Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(8): 168038, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889459

RESUMO

The human ATP-binding cassette (ABC) transporter ABCA1 plays a critical role in lipid homeostasis as it extracts sterols and phospholipids from the plasma membrane for excretion to the extracellular apolipoprotein A-I and subsequent formation of high-density lipoprotein (HDL) particles. Deleterious mutations of ABCA1 lead to sterol accumulation and are associated with atherosclerosis, poor cardiovascular outcomes, cancer, and Alzheimer's disease. The mechanism by which ABCA1 drives lipid movement is poorly understood, and a unified platform to produce active ABCA1 protein for both functional and structural studies has been missing. In this work, we established a stable expression system for both a human cell-based sterol export assay and protein purification for in vitro biochemical and structural studies. ABCA1 produced in this system was active in sterol export and displayed enhanced ATPase activity after reconstitution into a lipid bilayer. Our single-particle cryo-EM study of ABCA1 in nanodiscs showed protein induced membrane curvature, revealed multiple distinct conformations, and generated a structure of nanodisc-embedded ABCA1 at 4.0-Å resolution representing a previously unknown conformation. Comparison of different ABCA1 structures and molecular dynamics simulations demonstrates both concerted domain movements and conformational variations within each domain. Taken together, our platform for producing and characterizing ABCA1 in a lipid membrane enabled us to gain important mechanistic and structural insights and paves the way for investigating modulators that target the functions of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Membrana Celular , Lipídeos de Membrana , Imagem Individual de Molécula , Esteróis , Humanos , Apolipoproteína A-I/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membrana Celular/química , Fosfolipídeos/química , Esteróis/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Mutação , Bicamadas Lipídicas/química , Imagem Individual de Molécula/métodos
2.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445501

RESUMO

Lipid dysregulation in diabetes mellitus escalates endothelial dysfunction, the initial event in the development and progression of diabetic atherosclerosis. In addition, lipid-laden macrophage accumulation in the arterial wall plays a significant role in the pathology of diabetes-associated atherosclerosis. Therefore, inhibition of endothelial dysfunction and enhancement of macrophage cholesterol efflux is the important antiatherogenic mechanism. Rosmarinic acid (RA) possesses beneficial properties, including its anti-inflammatory, antioxidant, antidiabetic and cardioprotective effects. We previously reported that RA effectively inhibits diabetic endothelial dysfunction by inhibiting inflammasome activation in endothelial cells. However, its effect on cholesterol efflux remains unknown. Therefore, in this study, we aimed to assess the effect of RA on cholesterol efflux and its underlying mechanisms in macrophages. RA effectively reduced oxLDL-induced cholesterol contents under high glucose (HG) conditions in macrophages. RA enhanced ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) expression, promoting macrophage cholesterol efflux. Mechanistically, RA differentially regulated ABCA1 expression through JAK2/STAT3, JNK and PKC-p38 and ABCG1 expression through JAK2/STAT3, JNK and PKC-ERK1/2/p38 in macrophages. Moreover, RA primarily stabilized ABCA1 rather than ABCG1 protein levels by impairing protein degradation. These findings suggest RA as a candidate therapeutic to prevent atherosclerotic cardiovascular disease complications related to diabetes by regulating cholesterol efflux in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Glucose/efeitos adversos , Lipoproteínas LDL/efeitos adversos , Macrófagos/citologia , Transportador 1 de Cassete de Ligação de ATP/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Biológicos , Proteólise/efeitos dos fármacos , Transdução de Sinais , Células THP-1 , Ácido Rosmarínico
3.
Inflamm Bowel Dis ; 27(10): 1661-1673, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33609028

RESUMO

BACKGROUND: Liver X receptor (LXR) exerts anti-inflammatory effects in macrophages. The aim of this study was to explore the expression and function of LXR in the colonic epithelium under inflammatory conditions. METHODS: The expression of LXR was explored by Western blot and immunohistochemistry in colonic biopsies from patients diagnosed with inflammatory bowel disease (IBD) and control patients. In addition, LXR and its target gene expression were analyzed in the colon from interleukin (IL)-10-deficient (IL-10-/-) and wild-type mice. Caco-2 cells were pretreated with the synthetic LXR agonist GW3965 and further challenged with IL-1ß, the expression of IL-8 and chemokine (C-C motif) ligand (CCL)-28 chemokines, the activation of mitogen-activated protein (MAP) kinases, and the nuclear translocation of the p65 subunit of nuclear factor kappa B was evaluated. Glibenclamide was used as an ABCA1 antagonist. RESULTS: We found that LXR expression was downregulated in colonic samples from patients with IBD and IL-10-/- mice. The nuclear positivity of LXR inversely correlated with ulcerative colitis histologic activity. Colonic IL-1ß mRNA levels negatively correlated with both LXRα and LXRß in the colon of IL-10-/- mice, where a decreased mRNA expression of the LXR target genes ABCA1 and FAS was shown. In addition, IL-1ß decreased the expression of the LXR target gene ABCA1 in cultured intestinal epithelial cells. The synthetic LXR agonist GW3965 led to a decreased nuclear positivity of the p65 subunit of nuclear factor kappa B, a phosphorylation ratio of the p44-42 MAP kinase, and the expression of CCL-28 and IL-8 in IL-1ß-stimulated Caco-2 cells. The pharmacological inhibition of ABCA1 increased the phosphorylation of p44-42 after GW3965 treatment and IL-1ß stimulation. CONCLUSIONS: The LXR-ABCA1 pathway exerts anti-inflammatory effects in intestinal epithelial cells and is impaired in the colonic mucosa of patients with IBD and IL-10-/- mice.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Anti-Inflamatórios , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Células Epiteliais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10 , Interleucina-8/genética , Interleucina-8/metabolismo , Receptores X do Fígado , Camundongos , NF-kappa B , Receptores Nucleares Órfãos/genética , RNA Mensageiro
4.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066695

RESUMO

The ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound exporter protein involved in regulating serum HDL level by exporting cholesterol and phospholipids to load up in lipid-poor ApoA-I and ApoE, which allows the formation of nascent HDL. Mutations in the ABCA1 gene, when presents in both alleles, disrupt the canonical function of ABCA1, which associates with many disorders related to lipid transport. Although many studies have reported the phenotypic effects of a large number of ABCA1 variants, the pathological effect of non-synonymous polymorphisms (nsSNPs) in ABCA1 remains elusive. Therefore, aiming at exploring the structural and functional consequences of nsSNPs in ABCA1, in this study, we employed an integrated computational approach consisting of nine well-known in silico tools to identify damaging SNPs and molecular dynamics (MD) simulation to get insights into the magnitudes of the damaging effects. In silico tools revealed four nsSNPs as being most deleterious, where the two SNPs (G1050V and S1067C) are identified as the highly conserved and functional disrupting mutations located in the NBD1 domain. MD simulation suggested that both SNPs, G1050V and S1067C, changed the overall structural flexibility and dynamics of NBD1, and induced substantial alteration in the structural organization of ATP binding site. Taken together, these findings direct future studies to get more insights into the role of these variants in the loss of the ABCA1 function.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Fenótipo , Ligação Proteica
5.
J Mol Biol ; 432(17): 4922-4941, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687853

RESUMO

Cholesterol homeostasis results from a delicate interplay between influx and efflux of free cholesterol primarily mediated by ABCA1. Here we report downregulation of ABCA1 in hyper-cholesterol conditions in macrophages, which might be responsible for compromised reverse cholesterol transport and hyperlipidemia. Surprisingly, this is countered by the upregulation of a lesser known family member ABCA5 to maintain cholesterol efflux. The relative contribution of ABCA1 and ABCA5 toward cholesterol efflux was evaluated and revealed ABCA5 as the primary efflux mediator under high cholesterol load. These observations were correlated to cholesterol load in circulation in vivo, and we observed an inverse expression profile in mice models of atherosclerosis (ApoE-/-) and hyperlipidemia (PPARα-/-) in response to high cholesterol diet. Observations were further validated in human plasma samples. Simulation studies revealed a unique conformation of ABCA5 proposing a favored route for cholesterol loading onto high-density lipoproteins for reverse cholesterol transport. Thus, our study implicates a functional complementation between these two transporters, formulating an efficient strategy to maintain efflux in cholesterol excess conditions in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/sangue , Dislipidemias/metabolismo , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Dislipidemias/induzido quimicamente , Dislipidemias/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Células RAW 264.7 , Células THP-1
6.
Cells ; 8(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234415

RESUMO

Single nucleotide polymorphisms located in 5' untranslated regions (5'UTRs) can regulate gene expression and have clinical impact. Recognition of functionally significant sequences within 5'UTRs is crucial in next-generation sequencing applications. Furthermore, information about the behavior of 5'UTRs during gene evolution is scarce. Using the example of the ATP-binding cassette transporter A1 (ABCA1) gene (Tangier disease), we describe our algorithm for functionally significant sequence finding. 5'UTR features (upstream start and stop codons, open reading frames (ORFs), GC content, motifs, and secondary structures) were studied using freely available bioinformatics tools in 55 vertebrate orthologous genes obtained from Ensembl and UCSC. The most conserved sequences were suggested as hot spots. Exon and intron enhancers and silencers (sc35, ighg2 cgamma2, ctnt, gh-1, and fibronectin eda exon), transcription factors (TFIIA, TATA, NFAT1, NFAT4, and HOXA13), some of them cancer related, and microRNA (hsa-miR-4474-3p) were localized to these regions. An upstream ORF, overlapping with the main ORF in primates and possibly coding for a small bioactive peptide, was also detected. Moreover, we showed several features of 5'UTRs, such as GC content variation, hairpin structure conservation or 5'UTR segmentation, which are interesting from a phylogenetic point of view and can stimulate further evolutionary oriented research.


Assuntos
Regiões 5' não Traduzidas/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Vertebrados/genética , Transportador 1 de Cassete de Ligação de ATP/química , Sequência de Aminoácidos , Animais , Composição de Bases/genética , Sequência de Bases , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Humanos , Íntrons/genética , Mamíferos/genética , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Fases de Leitura Aberta/genética , Filogenia , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Lipid Res ; 60(1): 44-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249788

RESUMO

ApoA-I and ABCA1 play important roles in nascent HDL (nHDL) biogenesis, the first step in the pathway of reverse cholesterol transport that protects against cardiovascular disease. On the basis of the crystal structure of a C-terminally truncated form of apoA-I[Δ(185-243)] determined in our laboratory, we hypothesized that opening the N-terminal helix bundle would facilitate lipid binding. To that end, we structurally designed a mutant (L38G/K40G) to destabilize the N-terminal helical bundle at the first hinge region. Conformational characterization of this mutant in solution revealed minimally reduced α-helical content, a less-compact overall structure, and increased lipid-binding ability. In solution-binding studies, apoA-I and purified ABCA1 also showed direct binding between them. In ABCA1-transfected HEK293 cells, L38G/K40G had a significantly enhanced ability to form nHDL, which suggests that a destabilized N-terminal bundle facilitates nHDL formation. The total cholesterol efflux from ABCA1-transfected HEK293 cells was unchanged in mutant versus WT apoA-I, though, which suggests that cholesterol efflux and nHDL particle formation might be uncoupled events. Analysis of the particles in the efflux media revealed a population of apoA-I-free lipid particles along with nHDL. This model improves knowledge of nHDL formation for future research.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Lipoproteínas de Alta Densidade Pré-beta/biossíntese , Mutação , Transportador 1 de Cassete de Ligação de ATP/química , Apolipoproteína A-I/química , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Solubilidade
8.
Biosci Biotechnol Biochem ; 83(3): 490-497, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30458687

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is critical for the generation of nascent high-density lipoprotein (HDL) and plays important roles in cholesterol homeostasis. ABCA1 has two large extracellular domains (ECDs), which may interact directly with apolipoprotein A-I (apoA-I). However, the molecular mechanisms underlying HDL formation and the importance of ABCA1-apoA-I interactions in HDL formation remain unclear. We investigated the ABCA1-apoA-I interaction in photo-activated crosslinking experiments using sulfo-SBED-labeled apoA-I. ApoA-I bound to cells expressing ABCA1, but not to untransfected cells or cells expressing non-functional ABCA1. Binding was inhibited by sulfo-SBED-labeled apoA-I, and crosslinking of sulfo-SBED-labeled apoA-I with ABCA1 was inhibited by non-labeled apoA-I, suggesting that sulfo-SBED-labeled apoA-I specifically binds and crosslinks with functional ABCA1. Proteolytic digestion of crosslinked ABCA1 revealed that apoA-I bound the N-terminal half of ABCA1, and that the first ECD of ABCA1 is an apoA-I binding site. Abbreviations: ABC: ATP-binding cassette; apoA-I: apolipoprotein A-I; ATP: adenosine triphosphate; CHAPS: 3-(3-cholamidepropyl)dimethylammonio-1- propanesulphonate; DTT: dithiothreitol; ECD: extra cellular domain; EDTA: ethylenediaminetetraacetic acid; GFP: green fluorescent protein; HA: hemagglutinin; HDL: high density lipoprotein; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; sulfo-SBED: (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido)hexanoamido] ethyl-1,3'-dithiopropionate; NHS-ester, N-hydroxysuccinimide-ester.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Proteólise
9.
Biochim Biophys Acta Biomembr ; 1859(2): 135-145, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27814978

RESUMO

Apolipoprotein B (apoB) is a large amphipathic protein that is the structural scaffold for the formation of several classes of lipoproteins involved in lipid transport throughout the body. The goal of the present study was to identify specific domains in the apoB sequence that contribute to its lipid binding properties. A sequence analysis algorithm was developed to identify stretches of hydrophobic amino acids devoid of charged amino acids, which are referred to as hydrophobic cluster domains (HCDs). This analysis identified 78 HCDs in apoB with hydrophobic stretches ranging from 6 to 26 residues. Each HCD was analyzed in silico for secondary structure and lipid binding properties, and a subset was synthesized for experimental evaluation. One HCD peptide, B38, showed high affinity binding to both isolated HDL and LDL, and could exchange between lipoproteins. All-atom molecular dynamics simulations indicate that B38 inserts 3.7Å below the phosphate plane of the bilayer. B38 forms an unusual α-helix with a broad hydrophobic face and polar serine and threonine residues on the opposite face. Based on this structure, we hypothesized that B38 could efflux cholesterol from cells. B38 showed a 12-fold greater activity than the 5A peptide, a bihelical Class A amphipathic helix (EC50 of 0.2658 vs. 3.188µM; p<0.0001), in promoting cholesterol efflux from ABCA1 expressing BHK-1 cells. In conclusion, we have identified novel domains within apoB that contribute to its lipid biding properties. Additionally, we have discovered a unique amphipathic helix design for efficient ABCA1-specific cholesterol efflux.


Assuntos
Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Lipídeos/química , Estrutura Secundária de Proteína/fisiologia , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação/fisiologia , Células Cultivadas , HDL-Colesterol/química , HDL-Colesterol/metabolismo , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/fisiologia
10.
Biochem Biophys Res Commun ; 444(1): 19-23, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24406162

RESUMO

HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The (2226)DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Sequência de Aminoácidos , Epitopos/química , Epitopos/genética , Células HEK293 , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Técnicas do Sistema de Duplo-Híbrido
11.
J Lipid Res ; 54(7): 1939-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620136

RESUMO

Many of the apolipoproteins in HDL can elicit cholesterol efflux via ABCA1, a critical initial step in HDL formation. Recent work has indicated that omnipresent amphipathic helices play a critical role, and these have been studied intensively in the most common HDL protein, apolipoprotein (apo)A-I. However, little information exists about helical domain arrangement in other apolipoproteins. We studied two of the smallest apolipoproteins known to interact with ABCA1, human apoA-II and apoC-I, in terms of ability to reorganize phospholipid (PL) bilayers and to promote ABCA1-mediated cholesterol. We found that both proteins contained helical domains that were fast and slow with respect to solubilizing PL. ABCA1-medated efflux required a minimum of a bihelical polypeptide comprised of at least one each of a slow and fast lipid reorganizing domain. In both proteins, the fast helix was located at the C terminus preceded by a slow helix. Helical placement in apoC-I was not critical for ABCA1 activity, but helix swaps in apoA-II dramatically disrupted cholesterol efflux, indicating that the tertiary structure of the longer apolipoprotein is important for the pathway. This work has implications for a more complete molecular understanding of apolipoprotein-mediated cholesterol efflux.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/química , Apolipoproteína A-II/química , Apolipoproteína C-I/química , Colesterol/química , Fosfolipídeos/química , Apolipoproteína C-I/genética , Humanos , Bicamadas Lipídicas/química , Mutação Puntual , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA