Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
2.
Nat Commun ; 15(1): 4549, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811525

RESUMO

Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.


Assuntos
Astrócitos , Neoplasias Encefálicas , Neoplasias da Mama , MicroRNAs , Neurônios , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Animais , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Vesículas Extracelulares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Regulação Neoplásica da Expressão Gênica , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ácido Láctico/metabolismo , Proliferação de Células
3.
J Biol Chem ; 300(4): 107172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499151

RESUMO

The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-ß peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.


Assuntos
Transportador 2 de Aminoácido Excitatório , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Sítios de Ligação , Transportador 2 de Aminoácido Excitatório/química , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Neurônios/metabolismo , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Ligação Proteica , Peptídeos/metabolismo
4.
Neurochem Res ; 48(9): 2847-2856, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178383

RESUMO

Glial cells give rise to glioblastoma multiform as a primary brain tumor. In glioblastomas, neurons are destroyed via excitotoxicity which is the accumulation of excess glutamate in synaptic cavity. Glutamate Transporter 1 (GLT-1) is the main transporter that absorbs the excessive glutamate. Sirtuin 4 (SIRT4) was shown to have a potential protective role against excitotoxicity in previous studies. In this study, the regulation of dynamic GLT-1 expression by SIRT4 was analyzed in glia (immortalized human astrocytes) and glioblastoma (U87) cells. The expression of GLT-1 dimers and trimers were reduced and the ubiquitination of GLT-1 was increased in glioblastoma cells when SIRT4 was silenced; however GLT-1 monomer was not affected. In glia cells, SIRT4 reduction did not affect GLT-1 monomer, dimer, trimer expression or the ubiquitination of GLT-1. The phosphorylation of Nedd4-2 and the expression of PKC did not change in glioblastoma cells when SIRT4 was silenced but increased in glia cells. We also showed that SIRT4 deacetylates PKC in glia cells. In addition, GLT-1 was shown to be deacetylated by SIRT4 which might be a priority for ubiquitination. Therefore, we conclude that GLT-1 expression is regulated differently in glia and glioblastoma cells. SIRT4 activators or inhibitors of ubiquitination may be used to prevent excitotoxicity in glioblastomas.


Assuntos
Transportador 2 de Aminoácido Excitatório , Glioblastoma , Sirtuínas , Humanos , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Sirtuínas/metabolismo , Ubiquitinação , Proteólise
5.
Nat Commun ; 13(1): 4714, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953475

RESUMO

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismo
6.
Addict Biol ; 27(4): e13178, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754102

RESUMO

Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.


Assuntos
Alcoolismo , Ceftriaxona , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Ceftriaxona/metabolismo , Ceftriaxona/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Ratos , Recidiva
7.
J Parkinsons Dis ; 12(1): 295-314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34719508

RESUMO

BACKGROUND: Previous investigations have suggested that decreased expression of glutamate transporter-1 (GLT-1) is involved in glutamate excitotoxicity and contribute to the development of Parkinson's disease (PD), GLT-1 is decreased in animal models of PD. GLT-1 is mainly expressed in astrocytes, and the striatum is a GLT-1-rich brain area. OBJECTIVE: The aim was to explore the function and mechanism of astrocytic GLT-1 in PD-like changes. METHODS: In the study, PD-like changes and their molecular mechanism in rodents were tested by a behavioral assessment, micro-positron emission tomography/computed tomography (PET/CT), western blotting, immunohistochemical and immunofluorescence staining, and high performance liquid chromatography pre-column derivatization with O-pthaldialdehida after downregulating astrocytic GLT-1 in vivo and in vitro. RESULTS: In vivo, after 6 weeks of brain stereotactic injection of adeno-associated virus into the striatum, rats in the astrocytic GLT-1 knockdown group showed poorer motor performance, abnormal gait, and depression-like feature; but no olfactory disorders. The results of micro-PET/CT and western blotting indicated that the dopaminergic system was impaired in astrocytic GLT-1 knockdown rats. Similarly, tyrosine hydroxylase (TH) positive immune-staining in neurons of astrocytic GLT-1 knockdown rats showed deficit in cell count. In vitro, knockdown of astrocytic GLT-1 via RNA interference led to morphological injury of TH-positive neurons, which may be related to the abnormal calcium signal induced by glutamate accumulation after GLT-1 knockdown. Furthermore, the GLT-1 agonist ceftriaxone showed a protective effect on TH-positive neuron impairment. CONCLUSION: The present findings may shed new light in the future prevention and treatment of PD based on blocking glutamate excitotoxicity.


Assuntos
Astrócitos , Transportador 2 de Aminoácido Excitatório/metabolismo , Doença de Parkinson , Animais , Astrócitos/metabolismo , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/farmacologia , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Doença de Parkinson/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/farmacologia
8.
Brain Res Bull ; 175: 213-223, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333051

RESUMO

Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.


Assuntos
Astrócitos/patologia , Transportador 2 de Aminoácido Excitatório/genética , Histona Desacetilase 2/genética , Hiperalgesia/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Transdução de Sinais/genética , Animais , Antracenos/farmacologia , Carbamatos/farmacologia , Células Cultivadas , Etanercepte/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Neuralgia/genética , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Fator de Necrose Tumoral alfa/farmacologia
9.
Brain Res Bull ; 175: 224-233, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343641

RESUMO

Our previous finding suggests that p38 MAPK contributes to the GLT-1 upregulation during induction of brain ischemic tolerance by cerebral ischemic preconditioning (CIP), however, the underlying mechanism is still unclear. Here, we investigated the molecular mechanisms underlying the CIP-induced GLT-1 upregulation by using Western blotting, Co-immunoprecipitation (Co-IP), electrophoretic mobility shift assay (EMSA) and thionin staining in rat hippocampus CA1 subset. We found that application of BAY11-7082 (an inhibitor of NF-κB), or dihydrokainate (an inhibitor of GLT-1), or SB203580 (an inhibitor of p38 MAPK) could attenuate the CIP-induced neuronal protection in hippocampus CA1 region of rats. Moreover, CIP caused rapid activation of NF-κB, as evidenced by nuclear translocation of NF-κB p50 protein, which led to active p50/p65 dimer formation and increased DNA binding activity. GLT-1 was also increased after CIP. Pretreatment with BAY11-7082 blocked the CIP-induced GLT-1 upregulation. The above results suggest that NF-κB participates in GLT-1 up-regulation during the induction of brain ischemic tolerance by CIP. We also found that pretreatment with SB203580 caused significant reduction of NF-κB p50 protein in nucleus, NF-κB p50/p65 dimer nuclear translocation and DNA binding activity of NF-κB. Together, we conclude that p38 MAPK/NF-κB pathway participates in the mediation of GLT-1 up-regulation during the induction of brain ischemic tolerance induced by CIP.


Assuntos
Isquemia Encefálica/genética , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Precondicionamento Isquêmico , Sistema de Sinalização das MAP Quinases/genética , NF-kappa B/genética , Animais , Região CA1 Hipocampal/patologia , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Imidazóis/farmacologia , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Neuroproteção , Nitrilas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Sulfonas/farmacologia , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
10.
Cells ; 10(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34440835

RESUMO

Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.


Assuntos
Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Antagomirs/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Vesículas Extracelulares/transplante , Glioma/mortalidade , Glioma/patologia , Glioma/terapia , Interferon gama/farmacologia , Estimativa de Kaplan-Meier , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Microglia/citologia , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Regulação para Cima
11.
Sci Rep ; 11(1): 12803, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140581

RESUMO

Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease. CD68-positive bone marrow (BM)-derived cells (BMDCs) accumulate in the pathological lesion in the SOD1(G93A) ALS mouse model after BM transplantation (BMT). Therefore, we investigated whether BMDCs can be applied as gene carriers for cell-based gene therapy by employing the accumulation of BMDCs. In ALS mice, YFP reporter signals were observed in 12-14% of white blood cells (WBCs) and in the spinal cord via transplantation of BM after lentiviral vector (LV) infection. After confirmation of gene transduction by LV with the CD68 promoter in 4-7% of WBCs and in the spinal cord of ALS mice, BM cells were infected with LVs expressing glutamate transporter (GLT) 1 that protects neurons from glutamate toxicity, driven by the CD68 promoter, which were transplanted into ALS mice. The treated mice showed improvement of motor behaviors and prolonged survival. Additionally, interleukin (IL)-1ß was significantly suppressed, and IL-4, arginase 1, and FIZZ were significantly increased in the mice. These results suggested that GLT1 expression by BMDCs improved the spinal cord environment. Therefore, our gene therapy strategy may be applied to treat neurodegenerative diseases such as ALS in which BMDCs accumulate in the pathological lesion by BMT.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Células da Medula Óssea/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Técnicas de Transferência de Genes , Atividade Motora/fisiologia , Esclerose Lateral Amiotrófica/complicações , Animais , Biomarcadores/metabolismo , Transplante de Medula Óssea , Sobrevivência Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Terapia Genética , Gliose/complicações , Gliose/patologia , Gliose/fisiopatologia , Ácido Glutâmico/metabolismo , Lentivirus/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Degeneração Neural/complicações , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase-1/metabolismo , Análise de Sobrevida
12.
ACS Chem Neurosci ; 12(1): 163-175, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33315395

RESUMO

Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-ß-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Cisteína , Sistema X-AG de Transporte de Aminoácidos/genética , Ácido Aspártico , Cisteína/genética , Transportador 2 de Aminoácido Excitatório/genética , Células HeLa , Humanos , Mutagênese
13.
Neuropharmacology ; 181: 108339, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010299

RESUMO

Lead (Pb) is a neurotoxic heavy metal pollutant. Despite the efforts to reduce Pb environmental exposure and to prevent Pb poisoning, exposure in human populations persists. Studies of adults with history of childhood lead exposure have consistently demonstrated cognitive impairments that have been associated with sustained glutamate signaling. Additionally, some clinical studies have also found correlations between Pb exposure and increased proclivity to drug addiction. Thus, here we sought to investigate if developmental Pb exposure can increase propensity to alcohol consumption and relapse using an alcohol self-administration paradigm. Because Pb exposure is associated with increased glutamatergic tone, we also studied the effects on the expression of synaptic and non-synaptic glutamate transporters in brain regions associated with drug addiction such as the nucleus accumbens (NAc), dorsomedial striatum (DMS), dorsolateral striatum (DLS), and medial prefrontal cortex (mPFC). We found that while developmental Pb exposure did not increase risk for alcohol self-administration, it did play a role in relapsing to alcohol. The effects were associated with differential expression of the glutamate transporter 1 (GLT1) and the glutamate/cystine antiporter (xCT). In the NAc and DLS the expression of GLT1 was found to be significantly reduced, while no changes were found in DMS or mPFC. Contrastingly, xCT was found to be upregulated in NAc but downregulated in DLS, with no changes in DMS or mPFC. Our data suggest that lead exposure is involved in relapse to alcohol seeking, an effect that could be associated with downregulation of GLT1 and xCT in the DLS.


Assuntos
Sistema y+ de Transporte de Aminoácidos/biossíntese , Depressores do Sistema Nervoso Central/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/biossíntese , Intoxicação por Chumbo/psicologia , Autoadministração , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Química Encefálica/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Extinção Psicológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Recidiva
14.
J BUON ; 25(4): 2051-2058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099952

RESUMO

PURPOSE: The purpose of our study was to investigate the mRNA expression profile of glutamate transporter 1 (GLT-1) in different types and grades of brain tumors, such as glioblastoma multiforme, astrocytomas (pilocytic, diffuse, anaplastic), oligodendrogliomas, ependydomas, medulloblastomas, and meningiomas using Real Time Quantitative PCR technique (qRT-PCR). METHODS: A total of 66 surgically removed primary brain tumors were collected retrospectively and the total RNA was isolated from each tumor sample. cDNA was generated and GLT-1 mRNA expression was evaluated with quantitative qRT-PCR. RESULTS: The mRNA expression of GLT-1 was significantly lower in primary brain tumors when compared to control brain tissues. GLT-1 expression was inversely correlated with the tumor grade, implicating its potential role in tumor progression. GLT-1 mRNA expression was lowest in grade 4 tumors, such as glioblastoma multiforme and medulloblastomas. The tumors with grade 3 and 4 combined displayed lower expression compared to tumors with grades 1 and 2. In grade 4 tumors, female patients displayed lower GLT-1 expression compared to male patients. In addition, glioblastoma multiforme patients older than 65 years of age showed lower GLT-1 expression when compared to the patients younger than 65. CONCLUSION: qRT-PCR was found to be a sensitive method in detecting GLT-1 expression in brain tumors. This study may lay the foundation for the future research about the excitotoxicity and brain tumors and GLT-1 might be a potential biomarker. Targeted therapies based on excitotoxic molecular pathways against gliomas should be designed to effectively combat these diseases.


Assuntos
Neoplasias Encefálicas/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Glioblastoma/metabolismo , Adulto , Fatores Etários , Idoso , Neoplasias Encefálicas/patologia , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Estudos Retrospectivos , Fatores Sexuais , Adulto Jovem
15.
J Biol Chem ; 295(46): 15662-15676, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32893191

RESUMO

Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week-old YY1 flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 µg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.


Assuntos
Intoxicação por Manganês/patologia , Substância Negra/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cloretos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Histona Desacetilases/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Compostos de Manganês , Intoxicação por Manganês/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Fator de Transcrição YY1/genética
16.
PLoS One ; 15(3): e0229769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150581

RESUMO

Cerebral ischemia/reperfusion (I/R) injury causes cognitive deficits, excitotoxicity, neuroinflammation, oxidative stress and brain edema. Vitamin K2 (Menaquinone 4, MK-4) as a potent antioxidant can be a good candidate to ameliorate I/R consequences. This study focused on the neuroprotective effects of MK-4 for cerebral I/R insult in rat's hippocampus. The rat model of cerebral I/R was generated by transient bilateral common carotid artery occlusion for 20 min. Rats were divided into control, I/R, I/R+DMSO (solvent (1% v/v)) and I/R+MK-4 treated (400 mg/kg, i.p.) groups. Twenty-four hours after I/R injury induction, total brain water content, superoxide dismutase (SOD) activity, nitrate/nitrite concentration and neuronal density were evaluated. In addition to quantify the apoptosis processes, TUNEL staining, as well as expression level of Bax and Bcl2, were assessed. To evaluate astrogliosis and induced neurotoxicity by I/R GFAP and GLT-1 mRNA expression level were quantified. Furthermore, pro-inflammatory cytokines including IL-1ß, IL-6 and TNF-α were measured. Seven days post I/R, behavioral analysis to quantify cognitive function, as well as Nissl staining for surviving neuronal evaluation, were conducted. The findings indicated that administration of MK-4 following I/R injury improved anxiety-like behavior, short term and spatial learning and memory impairment induced by I/R. Also, MK-4 was able to diminish the increased total brain water content, apoptotic cell density, Bax/ Bcl2 ratio and GFAP mRNA expression following I/R. In addition, the high level of nitrate/nitrite, IL-6, IL-1ß and TNF-α induced by I/R was reduced after MK-4 administration. However, MK-4 promotes the level of SOD activity and GLT-1 mRNA expression in I/R rat model. The findings demonstrated that MK-4 can rescue transient global cerebral I/R consequences via its anti-inflammatory and anti-oxidative stress features. MK-4 administration ameliorates neuroinflammation, neurotoxicity and neuronal cell death processes and leads to neuroprotection.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Vitamina K 2/análogos & derivados , Animais , Apoptose , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Aprendizagem Espacial , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico
17.
Sci Rep ; 9(1): 17587, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772264

RESUMO

Infants undergo extensive developments during their first year of life. Although the biological mechanisms involved are not yet fully understood, changes in the DNA methylation in mammals are believed to play a key role. This study was designed to investigate changes in infant DNA methylation that occurs between 6 and 52 weeks. A total of 214 infant saliva samples from 6 or 52 weeks were assessed using principal component analyses and t-distributed stochastic neighbor-embedding algorithms. Between the two time points, there were clear differences in DNA methylation. To further investigate these findings, paired two-sided student's t-tests were performed. Differently methylated regions were defined as at least two consecutive probes that showed significant differences, with a q-value < 0.01 and a mean difference > 0.2. After correcting for false discovery rates, changes in the DNA methylation levels were found in 42 genes. Of these, 36 genes showed increased and six decreased DNA methylation. The overall DNA methylation changes indicated decreased gene expression. This was surprising because infants undergo such profound developments during their first year of life. The results were evaluated by taking into consideration the extensive development that occurs during pregnancy. During the first year of life, infants have an overall three-fold increase in weight, while the fetus develops from a single cell into a viable infant in 9 months, with an 875-million-fold increase in weight. It is possible that the findings represent a biological slowing mechanism in response to extensive fetal development. In conclusion, our study provides evidence of DNA methylation changes during the first year of life, representing a possible biological slowing mechanism. We encourage future studies of DNA methylation changes in infants to replicate the findings by using a repeated measures model and less stringent criteria to see if the same genes can be found, as well as investigating whether other genes are involved in development during this period.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Adulto , Algoritmos , Ilhas de CpG , Escolaridade , Células Epiteliais/química , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Humanos , Lactente , Leucócitos/química , Masculino , Estado Civil , Análise de Componente Principal , Receptores de Somatostatina/genética , Saliva/química , Saliva/citologia , Fatores Socioeconômicos
18.
Cell Rep ; 28(1): 104-118.e8, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269432

RESUMO

Endocrine therapy (ET) is the standard of care for estrogen receptor-positive (ER+) breast cancers. Despite its efficacy, ∼40% of women relapse with ET-resistant (ETR) disease. A global transcription analysis in ETR cells reveals a downregulation of the neutral and basic amino acid transporter SLC6A14 governed by enhanced miR-23b-3p expression, resulting in impaired amino acid metabolism. This altered amino acid metabolism in ETR cells is supported by the activation of autophagy and the enhanced import of acidic amino acids (aspartate and glutamate) mediated by the SLC1A2 transporter. The clinical significance of these findings is validated by multiple orthogonal approaches in a large cohort of ET-treated patients, in patient-derived xenografts, and in in vivo experiments. Targeting these amino acid metabolic dependencies resensitizes ETR cells to therapy and impairs the aggressive features of ETR cells, offering predictive biomarkers and potential targetable pathways to be exploited to combat or delay ETR in ER+ breast cancers.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Prognóstico , Transcriptoma/genética , Transplante Heterólogo
19.
J Clin Invest ; 129(8): 3103-3120, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112137

RESUMO

Mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) are yet unclear. Specific deletion of the ER-component membralin in astrocytes manifested postnatal motor defects and lethality in mice, causing the accumulation of extracellular glutamate through reducing the glutamate transporter EAAT2. Restoring EAAT2 levels in membralin KO astrocytes limited astrocyte-dependent excitotoxicity in motor neurons. Transcriptomic profiles from mouse astrocytic membralin KO motor cortex indicated significant perturbation in KEGG pathway components related to ALS, including downregulation of Eaat2 and upregulation of Tnfrsf1a. Changes in gene expression with membralin deletion also overlapped with mouse ALS models and reactive astrocytes. Our results shown that activation of TNF receptor (TNFR1)-NFκB pathway known to suppress Eaat2 transcription was upregulated with membralin deletion. Further, reduced membralin and EAAT2 levels correlated with disease progression in spinal cord from SOD1-mutant mouse models, and reductions in membralin/EAAT2 were observed in human ALS spinal cord. Importantly, overexpression of membralin in SOD1G93A astrocytes decreased TNFR1 levels and increased EAAT2 expression, and improved motor neuron survival. Importantly, upregulation of membralin in SOD1G93A mice significantly prolonged mouse survival. Together, our study provided a mechanism for ALS pathogenesis where membralin limited glutamatergic neurotoxicity, suggesting that modulating membralin had potentials in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Córtex Motor/metabolismo , Proteínas do Tecido Nervoso/deficiência , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/genética , Humanos , Camundongos , Camundongos Knockout , Córtex Motor/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Transcrição Gênica , Regulação para Cima
20.
Neuropharmacology ; 161: 107559, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851309

RESUMO

Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including ß-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Assuntos
Astrócitos/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Animais , Astrócitos/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Doenças do Sistema Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA