Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Neurobiol Dis ; 151: 105252, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33418069

RESUMO

Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.


Assuntos
Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Animais , Comportamento Animal/efeitos da radiação , Disfunção Cognitiva/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Mol Cell Neurosci ; 109: 103563, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039519

RESUMO

Recent work demonstrated that sympathetic neurons innervate the skeletal muscle near the neuromuscular junction (NMJ), and muscle sympathectomy and sympathomimetic agents strongly influence motoneuron synaptic vesicle release ex vivo. Moreover, reports attest that the pontine nucleus locus coeruleus (LC) projects to preganglionic sympathetic neurons and regulates human mobility and skeletal muscle physiology. Thus, we hypothesized that peripheral and central sympathetic neurons projecting directly or indirectly to the skeletal muscle regulate NMJ transmission. The aim of this study was to define the specific neuronal groups in the peripheral and central nervous systems that account for such regulation in adult mice in vivo by using optogenetics and NMJ transmission recordings in 3-5-month-old, male and female ChR2(H134R/EYFP)/TH-Cre mice. After detecting ChR2(H134R)/EYFP fluorescence in the paravertebral ganglia and LC neurons, we tested whether optostimulating the plantar nerve near the lumbricalis muscle or LC neurons effectively modulates motor nerve terminal synaptic vesicle release in living mice. Nerve optostimulation increased motor synaptic vesicle release in vitro and in vivo, while the presynaptic adrenoceptor blockers propranolol (ß1/ß2) and atenolol (ß1) prevented this outcome. The effect is primarily presynaptic since miniature end-plate potential (MEPP) kinetics remained statistically unmodified after stimulation. In contrast, optostimulation of LC neurons did not regulate NMJ transmission. In summary, we conclude that postganglionic sympathetic neurons, but not LC neurons, increased NMJ transmission by acting on presynaptic ß1-adrenergic receptors in vivo.


Assuntos
Locus Cerúleo/fisiologia , Neurônios Motores/fisiologia , Junção Neuromuscular/fisiologia , Optogenética/métodos , Transmissão Sináptica/fisiologia , Nervo Tibial/fisiologia , Animais , Channelrhodopsins/análise , Channelrhodopsins/genética , Dependovirus/fisiologia , Feminino , Gânglios Simpáticos/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/análise , Lasers , Luz , Masculino , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios Motores/efeitos da radiação , Mutação de Sentido Incorreto , Receptores Adrenérgicos beta 1/fisiologia , Proteínas Recombinantes de Fusão/análise , Fibras Simpáticas Pós-Ganglionares/fisiologia , Transmissão Sináptica/efeitos da radiação , Nervo Tibial/efeitos da radiação
3.
J Chem Neuroanat ; 106: 101784, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205214

RESUMO

Behavioral impairments are the most pragmatic outcome of long-term mobile uses but the underlying causes are still poorly understood. Therefore, the Aim of the present study to determine the possible mechanism of mobile induced behavioral alterations by observing redox status, cholinesterase activity, cellular, genotoxic damage and cognitive alterations in rat hippocampus. This study was carried out on 24 male Wistar rats, randomly divided into four groups (n = 6 in each group): group I consisted of sham-exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation (900 MHz) at different time duration 1 h, 2 h, and 4 h respectively for 90 days. After 90 days of exposure, rats were assessing learning ability by using T-Maze. A significantly increased level of malondialdehyde (MDA) with concomitantly depleted levels of superoxide dismutase (SOD), catalase (CAT) and redox enzymes (GSH, GPX, GR, GST, G-6PDH) indicated an exposure of mobile emitted EMR induced oxidative stress by the depleted redox status of brain cells. The depletion in the acetylcholinesterase (AChE) level reveals altered neurotransmission in brain cells. Resultant cellular degeneration was also observed in the radiation-exposed hippocampus. Conclusively, the present study revealed that microwave radiation induces oxidative stress, depleted redox status, and causes DNA damage with the subsequent reduction in working memory in a time-dependent manner. This study provides insight over the associative reciprocity between redox status, cellular degeneration and reduced cholinergic activity, which presumably leads to the behavioral alterations following mobile emitted electromagnetic radiation.


Assuntos
Acetilcolinesterase/metabolismo , Encéfalo/efeitos da radiação , Radiação Eletromagnética , Memória de Curto Prazo/efeitos da radiação , Oxirredução , Estresse Oxidativo/efeitos da radiação , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Dano ao DNA/efeitos da radiação , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação
4.
Front Immunol ; 11: 614509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391287

RESUMO

Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1ß, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.


Assuntos
Hipocampo/fisiologia , Interleucina-10/farmacologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Genes Reporter , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos da radiação , Neurônios/metabolismo , Organoides , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Estimulação Magnética Transcraniana
5.
PLoS One ; 14(11): e0224846, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710637

RESUMO

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Optogenética , Animais , Astrócitos/citologia , Astrócitos/efeitos da radiação , Axônios/metabolismo , Axônios/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Channelrhodopsins/metabolismo , Células-Tronco Embrionárias Humanas/efeitos da radiação , Humanos , Lentivirus/metabolismo , Luz , Camundongos Nus , Córtex Motor/metabolismo , Células-Tronco Neurais/efeitos da radiação , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação , Neurotransmissores/metabolismo , Fenótipo , Estimulação Luminosa , Ratos Nus , Transmissão Sináptica/efeitos da radiação
6.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31383727

RESUMO

As NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×105 higher than those actually encountered in space. Using a new, low dose-rate neutron irradiation facility, we have uncovered that realistic, low dose-rate exposures produce serious neurocognitive complications associated with impaired neurotransmission. Chronic (6 month) low-dose (18 cGy) and dose rate (1 mGy/d) exposures of mice to a mixed field of neutrons and photons result in diminished hippocampal neuronal excitability and disrupted hippocampal and cortical long-term potentiation. Furthermore, mice displayed severe impairments in learning and memory, and the emergence of distress behaviors. Behavioral analyses showed an alarming increase in risk associated with these realistic simulations, revealing for the first time, some unexpected potential problems associated with deep space travel on all levels of neurological function.


Assuntos
Cognição/efeitos da radiação , Radiação Cósmica/efeitos adversos , Hipocampo/efeitos da radiação , Nêutrons/efeitos adversos , Fótons/efeitos adversos , Transmissão Sináptica/efeitos da radiação , Animais , Ansiedade/etiologia , Depressão/etiologia , Extinção Psicológica/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos Endogâmicos C57BL , Neurônios/efeitos da radiação , Comportamento Social
7.
Cell Rep ; 20(9): 2026-2043, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28854356

RESUMO

DNA damage causally contributes to aging and age-related diseases. Mutations in nucleotide excision repair (NER) genes cause highly complex congenital syndromes characterized by growth retardation, cancer susceptibility, and accelerated aging in humans. Orthologous mutations in Caenorhabditis elegans lead to growth delay, genome instability, and accelerated functional decline, thus allowing investigation of the consequences of persistent DNA damage during development and aging in a simple metazoan model. Here, we conducted proteome, lipidome, and phosphoproteome analysis of NER-deficient animals in response to UV treatment to gain comprehensive insights into the full range of physiological adaptations to unrepaired DNA damage. We derive metabolic changes indicative of a tissue maintenance program and implicate an autophagy-mediated proteostatic response. We assign central roles for the insulin-, EGF-, and AMPK-like signaling pathways in orchestrating the adaptive response to DNA damage. Our results provide insights into the DNA damage responses in the organismal context.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Reprogramação Celular , Dano ao DNA , Transporte Ativo do Núcleo Celular/efeitos da radiação , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Reprogramação Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Transporte de Íons/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , Mutação/genética , Fosfoproteínas/metabolismo , Proteólise/efeitos da radiação , Proteoma/metabolismo , Proteômica , Inanição/metabolismo , Transmissão Sináptica/efeitos da radiação , Transcriptoma/genética , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Regulação para Cima/efeitos da radiação
8.
J Proteomics ; 140: 24-36, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27020882

RESUMO

UNLABELLED: Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE: This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.


Assuntos
Hipocampo/efeitos da radiação , Proteoma/análise , Radiação Ionizante , Animais , Comportamento Animal , Medo/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Hipocampo/química , Potenciação de Longa Duração/efeitos da radiação , Masculino , Memória/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/efeitos da radiação , Proteômica/métodos , Transmissão Sináptica/efeitos da radiação
9.
Pathobiology ; 82(5): 181-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337368

RESUMO

Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Micro-Ondas/efeitos adversos , Neurônios/efeitos da radiação , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína 4 Homóloga a Disks-Large , Hipocampo/química , Hipocampo/citologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Densidade Pós-Sináptica/efeitos da radiação , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/efeitos da radiação , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais , Transmissão Sináptica/efeitos da radiação
10.
Radiat Res ; 183(2): 208-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25621896

RESUMO

High-energy protons constitute at least 85% of the fluence of energetic ions in interplanetary space. Although protons are only sparsely ionizing compared to higher atomic mass ions, they nevertheless significantly contribute to the delivered dose received by astronauts that can potentially affect central nervous system function at high fluence, especially during prolonged deep space missions such as to Mars. Here we report on the long-term effects of 1 Gy proton irradiation on electrophysiological properties of CA1 pyramidal neurons in the mouse hippocampus. The hippocampus is a key structure for the formation of long-term episodic memory, for spatial orientation and for information processing in a number of other cognitive tasks. CA1 pyramidal neurons form the last and critical relay point in the trisynaptic circuit of the hippocampal principal neurons through which information is processed before being transferred to other brain areas. Proper functioning of CA1 pyramidal neurons is crucial for hippocampus-dependent tasks. Using the patch-clamp technique to evaluate chronic effects of 1 Gy proton irradiation on CA1 pyramidal neurons, we found that the intrinsic membrane properties of CA1 pyramidal neurons were chronically altered at 3 months postirradiation, resulting in a hyperpolarization of the resting membrane potential (VRMP) and a decrease in input resistance (Rin). These small but significant alterations in intrinsic properties decreased the excitability of CA1 pyramidal neurons, and had a dramatic impact on network function in a computational model of the CA1 microcircuit. We also found that proton-radiation exposure upregulated the persistent Na(+) current (INaP) and increased the rate of miniature excitatory postsynaptic currents (mEPSCs). Both the INaP and the heightened rate of mEPSCs contribute to neuronal depolarization and excitation, and at least in part, could compensate for the reduced excitability resulting from the radiation effects on the VRMP and the Rin. These results show long-term alterations in the intrinsic properties of CA1 pyramidal cells after realistic, low-dose proton irradiation.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Animais , Região CA1 Hipocampal/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Masculino , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos da radiação , Prótons , Doses de Radiação , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos da radiação , Irradiação Corporal Total
11.
J Cell Biol ; 203(2): 283-98, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24165939

RESUMO

Several studies have suggested that the V0 domain of the vacuolar-type H(+)-adenosine triphosphatase (V-ATPase) is directly implicated in secretory vesicle exocytosis through a role in membrane fusion. We report in this paper that there was a rapid decrease in neurotransmitter release after acute photoinactivation of the V0 a1-I subunit in neuronal pairs. Likewise, inactivation of the V0 a1-I subunit in chromaffin cells resulted in a decreased frequency and prolonged kinetics of amperometric spikes induced by depolarization, with shortening of the fusion pore open time. Dissipation of the granular pH gradient was associated with an inhibition of exocytosis and correlated with the V1-V0 association status in secretory granules. We thus conclude that V0 serves as a sensor of intragranular pH that controls exocytosis and synaptic transmission via the reversible dissociation of V1 at acidic pH. Hence, the V-ATPase membrane domain would allow the exocytotic machinery to discriminate fully loaded and acidified vesicles from vesicles undergoing neurotransmitter reloading.


Assuntos
Exocitose , Neurônios/enzimologia , Vesículas Secretórias/enzimologia , Transmissão Sináptica , Vesículas Sinápticas/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Catecolaminas/metabolismo , Bovinos , Células Cromafins/enzimologia , Células Cromafins/metabolismo , Exocitose/efeitos dos fármacos , Exocitose/efeitos da radiação , Concentração de Íons de Hidrogênio , Cinética , Luz , Fusão de Membrana , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Células PC12 , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/efeitos da radiação , Potenciais Sinápticos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos da radiação , Transfecção , ATPases Vacuolares Próton-Translocadoras/genética
12.
Nat Neurosci ; 16(8): 1068-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817549

RESUMO

Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide-expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.


Assuntos
Interneurônios/fisiologia , Inibição Neural/fisiologia , Córtex Visual/fisiologia , Animais , Biomarcadores , Channelrhodopsins , Feminino , Genes Reporter , Potenciais Pós-Sinápticos Inibidores/efeitos da radiação , Interneurônios/química , Interneurônios/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/análise , Optogenética , Compostos Organofosforados/farmacologia , Parvalbuminas/análise , Técnicas de Patch-Clamp , Estimulação Luminosa , Análise de Componente Principal , Células Piramidais/fisiologia , Quinoxalinas/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Somatostatina/análise , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Peptídeo Intestinal Vasoativo/análise
13.
Biochim Biophys Acta ; 1830(3): 2853-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23178861

RESUMO

BACKGROUND: Neurons signal to each other and to non-neuronal cells as those in muscle or glands, by means of the secretion of neurotransmitters at chemical synapses. In order to dissect the molecular mechanisms of neurotransmission, new methods for directly and reversibly triggering neurosecretion at the presynaptic terminal are necessary. Here we exploit the calcium permeability of the light-gated channel LiGluR in order to reversibly manipulate cytosolic calcium concentration, thus controlling calcium-regulated exocytosis. METHODS: Bovine chromaffin cells expressing LiGluR were stimulated with light. Exocytic events were detected by amperometry or by whole-cell patch-clamp to quantify membrane capacitance and calcium influx. RESULTS: Amperometry reveals that optical stimulation consistently triggers exocytosis in chromaffin cells. Secretion of catecholamines can be adjusted between zero and several Hz by changing the wavelength of illumination. Differences in secretion efficacy are found between the activation of LiGluR and native voltage-gated calcium channels (VGCCs). Our results show that the distance between sites of calcium influx and vesicles ready to be released is longer when calcium influx is triggered by LiGluR instead of native VGCCs. CONCLUSION: LiGluR activation directly and reversibly increases the intracellular calcium concentration. Light-gated calcium influx allows for the first time to control calcium-regulated exocytosis without the need of applying depolarizing solutions or voltage clamping in chromaffin cells. GENERAL SIGNIFICANCE: LiGluR is a useful tool to study the secretory mechanisms and their spatiotemporal patterns in neurotransmission, and opens a window to study other calcium-dependent processes such as muscular contraction or cell migration.


Assuntos
Potenciais de Ação/efeitos da radiação , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Exocitose/efeitos da radiação , Receptores de Glutamato/metabolismo , Transmissão Sináptica/efeitos da radiação , Potenciais de Ação/fisiologia , Adenoviridae/genética , Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/efeitos da radiação , Animais , Canais de Cálcio/genética , Catecolaminas/metabolismo , Bovinos , Células Cromafins/citologia , Células Cromafins/metabolismo , Células Cromafins/efeitos da radiação , Capacitância Elétrica , Exocitose/fisiologia , Expressão Gênica/efeitos da radiação , Vetores Genéticos , Luz , Técnicas de Patch-Clamp , Estimulação Luminosa , Cultura Primária de Células , Receptores de Glutamato/genética
14.
PLoS One ; 7(5): e37677, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662188

RESUMO

Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(A)Rs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.


Assuntos
Neurônios/metabolismo , Neurônios/efeitos da radiação , Animais , Transporte Biológico/efeitos dos fármacos , Caspase 3/metabolismo , Ativação Enzimática/efeitos da radiação , Potenciação de Longa Duração/efeitos da radiação , Memantina/farmacologia , N-Metilaspartato/metabolismo , Fosforilação/efeitos da radiação , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos da radiação
15.
Int Rev Psychiatry ; 23(5): 400-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22200130

RESUMO

Electroconvulsive therapy (ECT) has been used clinically since 1938. Its most common use is in the treatment of depression: first line treatment where rapid recovery is a priority, but more frequently as an effective treatment for patients who do not respond to pharmacological and psychological approaches. Whilst it is widely hailed as an effective treatment, concerns about its effect on cognition remain. The development of magnetic seizure therapy (MST) over the past decade has attempted to devise a therapy with comparable efficacy to ECT, but without the associated cognitive side effects. The rationale for this is that MST uses magnetic fields to induce seizures in the cortex, without electrical stimulation of brain structures involved with memory. MST has been used successfully in the treatment of depression, yet there is a dearth of literature in comparison with ECT. We present a systematic review of the literature on ECT (from 2009-2011) and MST (from 2001-2011).


Assuntos
Córtex Cerebral , Cognição/efeitos da radiação , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia , Estimulação Magnética Transcraniana , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Ensaios Clínicos como Assunto , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/metabolismo , Resistência a Medicamentos , Eletroconvulsoterapia/efeitos adversos , Eletroconvulsoterapia/instrumentação , Eletroconvulsoterapia/métodos , Eletrodos , Radiação Eletromagnética , Neuroimagem Funcional/métodos , Humanos , Seleção de Pacientes , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos da radiação , Recidiva , Convulsões/etiologia , Transmissão Sináptica/efeitos da radiação , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/instrumentação , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
16.
PLoS One ; 6(4): e18452, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21483674

RESUMO

The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Halorrodopsinas/metabolismo , Luz , Transmissão Sináptica/efeitos da radiação , Córtex Visual/fisiologia , Córtex Visual/efeitos da radiação , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Axônios/metabolismo , Axônios/efeitos da radiação , Expressão Gênica , Células HEK293 , Halobacteriaceae , Halorrodopsinas/genética , Humanos , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Colículos Superiores/fisiologia , Colículos Superiores/efeitos da radiação , Córtex Visual/citologia , Córtex Visual/metabolismo
17.
Prog Neurobiol ; 89(2): 134-52, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19595736

RESUMO

Neuroactive steroids refer to steroids that are capable of regulating neuronal activities. Neuroactive steroids, synthesized either de novo in the nervous tissue or in the peripheral endocrine glands or as synthetic steroids, have exhibited numerous important modulatory effects on brain functions and brain diseases. At the cellular level, in addition to the effect on postsynaptic receptors, most neuroactive steroids, including pregnenolone, pregnenolone sulfate, progesterone, allopregnanolone, dehydroepiandrosterone, dehydroepiandrosterone sulfate, testosterone and estradiol, have modulatory effects on the release of multiple neurotransmitters like glutamate, GABA, acetylcholine, norepinephrine, dopamine and 5-HT. Many of these effects occur in the brain regions involved in learning and memory, emotion, motivation, motor and cognition. Moreover, the effects are rather complicated, maybe depending on many factors such as types of neuroactive steroids, brain regions and presynaptic functional states. The mechanisms are also complicated. Many of them involve rapid non-genomic effects on presynaptic receptors and ion channels like sigma-1 receptor, alpha(1) receptor, nicotine receptor, D1 receptor, NMDA receptor, GABA(A) receptor and L-type Ca(2+) channels. These effects have made neuroactive steroids important regulators of synaptic transmission in the central nervous system and constitute the major basis for many important actions of neuroactive steroids on brain functions and brain diseases.


Assuntos
Sistema Nervoso Central/metabolismo , Neurotransmissores/metabolismo , Esteroides/metabolismo , Transmissão Sináptica/efeitos da radiação , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Esteroides/farmacologia , Transmissão Sináptica/efeitos dos fármacos
18.
J Neurosci Methods ; 183(2): 165-75, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19560489

RESUMO

We present a method for studying synaptic transmission in mass cultures of dissociated hippocampal neurons based on patch clamp recording combined with laser stimulation of neurons expressing channelrhodopsin-2 (ChR2). Our goal was to use the high spatial resolution of laser illumination to come as close as possible to the ideal of identifying monosynaptically coupled pairs of neurons, which is conventionally done using microisland rather than mass cultures. Using recombinant adeno-associated virus (rAAV) to deliver the ChR2 gene, we focused on the time period between 14 and 20 days in vitro, during which expression levels are high, and spontaneous bursting activity has not yet started. Stimulation by wide-field illumination is sufficient to make the majority of ChR2-expressing neurons spike. Stimulation with a laser spot at least 10 microm in diameter also produces action potentials, but in a reduced fraction of neurons. We studied synaptic transmission by voltage-clamping a neuron with low expression of ChR2 and scanning a 40 microm laser spot at surrounding locations. Responses were observed to stimulation at a subset of locations in the culture, indicating spatial localization of stimulation. Pharmacological means were used to identify responses that were synaptic. Many responses were of smaller amplitude than those typically found in microisland cultures. We were unable to find an entirely reliable criterion for distinguishing between monosynaptic and polysynaptic responses. However, we propose that postsynaptic currents with small amplitudes, simple shapes, and latencies not much greater than 8 ms are reasonable candidates for monosynaptic interactions.


Assuntos
Dependovirus/genética , Lasers , Neurônios/metabolismo , Rodopsina/metabolismo , Transmissão Sináptica/efeitos da radiação , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Células Cultivadas , Hipocampo/citologia , Proteínas Luminescentes/genética , Microscopia Confocal/métodos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp , Ratos , Tempo de Reação/efeitos da radiação , Rodopsina/genética , Fatores de Tempo , Transfecção/métodos
19.
J Neurosci ; 28(35): 8810-20, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18753383

RESUMO

Movement-derived sensory feedback adapts centrally generated motor programs to changing behavioral demands. Motor circuit output may also be shaped by distinct proprioceptive systems with different central actions, although little is known about the integrative processes by which such convergent sensorimotor regulation occurs. Here, we explore the combined actions of two previously identified proprioceptors on the gastric mill motor network in the lobster stomatogastric nervous system. Both mechanoreceptors [anterior gastric receptor (AGR) and posterior stomach receptor (PSR)] access the gastric circuit via the same pair of identified projection interneurons that either excite [commissural gastric (CG)] or inhibit [gastric inhibitor (GI)] different subsets of gastric network neurons. Mechanosensory information from the two receptors is integrated upstream to the gastric circuit at two levels: (1) postsynaptically, where both receptors excite the GI neuron while exerting opposing effects on the CG neuron, and (2) presynaptically, where PSR reduces AGR's excitation of the CG projection neuron. Concomitantly PSR selectively enhances AGR's activation of the GI neuron, possibly also via a presynaptic action. PSR's influences also far outlast its transient synaptic effects, indicating the additional involvement of modulatory processes. Consequently, PSR activation causes parallel input from AGR to be conveyed preferentially via the GI interneuron, resulting in a prolonged switch in the pattern of gastric circuit output. Therefore, via a combination of short- and long-lasting, presynaptic and postsynaptic actions, one proprioceptive system is able to promote its impact on a target motor network by biasing the access of a different sensory system to the same circuit.


Assuntos
Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Vias Aferentes/fisiologia , Análise de Variância , Animais , Comportamento Animal , Linhagem Celular , Sistema Digestório/inervação , Estimulação Elétrica/métodos , Lateralidade Funcional , Técnicas In Vitro , Modelos Biológicos , Músculo Esquelético/inervação , Nephropidae , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Neurônios/classificação , Periodicidade , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
20.
Nat Neurosci ; 11(8): 901-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18622400

RESUMO

Adult neurogenesis occurs in the hippocampus and the olfactory bulb of the mammalian CNS. Recent studies have demonstrated that newborn granule cells of the adult hippocampus are postsynaptic targets of excitatory and inhibitory neurons, but evidence of synapse formation by the axons of these cells is still lacking. By combining retroviral expression of green fluorescent protein in adult-born neurons of the mouse dentate gyrus with immuno-electron microscopy, we found output synapses that were formed by labeled terminals on appropriate target cells in the CA3 area and the hilus. Furthermore, retroviral expression of channelrhodopsin-2 allowed us to light-stimulate newborn granule cells and identify postsynaptic target neurons by whole-cell recordings in acute slices. Our structural and functional evidence indicates that axons of adult-born granule cells establish synapses with hilar interneurons, mossy cells and CA3 pyramidal cells and release glutamate as their main neurotransmitter.


Assuntos
Giro Denteado/citologia , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Giro Denteado/metabolismo , Giro Denteado/virologia , Feminino , Antagonistas GABAérgicos/farmacologia , Técnicas de Transferência de Genes , Genes Reporter , Ácido Glutâmico/metabolismo , Humanos , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Luz , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Leucemia Murina de Moloney/genética , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/ultraestrutura , Fibras Musgosas Hipocampais/virologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Estimulação Luminosa , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/genética , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA