Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
1.
Stem Cell Res Ther ; 14(1): 189, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507794

RESUMO

BACKGROUND: Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.


Assuntos
Transplante de Tecido Encefálico , Células-Tronco Embrionárias Humanas , Doença de Huntington , Ratos , Animais , Humanos , Doença de Huntington/terapia , Corpo Estriado/fisiologia , Neurônios , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 119(29): e2110746119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858361

RESUMO

Intraneuronal inclusions of misfolded α-synuclein (α-syn) and prion-like spread of the pathologic α-syn contribute to progressive neuronal death in Parkinson's disease (PD). Despite the pathologic significance, no efficient therapeutic intervention targeting α-synucleinopathy has been developed. In this study, we provide evidence that astrocytes, especially those cultured from the ventral midbrain (VM), show therapeutic potential to alleviate α-syn pathology in multiple in vitro and in vivo α-synucleinopathic models. Regulation of neuronal α-syn proteostasis underlies the therapeutic function of astrocytes. Specifically, VM-derived astrocytes inhibited neuronal α-syn aggregation and transmission in a paracrine manner by correcting not only intraneuronal oxidative and mitochondrial stresses but also extracellular inflammatory environments, in which α-syn proteins are prone to pathologic misfolding. The astrocyte-derived paracrine factors also promoted disassembly of extracellular α-syn aggregates. In addition to the aggregated form of α-syn, VM astrocytes reduced total α-syn protein loads both by actively scavenging extracellular α-syn fibrils and by a paracrine stimulation of neuronal autophagic clearance of α-syn. Transplantation of VM astrocytes into the midbrain of PD model mice alleviated α-syn pathology and protected the midbrain dopamine neurons from neurodegeneration. We further showed that cografting of VM astrocytes could be exploited in stem cell-based therapy for PD, in which host-to-graft transmission of α-syn pathology remains a critical concern for long-term cell therapeutic effects.


Assuntos
Astrócitos , Transplante de Tecido Encefálico , Doença de Parkinson , Proteostase , alfa-Sinucleína , Animais , Astrócitos/transplante , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/patologia , Mesencéfalo/cirurgia , Camundongos , Doença de Parkinson/patologia , Doença de Parkinson/terapia , alfa-Sinucleína/metabolismo
4.
Stem Cell Res Ther ; 12(1): 376, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215315

RESUMO

BACKGROUND: There is a huge controversy about whether xenograft or allograft in the "immune-privileged" brain needs immunosuppression. In animal studies, the prevailing sophisticated use of immunosuppression or immunodeficient animal is detrimental for the recipients, which results in a short lifespan of animals, confounds functional behavioral readout of the graft benefits, and discourages long-term follow-up. METHODS: Neuron-restricted neural progenitor cells (NPCs) were derived from human embryonic stem cells (ESCs, including H1, its gene-modified cell lines for better visualization, and HN4), propagated for different passages, and then transplanted into the brain of immunocompetent rats without immunosuppressants. The graft survivals, their cell fates, and HLA expression levels were examined over time (up to 4 months after transplantation). We compared the survival capability of NPCs from different passages and in different transplantation sites (intra-parenchyma vs. para- and intra-cerebroventricle). The host responses to the grafts were also investigated. RESULTS: Our results show that human ESC-derived neuron-restricted NPCs survive extendedly in adult rat brain parenchyma with no need of immunosuppression whereas a late-onset graft rejection seems inevitable. Both donor HLA antigens and host MHC-II expression level remain relatively low with little change over time and cannot predict the late-onset rejection. The intra-/para-cerebroventricular human grafts are more vulnerable to the immune attack than the intrastriatal counterparts. Prevention of graft hyperplasia by using hypoproliferative late passaged human NPCs further significantly extends the graft survival time. Our new data also shows that a subpopulation of host microglia upregulate MHC-II expression in response to the human graft, but fail to present the human antigen to the host immune system, suggestive of the immune-isolation role of the blood-brain barrier (BBB). CONCLUSIONS: The present study confirms the "immune privilege" of the brain parenchyma and, more importantly, unveils that choosing hypoproliferative NPCs for transplantation can benefit graft outcome in terms of both lower tumor-genic risk and the prolonged survival time without immunosuppression.


Assuntos
Transplante de Tecido Encefálico , Células-Tronco Neurais , Animais , Encéfalo , Rejeição de Enxerto , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Ratos , Ratos Sprague-Dawley
5.
Mol Neurobiol ; 58(6): 2481-2493, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33443682

RESUMO

Spinal cord injury (SCI) is a disabling neurological disorder that causes neural circuit dysfunction. Although various therapies have been applied to improve the neurological outcomes of SCI, little clinical progress has been achieved. Stem cell-based therapy aimed at restoring the lost cells and supporting micromilieu at the site of the injury has become a conceptually attractive option for tissue repair following SCI. Adult human neural stem/progenitor cells (hNS/PCs) were obtained from the epileptic human brain specimens. Induction of SCI was followed by the application of lentiviral vector-mediated green fluorescent protein-labeled hNS/PCs seeded in PuraMatrix peptide hydrogel (PM). The co-application of hNS/PCs and PM at the SCI injury site significantly enhanced cell survival and differentiation, reduced the lesion volume, and improved neurological functions compared to the control groups. Besides, the transplanted hNS/PCs seeded in PM revealed significantly higher migration abilities into the lesion site and the healthy host tissue as well as a greater differentiation into astrocytes and neurons in the vicinity of the lesion as well as in the host tissue. Our data suggest that the transplantation of hNS/PCs seeded in PM could be a promising approach to restore the damaged tissues and improve neurological functions after SCI.


Assuntos
Transplante de Tecido Encefálico , Epilepsia/patologia , Vetores Genéticos/metabolismo , Lentivirus/metabolismo , Células-Tronco Neurais/metabolismo , Peptídeos/química , Traumatismos da Medula Espinal/patologia , Transdução Genética , Animais , Encéfalo/patologia , Sobrevivência Celular , Proteínas do Domínio Duplacortina , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos Wistar , Recuperação de Função Fisiológica , Alicerces Teciduais/química
6.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752261

RESUMO

Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other's axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.


Assuntos
Tronco Encefálico/transplante , Transplante de Tecido Encefálico/métodos , Regeneração Nervosa/fisiologia , Paraplegia/cirurgia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/cirurgia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Tronco Encefálico/embriologia , Clonidina/farmacologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Locomoção/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Paraplegia/fisiopatologia , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Ioimbina/farmacologia
7.
CNS Neurosci Ther ; 26(7): 682-697, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32087606

RESUMO

BACKGROUND AND PURPOSE: Cerebral organoids (COs) have been used for studying brain development, neural disorders, and species-specific drug pharmacology and toxicology, but the potential of COs transplantation therapy for brain injury remains to be answered. METHODS: With preparation of traumatic brain injury (TBI) model of motor dysfunction, COs at 55 and 85 days (55 and 85 d-CO) were transplanted into damaged motor cortex separately to identify better transplantation donor for brain injury. Further, the feasibility, effectiveness, and underlying mechanism of COs transplantation therapy for brain injury were explored. RESULTS: 55 d-CO was demonstrated as better transplantation donor than 85 d-CO, evidenced by more neurogenesis and higher cell survival rate without aggravating apoptosis and inflammation after transplantation into damaged motor cortex. Cells from transplanted COs had the potential of multilinage differentiation to mimic in-vivo brain cortical development, support region-specific reconstruction of damaged motor cortex, form neurotransmitter-related neurons, and migrate into different brain regions along corpus callosum. Moreover, COs transplantation upregulated hippocampal neural connection proteins and neurotrophic factors. Notably, COs transplantation improved neurological motor function and reduced brain damage. CONCLUSIONS: This study revealed 55 d-CO as better transplantation donor and demonstrated the feasibility and efficacy of COs transplantation in TBI, hoping to provide first-hand preclinical evidence of COs transplantation for brain injury.


Assuntos
Lesões Encefálicas/terapia , Transplante de Tecido Encefálico/métodos , Células-Tronco Embrionárias/transplante , Transtornos das Habilidades Motoras/terapia , Organoides/transplante , Animais , Lesões Encefálicas/fisiopatologia , Movimento Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Humanos , Masculino , Destreza Motora/fisiologia , Transtornos das Habilidades Motoras/fisiopatologia , Neurogênese/fisiologia , Organoides/fisiologia , Ratos , Ratos Sprague-Dawley
8.
J Neurosci ; 40(11): 2215-2227, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988060

RESUMO

Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.


Assuntos
Transtorno Autístico/cirurgia , Transplante de Tecido Encefálico , Transplante de Tecido Fetal , Neurônios GABAérgicos/fisiologia , Interneurônios/transplante , Inibição Neural/fisiologia , PTEN Fosfo-Hidrolase/deficiência , Comportamento Social , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Eletroencefalografia , Comportamento Exploratório , Feminino , Masculino , Aprendizagem em Labirinto , Eminência Mediana/citologia , Eminência Mediana/embriologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Sinapses/fisiologia
9.
Cell Stem Cell ; 25(4): 462-472, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585092

RESUMO

Recent demonstrations of human brain organoid transplantation in rodents have accentuated ethical concerns associated with these entities, especially as they relate to potential "humanization" of host animals. Consideration of established scientific principles can help define the realistic range of expected outcomes in such transplantation studies. This practical approach suggests that augmentation of discrete brain functions in transplant hosts is a more relevant ethical question in the near term than the possibility of "conscious" chimeric animals. We hope that this framework contributes to a balanced approach for proceeding with studies involving brain organoid transplantation and other forms of human-animal brain chimeras.


Assuntos
Transplante de Tecido Encefálico/ética , Encéfalo/fisiologia , Quimera/fisiologia , Estado de Consciência/fisiologia , Organoides/transplante , Animais , Modelos Animais de Doenças , Ética em Pesquisa , Humanos , Camundongos , Organoides/fisiologia , Guias de Prática Clínica como Assunto , Ratos , Transplante Heterólogo
10.
Biomaterials ; 192: 510-522, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529870

RESUMO

Stroke, traumatic brain injuries, and other similar conditions often lead to significant loss of functional brain tissue and associated disruption of neuronal signaling. A common strategy for replacing lost neurons is the injection of dissociated neural stem cells or differentiated neurons. However, this method is unlikely to be suitable for replacing large brain cavities, and the resulting distribution of neurons may lack the necessary architecture to support appropriate brain function. Engineered neural tissues may be a viable alternative. Cell death is a prominent concern in neuronal grafting studies, a problem that could be magnified with the transplantation of engineered neural tissues. Here, we examined the effect of one contributor to cell death, acute cerebral inflammation, on neuronal survival after the transplantation of bioengineered constructs based on silk scaffolds. We found evidence of a high degree of inflammation and poor neuronal survival after introducing engineered constructs into the motor cortex of rats. Integrating a corticosteroid (methylprednisolone) into the constructs resulted in significantly improved neuron survival during the acute phase of inflammation. The improved construct survival was associated with decreased markers of inflammation and an anti-inflammatory state of the immune system due to the steroid treatment.


Assuntos
Transplante de Tecido Encefálico/métodos , Inflamação/prevenção & controle , Seda/química , Alicerces Teciduais/química , Animais , Bombyx , Encéfalo/citologia , Transplante de Tecido Encefálico/efeitos adversos , Sobrevivência Celular , Células Cultivadas , Inflamação/etiologia , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Seda/uso terapêutico , Engenharia Tecidual
11.
Results Probl Cell Differ ; 66: 307-329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30209666

RESUMO

Clinical trials for Parkinson's disease, which used primary brain fetal tissue, have demonstrated that neural stem cell therapy could be suitable for neurodegenerative diseases. The use of fetal tissue presents several issues that have hampered the clinical development of this approach. In addition to the ethical concerns related to the required continuous supply of fetal specimen, the necessity to use cells from multiple fetuses in a single graft greatly compounded the problem. Cell viability and composition vary in different donors, and, further, the heterogeneity in the donor cells increased the probability of immunological rejection or contamination. An ideal cell source for cell therapy is one that is renewable, thus eliminating the need for transplantation of primary fetal tissue, and that also allows for viability, sterility, cell composition, and cell maturation to be controlled, while being inherently not tumorigenic. The availability of continuous and standardized clinical grade normal human neural cells, able to combine the plasticity of fetal tissue with an extensive proliferating capacity and functional stability, would be of paramount importance for the translation of cell therapy for central nervous system (CNS) disorders into the clinic. Here we describe a well-established protocol to produce human neural stem cells following GMP guidelines that allows us to obtain "clinical grade" cell lines.


Assuntos
Transplante de Tecido Fetal , Feto/citologia , Células-Tronco Neurais/citologia , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco , Transplante de Tecido Encefálico , Linhagem Celular , Humanos , Doenças Neurodegenerativas/patologia
12.
Handb Clin Neurol ; 155: 379-391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29891073

RESUMO

Neurotransplantation may be a promising approach for therapy of cerebellar diseases characterized by a substantial loss of neurons. Neurotransplantation could rescue neurons from degeneration and maintain cerebellar reserve, facilitate cerebellar compensation, or help reconstruct damaged neural circuits by cell substitution. These mechanisms of action can be of varying importance according to the type of cerebellar disease. Neurotransplantation therapy in cerebellar ataxias is still at the stage of experimental studies. There is currently little knowledge regarding cerebellar patients. Nevertheless, data provided by experiments in animal models of cerebellar degeneration and both clinical studies and experiences in patients with other neurologic diseases enable us to suggest basic principles, expectations, limitations, and future directions of neurotransplantation therapy for cerebellar diseases.


Assuntos
Transplante de Tecido Encefálico/métodos , Ataxia Cerebelar/cirurgia , Animais , Modelos Animais de Doenças , Humanos
13.
J Tissue Eng Regen Med ; 12(7): 1702-1716, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29766664

RESUMO

The classic motor deficits of Parkinson's disease are caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in the loss of their long-distance axonal projections that modulate the striatum. Current treatments only minimize the symptoms of this disconnection as there is no approach capable of replacing the nigrostriatal pathway. We are applying microtissue engineering techniques to create living, implantable constructs that mimic the architecture and function of the nigrostriatal pathway. These constructs consist of dopaminergic neurons with long axonal tracts encased within hydrogel microcolumns. Microcolumns were seeded with dopaminergic neuronal aggregates, while lumen extracellular matrix, growth factors, and end targets were varied to optimize cytoarchitecture. We found a 10-fold increase in axonal outgrowth from aggregates versus dissociated neurons, resulting in remarkable axonal lengths of over 6 mm by 14 days and 9 mm by 28 days in vitro. Axonal extension was also dependent upon lumen extracellular matrix, but did not depend on growth factor enrichment or neuronal end target presence. Evoked dopamine release was measured via fast scan cyclic voltammetry and synapse formation with striatal neurons was observed in vitro. Constructs were microinjected to span the nigrostriatal pathway in rats, revealing survival of implanted neurons while maintaining their axonal projections within the microcolumn. Lastly, these constructs were generated with dopaminergic neurons differentiated from human embryonic stem cells. This strategy may improve Parkinson's disease treatment by simultaneously replacing lost dopaminergic neurons in the substantia nigra and reconstructing their long-projecting axonal tracts to the striatum.


Assuntos
Transplante de Tecido Encefálico , Corpo Estriado , Neurônios Dopaminérgicos , Doença de Parkinson , Substância Negra , Engenharia Tecidual , Animais , Linhagem Celular , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/transplante , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/transplante , Feminino , Xenoenxertos , Humanos , Masculino , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/transplante
14.
Exp Neurol ; 297: 118-128, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28760579

RESUMO

Degeneration of the striatum can occur in multiple disorders with devastating consequences for the patients. Infantile infections with streptococcus, measles, or herpes can cause striatal necrosis associated with dystonia or dyskinesia; and in patients with Huntington's disease the striatum undergoes massive degeneration, leading to behavioral, psychological and movement issues, ultimately resulting in death. Currently, only supportive therapies are available for striatal degeneration. Clinical trials have shown some efficacy using transplantation of fetal-derived primary striatal progenitors. Large banks of fetal progenitors that give rise to medium spiny neurons (MSNs), the primary neuron of the striatum, are needed to make transplantation therapy a reality. However, fetal tissue is of limited supply, has ethical concerns, and is at risk of graft immunorejection. An alternative potential source of MSNs is induced pluripotent stem cells (iPSCs), adult somatic tissues reprogrammed back to a stem cell fate. Multiple publications have demonstrated the ability to differentiate striatal MSNs from iPSCs. Previous publications have demonstrated that the efficacy of fetal progenitor transplants is critically dependent upon the age of the donor embryo/fetus as well as the age of the transplant recipient. With the advent of iPSC technology, a question that remains unanswered concerns the graft's "age," which is crucial since transplanting pluripotent cells has an inherent risk of over proliferation and teratoma formation. Therefore, in order to also determine the effect of transplant recipient age on the graft, iPSCs were differentiated to three stages along a striatal differentiation paradigm and transplanted into the striatum of both neonatal and adult immunodeficient mice. This study demonstrated that increased murine transplant-recipient age (adult vs neonate) resulted in decreased graft survival and volume/rostro-caudal spread after six weeks in vivo, regardless of "age" of the cells transplanted. Importantly, this study implicates that the in vivo setting may provide a better neurogenic niche for iPSC-based modeling as compared to the in vitro setting. Together, these results recapitulate findings from fetal striatal progenitor transplantation studies and further demonstrate the influence of the host environment on cellular survival and maturation.


Assuntos
Transplante de Tecido Encefálico/métodos , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/imunologia , Sobrevivência de Enxerto/fisiologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/transplante , Fatores Etários , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
15.
Prog Brain Res ; 230: 1-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552225

RESUMO

Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery.


Assuntos
Transplante de Tecido Encefálico , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos , Animais , Humanos
16.
Adv Exp Med Biol ; 978: 443-475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523560

RESUMO

Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).


Assuntos
Encefalopatias/terapia , Avaliação Pré-Clínica de Medicamentos/métodos , Epigênese Genética , Doenças Genéticas Inatas/terapia , Doenças Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Encefalopatias/genética , Transplante de Tecido Encefálico , Modelos Animais de Doenças , Transplante de Tecido Fetal , Previsões , Doenças Genéticas Inatas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Medicina Regenerativa/tendências , Pesquisa com Células-Tronco , Transplante de Células-Tronco/métodos
17.
Int J Surg ; 41: 190-195, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110028

RESUMO

Transplanting a head and brain is perhaps the final frontier of organ transplantation. The goal of body-to-head transplantation (BHT) is to sustain the life of individuals who suffer from terminal disease, but whose head and brain are healthy. Ideally BHT could provide a lifesaving treatment for several conditions where none currently exists. BHT is no ordinary experiment, to transfer a head to another body involves extraordinarily complex medical challenges as well as ethical and existential dilemmas that were previously confined to the imagination of writers of fiction. The possibility of replacing an incurably ill body with a healthy one tests not only our surgical limits, but also the social and psychological boundaries of physical life and alters what we recognize life to be. The purpose of this target article, the complementary manuscript focused on immunological issues in BHT, and the accompanying Commentaries by scholars and practitioners in medicine, immunology, and bioethics is to review major surgical and psychosocial-ethical and immunological considerations surrounding body-to-head transplantation. We hope that together these ideas will provide readers with a comprehensive overview of the possibilities and challenges associated with BHT and initiate professional discussion and debate through which this new frontier in medicine is considered and approached.


Assuntos
Transplante de Tecido Encefálico/ética , Cabeça/cirurgia , Transplante de Órgãos/ética , Transplante Homólogo/ética , Transplante de Tecido Encefálico/psicologia , Corpo Humano , Humanos , Transplante de Órgãos/psicologia , Transplante Homólogo/psicologia
18.
Int J Surg ; 41: 196-202, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28130190

RESUMO

The idea of head transplantation appears at first as unrealistic, unethical, and futile. Here we discuss immunological considerations in human head transplantation. In a separate accompanying article we discuss surgical, ethical, and psychosocial issues concerned in body-to-head transplantation (BHT) [1]. The success of such an unusual allograft, where the donor and the recipient can reject each other, depends on prevention of complex immunologic reactions, especially rejection of the head by the body (graft-vs-host) or probably less likely, the possibility of the head rejecting the total body allograft (host-vs-graft). The technical and immunologic difficulties are enormous, especially since rapid nerve and cord connections and regeneration have not yet been possible to achieve. In this article we begin by briefly reviewing neuro-immunologic issues that may favor BHT such as the blood brain barrier (BBB) and point out its shortcomings. And we touch on the cellular and humoral elements in the brain proper that differ in some respects from those in other organs and in the periphery. Based on recent successes in vascular composite allografts (VCAs), we will elaborate on potential specific advantages and difficulties in BHT of various available immunosuppressive medications already utilized in VCAs. The risk/benefit ratio of these drugs will be emphasized in relation to direct brain toxicity such as seizure disorders, interference, or promotion of nerve regeneration, and potentiation of cerebral viral infections. The final portion of this article will focus on pre-transplant immunologic manipulation of the deceased donor body along with pretreatment of the recipient.


Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Cabeça , Transplante de Órgãos/métodos , Transplante de Tecido Encefálico/métodos , Humanos , Imunossupressores/uso terapêutico , Doadores de Tecidos , Transplante Homólogo/métodos
19.
Neuropathology ; 37(3): 275-281, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27925304

RESUMO

Over 60% of all patients with dura mater graft-associated Creutzfeldt-Jakob disease (dCJD) have been diagnosed in Japan. The incubation period has ranged from 1 to 30 years and the age at onset from 15 to 80 years. Here, we report a 77-year-old male Japanese autopsied dCJD case with the longest incubation period so far in Japan. He received a cadaveric dural graft at the right cranial convexity following a craniotomy for meningioma at the age of 46. At 30 years post-dural graft placement, disorientation was observed as an initial symptom of dCJD. He rapidly began to present with inconsistent speech, cognitive impairment and tremor of the left upper extremity. Occasional myoclonic jerks were predominantly observed on the left side. Brain MRI presented hyperintense signals on diffusion-weighted and T2-weighted images, at the right cerebral cortex. The most hyperintense lesion was located at the right parietal lobe, where the dura mater graft had been transplanted. Single-photon emission CT scan showed markedly decreased cerebral blood flow at the right parietal lobe. EEG revealed diffuse and slow activities with periodic sharp-wave complex discharges seen in the right parietal, temporal and occipital lobes. He died of pneumonia 9 months after onset. Brain pathology revealed non-plaque-type dCJD. Laterality of neuropathological changes, including spongiform change, neuronal loss, gliosis or PrP deposits, was not evident. Western blot analysis showed type 1 PrPCJD . Alzheimer-type pathology and PSP-like pathology were also observed.


Assuntos
Aloenxertos/patologia , Transplante de Tecido Encefálico/efeitos adversos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patologia , Dura-Máter/transplante , Idoso , Aloenxertos/diagnóstico por imagem , Povo Asiático , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Humanos , Japão , Masculino , Proteínas Priônicas/metabolismo , Transplante Homólogo/efeitos adversos
20.
Surgery ; 160(1): 5-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143608

RESUMO

Cephalosomatic anastomosis requires neuroprotective techniques, such as deep hypothermia, to preserve brain activity. Despite the failure of pharmacologic neuroprotection, new strategies, including ischemic pre- and postconitioning and the use of Perftoran, have to be explored to complement hypothermia. This article summarizes the field of brain protection during CSA and these promising strategies.


Assuntos
Transplante de Tecido Encefálico/métodos , Encéfalo/irrigação sanguínea , Animais , Fluorocarbonos/uso terapêutico , Humanos , Hipotermia Induzida , Precondicionamento Isquêmico , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA