. Consequently, LICA1, but not AAV9, effectively delivers therapeutic transgenes and improved muscle functionality in two mouse MD models (male mice) at a low dose (5E12 vg/kg). These results underline the potential of our design method for AAV engineering and LICA1 variant for MD gene therapy.


Assuntos
Dependovirus , Terapia Genética , Músculo Esquelético , Dependovirus/genética , Animais , Humanos , Músculo Esquelético/metabolismo , Camundongos , Terapia Genética/métodos , Masculino , Vetores Genéticos/genética , Integrinas/metabolismo , Integrinas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Doenças Musculares/terapia , Doenças Musculares/genética , Transdução Genética , Fígado/metabolismo , Capsídeo/metabolismo , Receptores de Vitronectina/metabolismo , Receptores de Vitronectina/genética , Modelos Animais de Doenças , Células HEK293 , Transgenes , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias
10.
Curr Pharm Des ; 30(37): 2947-2958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136515

RESUMO

BACKGROUND: The growing attention to NK cells for cancer cell therapy is associated with the need to establish highly efficient protocols for their genetic modification, particularly by retroviral transduction. OBJECTIVE: In this work, we have optimized several stages of the retroviral-based modification process, and determined the distribution of the amino acid transporter ASCT2 between NK cell subsets. METHODS: Retroviral particles were produced using the Phoenix Ampho cell line transfected with the calcium phosphate method . We used RD114-based retroviral transduction for lymphocyte cell lines and primary NK cells. RESULTS: We have determined the optimal time to collect the RD114-pseudotyped viral supernatants resulting in the titer of viral particles required for efficient NK cell modification to be between 48 and 72 hours. Retroviral modification by retronectin-based method did not alter NK cell functional activity and cell survival. We identified differences in the Multiplicity of Infection (MOI) among cell lines that were partially associated with the ASCT2 surface expression. Cells with higher ASCT2 levels were more susceptible to transduction with RD114-pseudotyped viral particles. Higher ASCT2 expression levels were revealed in activated CD57+ and KIR2DL2DL3+ NK cells compared to their negative counterparts. CONCLUSION: Our findings provide a more nuanced understanding of NK cell transduction, offering valuable insights for improving therapeutic applications involving NK cell modification.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Células Matadoras Naturais , Retroviridae , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Retroviridae/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Transdução Genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Células Cultivadas
11.
Mol Ther ; 32(10): 3470-3484, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39113357

RESUMO

One of the biggest challenges for in vivo gene therapy are vectors mediating highly selective gene transfer into a defined population of therapy-relevant cells. Here we present DARPin-targeted AAVs (DART-AAVs) displaying DARPins specific for human and murine CD8. Insertion of DARPins into the GH2/GH3 loop of the capsid protein 1 (VP1) of AAV2 and AAV6 resulted in high selectivity for CD8-positive T cells with unimpaired gene delivery activity. Remarkably, the capsid core structure was unaltered with protruding DARPins detectable. In complex primary cell mixtures, including donor blood or systemic injections into mice, the CD8-targeted AAVs were by far superior to unmodified AAV2 and AAV6 in terms of selectivity, target cell viability, and gene transfer rates. In vivo, up to 80% of activated CD8+ T cells were hit upon a single vector injection into conditioned humanized or immunocompetent mice. While gene transfer rates decreased significantly under non-activated conditions, genomic modification selectively in CD8+ T cells was still detectable upon Cre delivery into indicator mice. In both mouse models, selectivity for CD8+ T cells was close to absolute with exceptional detargeting from liver. The CD8-AAVs described here expand strategies for immunological research and in vivo gene therapy options.


Assuntos
Linfócitos T CD8-Positivos , Dependovirus , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Animais , Dependovirus/genética , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Terapia Genética/métodos , Transdução Genética , Proteínas do Capsídeo/genética
12.
J Dermatol Sci ; 115(3): 101-110, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127592

RESUMO

BACKGROUND: Local gene therapies, including in vivo genome editing, are highly anticipated for the treatment of genetic diseases in skin, especially the epidermis. While the adeno-associated virus (AAV) is a potent vector for in vivo gene delivery, the lack of efficient gene delivery methods has limited its clinical applications. OBJECTIVE: To optimize the AAV gene delivery system with higher gene delivery efficiency and specificity for epidermis and keratinocytes (KCs), using AAV capsid and promoter engineering technologies. METHODS: AAV variants with mutations in residues reported to be critical to determine the tropism of AAV2 for KCs were generated by site-directed mutagenesis of AAVDJ. The infection efficiency and specificity for KCs of these variants were compared with those of previously reported AAVs considered to be suitable for gene delivery to KCs in vitro and in vivo. Additionally, we generated an epidermis-specific promoter using the most recent short-core promoter and compared its specificity with existing promoters. RESULTS: A novel AAVDJ variant capsid termed AAVDJK2 was superior to the existing AAVs in terms of gene transduction efficiency and specificity for epidermis and KCs in vitro and in vivo. A novel tissue-specific promoter, termed the K14 SCP3 promoter, was superior to the existing promoters in terms of gene transduction efficiency and specificity for KCs. CONCLUSION: The combination of the AAVDJK2 capsid and K14 SCP3 promoter improves gene delivery to epidermis in vivo and KCs in vitro. The novel AAV system may benefit experimental research and development of new epidermis-targeted gene therapies.


Assuntos
Dependovirus , Epiderme , Terapia Genética , Vetores Genéticos , Queratinócitos , Regiões Promotoras Genéticas , Transdução Genética , Dependovirus/genética , Queratinócitos/metabolismo , Queratinócitos/virologia , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Animais , Regiões Promotoras Genéticas/genética , Terapia Genética/métodos , Epiderme/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Técnicas de Transferência de Genes , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo
13.
Nat Commun ; 15(1): 6602, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097583

RESUMO

Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits.


Assuntos
Proteínas do Capsídeo , Capsídeo , Dependovirus , Vetores Genéticos , Fígado , Dependovirus/genética , Animais , Humanos , Camundongos , Vetores Genéticos/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Fígado/metabolismo , Transdução Genética , Técnicas de Transferência de Genes , Aprendizado de Máquina , Terapia Genética/métodos , Macaca , Hepatócitos/metabolismo , Células HEK293 , Engenharia Genética/métodos
14.
Gene Ther ; 31(9-10): 489-498, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134629

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.


Assuntos
Capsídeo , Dependovirus , Terapia Genética , Vetores Genéticos , Retina , Dependovirus/genética , Animais , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Camundongos , Retina/metabolismo , Capsídeo/metabolismo , Terapia Genética/métodos , Genoma Viral , Humanos , Camundongos Endogâmicos C57BL , Transdução Genética/métodos , Microglia/metabolismo
15.
Viruses ; 16(8)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205190

RESUMO

Transduction of producer cells during lentiviral vector (LVV) production causes the loss of 70-90% of viable particles. This process is called retro-transduction and it is a consequence of the interaction between the LVV envelope protein, VSV-G, and the LDL receptor located on the producer cell membrane, allowing lentiviral vector transduction. Avoiding retro-transduction in LVV manufacturing is crucial to improve net production and, therefore, the efficiency of the production process. Here, we describe a method for quantifying the transduction of producer cells and three different strategies that, focused on the interaction between VSV-G and the LDLR, aim to reduce retro-transduction.


Assuntos
Vetores Genéticos , Lentivirus , Receptores de LDL , Transdução Genética , Vetores Genéticos/genética , Lentivirus/genética , Humanos , Receptores de LDL/metabolismo , Receptores de LDL/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Células HEK293 , Glicoproteínas de Membrana
16.
Viruses ; 16(8)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39205208

RESUMO

Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.


Assuntos
Dependovirus , Ultracentrifugação , Vírion , Dependovirus/genética , Dependovirus/isolamento & purificação , Humanos , Vírion/isolamento & purificação , Vírion/genética , Vetores Genéticos/genética , Células HEK293 , Césio/química , Centrifugação com Gradiente de Concentração/métodos , Transdução Genética , Cloretos
17.
Hum Gene Ther ; 35(17-18): 695-709, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39155805

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Although CF affects multiple organs, lung disease is the main cause of morbidity and mortality, and gene therapy is expected to provide a mutation-agnostic option for treatment. SP-101 is a recombinant adeno-associated virus (AAV) gene therapy vector carrying a human CFTR minigene, hCFTRΔR, and is being investigated as an inhalation treatment for people with CF. To further understand SP-101 activity, in vitro studies were performed in human airway epithelia (HAE) derived from multiple CF and non-CF donors. SP-101 restored CFTR-mediated chloride conductance, measured via Ussing chamber assay, at a multiplicity of infection (MOI) as low as 5E2 in the presence of doxorubicin, a small molecule known to augment AAV transduction. Functional correction of CF HAE increased with increasing MOI and doxorubicin concentration and correlated with increasing cell-associated vector genomes and hCFTRΔR mRNA expression. Tropism studies using a fluorescent reporter vector and single-cell mRNA sequencing of SP-101-mediated hCFTRΔR mRNA demonstrated broad expression in all cell types after apical transduction, including secretory, ciliated, and basal cells. In summary, SP-101, particularly in combination with doxorubicin, shows promise for a novel CF treatment strategy and strongly supports continued development.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Dependovirus , Terapia Genética , Vetores Genéticos , Mucosa Respiratória , Humanos , Fibrose Cística/terapia , Fibrose Cística/genética , Dependovirus/genética , Terapia Genética/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Mucosa Respiratória/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Transdução Genética , Doxorrubicina/farmacologia
18.
J Gene Med ; 26(8): e3726, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160647

RESUMO

BACKGROUND: Conventional adeno-associated viral (AAV) vectors, while highly effective in quiescent cells such as hepatocytes in the adult liver, confer less durable transgene expression in proliferating cells owing to episome loss. Sustained therapeutic success is therefore less likely in liver disorders requiring early intervention. We have previously developed a hybrid, dual virion approach, recombinant AAV (rAAV)/piggyBac transposon system capable of achieving stable gene transfer in proliferating hepatocytes at levels many fold above conventional AAV vectors. An alternative transposon system, Sleeping Beauty, has been widely used for ex vivo gene delivery; however liver-targeted delivery using a hybrid rAAV/Sleeping Beauty approach remains relatively unexplored. METHODS: We investigated the capacity of a Sleeping Beauty (SB)-based dual rAAV virion approach to achieve stable and efficient gene transfer to the newborn murine liver using transposable therapeutic cassettes encoding coagulation factor IX or ornithine transcarbamylase (OTC). RESULTS: At equivalent doses, rAAV/SB100X transduced hepatocytes with high efficiency, achieving stable expression into adulthood. Compared with conventional AAV, the proportion of hepatocytes transduced, and factor IX and OTC activity levels, were both markedly increased. The proportion of hepatocytes stably transduced increased 4- to 8-fold from <5%, and activity levels increased correspondingly, with markedly increased survival and stable urinary orotate levels in the OTC-deficient Spfash mouse following elimination of residual endogenous murine OTC. CONCLUSIONS: The present study demonstrates the first in vivo utility of a hybrid rAAV/SB100X transposon system to achieve stable long-term therapeutic gene expression following delivery to the highly proliferative newborn mouse liver. These results have relevance to the treatment of genetic metabolic liver diseases with neonatal onset.


Assuntos
Animais Recém-Nascidos , Elementos de DNA Transponíveis , Dependovirus , Técnicas de Transferência de Genes , Vetores Genéticos , Hepatócitos , Fígado , Transdução Genética , Animais , Dependovirus/genética , Elementos de DNA Transponíveis/genética , Fígado/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Fator IX/genética , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Transposases/genética , Transposases/metabolismo , Humanos , Transgenes , Terapia Genética/métodos , Camundongos Endogâmicos C57BL
19.
Int J Biol Macromol ; 277(Pt 3): 134066, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059530

RESUMO

Transduced MSCs that express engineered ACE2 could be highly beneficial to combat COVID-19. Engineered ACE2 can act as decoy targets for the virus, preventing its entry into healthy lung cells. To this end, genetic engineering techniques were used to integrate the ACE2 gene into the MSCs genome. The MSCs were evaluated for proper expression and functionality. The mutated form of ACE2 was characterized using various techniques such as protein expression analysis, binding affinity against spike protein, thermal stability assessment, and enzymatic activity assays. The functionality of the mACE2 was assessed on SARS-CoV-2 using the virus-neutralizing test. The obtained results indicated that by introducing specific mutations in the ACE2 gene, the resulting mutant ACE2 had enhanced interaction with viral spike protein, its thermal stability was increased, and its enzymatic function was inhibited as a decoy receptor. Moreover, the mACE2 protein showed higher efficacy in the neutralization of the SARS-CoV-2. In conclusion, this study proposes a novel approach with potential benefits such as targeted drug delivery and reduced side effects on healthy tissues. These transduced MSCs can also be used in combination with other anti-COVID-19 treatments. Design of similar engineered biomolecules with desired properties could also be used to target other diseases.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células-Tronco Mesenquimais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Humanos , SARS-CoV-2/genética , Células-Tronco Mesenquimais/metabolismo , Engenharia de Proteínas/métodos , Transdução Genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química
20.
Biotechnol Bioeng ; 121(10): 3252-3268, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38963234

RESUMO

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.


Assuntos
Vetores Genéticos , Lentivirus , Receptores de Antígenos Quiméricos , Linfócitos T , Lentivirus/genética , Humanos , Vetores Genéticos/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA