Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Behav Brain Res ; 469: 115047, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38759799

RESUMO

Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.


Assuntos
Estrogênios , Transportador 3 de Aminoácido Excitatório , Dor Facial , Glutationa , Hiperalgesia , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Hiperalgesia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Feminino , Estrogênios/metabolismo , Estrogênios/farmacologia , Dor Facial/metabolismo , Glutationa/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685879

RESUMO

Numerous basic studies have reported on the neuroprotective properties of several purine derivatives such as caffeine and uric acid (UA). Epidemiological studies have also shown the inverse association of appropriate caffeine intake or serum urate levels with neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson's disease (PD). The well-established neuroprotective mechanisms of caffeine and UA involve adenosine A2A receptor antagonism and antioxidant activity, respectively. Our recent study found that another purine derivative, paraxanthine, has neuroprotective effects similar to those of caffeine and UA. These purine derivatives can promote neuronal cysteine uptake through excitatory amino acid carrier protein 1 (EAAC1) to increase neuronal glutathione (GSH) levels in the brain. This review summarizes the GSH-mediated neuroprotective effects of purine derivatives. Considering the fact that GSH depletion is a manifestation in the brains of AD and PD patients, administration of purine derivatives may be a new therapeutic approach to prevent or delay the onset of these neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Glutationa , Neuroproteção , Fármacos Neuroprotetores , Doença de Parkinson , Purinas , Humanos , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Encéfalo/metabolismo , Cisteína/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Purinas/química , Purinas/farmacologia , Purinas/uso terapêutico , Receptor A2A de Adenosina , Teofilina/química , Teofilina/farmacologia , Teofilina/uso terapêutico , Ácido Úrico/sangue , Cafeína/química , Cafeína/farmacologia , Cafeína/uso terapêutico
3.
Cell Rep ; 42(8): 112945, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37542723

RESUMO

Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.


Assuntos
Transportador 3 de Aminoácido Excitatório , Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Animais , Camundongos , Hipóxia Celular , Linhagem Celular Tumoral , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácido Láctico , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral , Transportador 3 de Aminoácido Excitatório/genética
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769273

RESUMO

Glutathione (GSH) is necessary for maintaining physiological antioxidant function, which is responsible for maintaining free radicals derived from reactive oxygen species at low levels and is associated with improved cognitive performance after brain injury. GSH is produced by the linkage of tripeptides that consist of glutamic acid, cysteine, and glycine. The adequate supplementation of GSH has neuroprotective effects in several brain injuries such as cerebral ischemia, hypoglycemia, and traumatic brain injury. Brain injuries produce an excess of reactive oxygen species through complex biochemical cascades, which exacerbates primary neuronal damage. GSH concentrations are known to be closely correlated with the activities of certain genes such as excitatory amino acid carrier 1 (EAAC1), glutamate transporter-associated protein 3-18 (Gtrap3-18), and zinc transporter 3 (ZnT3). Following brain-injury-induced oxidative stress, EAAC1 function is negatively impacted, which then reduces cysteine absorption and impairs neuronal GSH synthesis. In these circumstances, vesicular zinc is also released into the synaptic cleft and then translocated into postsynaptic neurons. The excessive influx of zinc inhibits glutathione reductase, which inhibits GSH's antioxidant functions in neurons, resulting in neuronal damage and ultimately in the impairment of cognitive function. Therefore, in this review, we explore the overall relationship between zinc and GSH in terms of oxidative stress and neuronal cell death. Furthermore, we seek to understand how the modulation of zinc can rescue brain-insult-induced neuronal death after ischemia, hypoglycemia, and traumatic brain injury.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular
5.
Virus Genes ; 59(1): 55-66, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344769

RESUMO

Epstein-Barr virus or human herpesvirus 4 (EBV/HHV-4) is an omnipresent oncovirus etiologically associated with various B-cell lymphomas and epithelial cancers. The malignant transformation associated with the persistent expression of viral proteins often deregulates the host cellular machinery and EBV infection is coupled to elevated levels of reactive oxygen species. Here, we investigated the role that the glutamate transporter EAAT3 plays in regulating the antioxidant system as a protective mechanism of EBV-infected cells against the virus-induced oxidative stress. Our study demonstrated that the expression of EAAT3 was upregulated and localized to the plasma membrane in EBV latently infected and de novo EBV-infected cells. EAAT3 was regulated by the transcription factor NFAT5 in the infected cells. Membrane localized EAAT3 was found to be involved in the transportation of glutamate from the extracellular space into the cell, as EAAT3 and NFAT5 inhibitors markedly reduced the levels of intracellular glutamate levels in EBV latently infected cells. Additionally, our data demonstrated a notable decrease in the intracellular glutathione levels following treatment with an EAAT3 inhibitor. Collectively, our results suggest that upregulation of the glutamate transporter EAAT3 is an adaptation of EBV-infected cells to maintain cellular redox homeostasis against the virus-induced oxidative stress, and that this cellular balance could be therapeutically destroyed by targeting EAAT3 to impede EBV-associated cancers.


Assuntos
Infecções por Vírus Epstein-Barr , Transportador 3 de Aminoácido Excitatório , Humanos , Antioxidantes , Glutamatos/metabolismo , Glutationa/metabolismo , Herpesvirus Humano 4 , Regulação para Cima , Transportador 3 de Aminoácido Excitatório/metabolismo
6.
Nat Commun ; 13(1): 4714, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953475

RESUMO

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismo
7.
Cell Res ; 32(7): 638-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459936

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Assuntos
Transportador 3 de Aminoácido Excitatório , Isocitrato Desidrogenase , Neoplasias , Animais , Células Endoteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutaratos , Isocitrato Desidrogenase/genética , Camundongos , Mitocôndrias/metabolismo , Mutação , Microambiente Tumoral
8.
Oxid Med Cell Longev ; 2022: 4834117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251474

RESUMO

Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cisteína/metabolismo , Cisteína/farmacologia , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Humanos , Permeabilidade/efeitos dos fármacos , Pró-Fármacos
9.
Neurochem Res ; 47(1): 148-162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33550531

RESUMO

Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Transportador 3 de Aminoácido Excitatório , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Transportador 3 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Ratos , Sódio
10.
Neurobiol Dis ; 161: 105545, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742879

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Dysregulation of glutamate transporters has been a common finding across animal models of epilepsy and in patients with TLE. In this study, we investigate NRG-1/ErbB4 signaling in epileptogenesis and the neuroprotective effects of NRG-1 treatment in a mouse model of temporal lobe epilepsy. Using immunohistochemistry, we report the first evidence for NRG-1/ErbB4-dependent selective upregulation of glutamate transporter EAAC1 and bihemispheric neuroprotection by exogeneous NRG-1 in the intrahippocampal kainic acid (IHKA) model of TLE. Our findings provide evidence that dysregulation of glutamate transporter EAAC1 contributes to the development of epilepsy and can be therapeutically targeted to reduce neuronal death following IHKA-induced status epilepticus (SE).


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Neuregulina-1 , Neuroproteção , Receptor ErbB-4 , Animais , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Transportador 3 de Aminoácido Excitatório/metabolismo , Hipocampo , Humanos , Camundongos , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Receptor ErbB-4/metabolismo
11.
EBioMedicine ; 72: 103614, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628354

RESUMO

BACKGROUND: Metabolic reprogramming plays an essential role on lymphoma progression. Dysregulation of glutamine metabolism is implicated in natural-killer T-cell lymphoma (NKTCL) and tumor cell response to asparaginase-based anti-metabolic treatment. METHODS: To understand the metabolomic alterations and determine the potential therapeutic target of asparaginase, we assessed metabolomic profile using liquid chromatography-mass spectrometry in serum samples of 36 NKTCL patients, and integrated targeted metabolic analysis and RNA sequencing in tumor samples of 102 NKTCL patients. The biological function of solute carrier family 1 member 1 (SLC1A1) on metabolic flux, lymphoma cell growth, and drug sensitivity was further examined in vitro in NK-lymphoma cell line NK-92 and SNK-6, and in vivo in zebrafish xenograft models. FINDINGS: In NKTCL patients, serum metabolomic profile was characterized by aberrant glutamine metabolism and SLC1A1 was identified as a central regulator of altered glutaminolysis. Both in vitro and in vivo, ectopic expression of SLC1A1 increased cellular glutamine uptake, enhanced glutathione metabolic flux, and induced glutamine addiction, leading to acceleration of cell proliferation and tumor growth. Of note, SLC1A1 overexpression was significantly associated with PD-L1 downregulation and reduced cytotoxic CD3+/CD8+ T cell activity when co-cultured with peripheral blood mononuclear cells. Asparaginase treatment counteracted SLC1A1-mediated glutamine addiction, restored SLC1A1-induced impaired T-cell immunity. Clinically, high EAAT3 (SLC1A1-encoded protein) expression independently predicted superior progression-free and overall survival in 90 NKTCL patients treated with asparaginase-based regimens. INTERPRETATION: SLC1A1 functioned as an extracellular glutamine transporter, promoted tumor growth through reprogramming glutamine metabolism of NKTCL, while rendered tumor cells sensitive to asparaginase treatment. Moreover, SLC1A1-mediated modulation of PD-L1 expression might provide clinical rationale of co-targeting metabolic vulnerability and immunosuppressive microenvironment in NKTCL. FUNDING: This study was supported, in part, by research funding from the National Natural Science Foundation of China (82130004, 81830007 and 81900192), Chang Jiang Scholars Program, Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), Clinical Research Plan of SHDC (2020CR1032B), Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), Shanghai Chenguang Program (19CG15), Shanghai Sailing Program (19YF1430800), Medical-Engineering Cross Foundation of Shanghai Jiao Tong University (ZH2018QNA46), and Shanghai Yi Yuan Xin Xing Program.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Glutamina/imunologia , Linfoma Extranodal de Células T-NK/metabolismo , Células T Matadoras Naturais/metabolismo , Animais , Asparaginase/imunologia , Asparaginase/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Regulação para Baixo/imunologia , Transportador 3 de Aminoácido Excitatório/imunologia , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfoma Extranodal de Células T-NK/imunologia , Linfoma Extranodal de Células T-NK/terapia , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Peixe-Zebra
12.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065042

RESUMO

Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3-18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Glutationa/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores , Encéfalo/efeitos dos fármacos , Gerenciamento Clínico , Suscetibilidade a Doenças , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Glutationa/farmacologia , Glutationa/uso terapêutico , Humanos , Redes e Vias Metabólicas , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
13.
Commun Biol ; 4(1): 182, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568779

RESUMO

Glutathione (GSH) is an important antioxidant that plays a critical role in neuroprotection. GSH depletion in neurons induces oxidative stress and thereby promotes neuronal damage, which in turn is regarded as a hallmark of the early stage of neurodegenerative diseases. The neuronal GSH level is mainly regulated by cysteine transporter EAAC1 and its inhibitor, GTRAP3-18. In this study, we found that the GTRAP3-18 level was increased by up-regulation of the microRNA miR-96-5p, which was found to decrease EAAC1 levels in our previous study. Since the 3'-UTR region of GTRAP3-18 lacks the consensus sequence for miR-96-5p, an unidentified protein should be responsible for the intermediate regulation of GTRAP3-18 expression by miR-96-5p. Here, we discovered that RNA-binding protein NOVA1 functions as an intermediate protein for GTRAP3-18 expression via miR-96-5p. Moreover, we show that intra-arterial injection of a miR-96-5p-inhibiting nucleic acid to living mice by a drug delivery system using microbubbles and ultrasound decreased the level of GTRAP3-18 via NOVA1 and increased the levels of EAAC1 and GSH in the dentate gyrus of the hippocampus. These findings suggest that the delivery of a miR-96-5p inhibitor to the brain would efficiently increase the neuroprotective activity by increasing GSH levels via EAAC1, GTRAP3-18 and NOVA1.


Assuntos
Giro Denteado/efeitos dos fármacos , Glutationa/metabolismo , MicroRNAs/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Giro Denteado/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Injeções Intra-Arteriais , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Microbolhas , Antígeno Neuro-Oncológico Ventral , Fármacos Neuroprotetores/administração & dosagem , Proteínas de Ligação a RNA/genética , Ultrassom , Regulação para Cima
14.
Nihon Yakurigaku Zasshi ; 156(1): 21-25, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33390475

RESUMO

Ischemic stroke is one of the most prevalent brain disorders and the major cause of long-term disability. In particularly, hippocampal injury after ischemia-reperfusion is a serious problem as it contributes to vascular dementia. Many researches have revealed that ischemia-reperfusion causes increase in reactive oxygen species production and disruption of neuronal Zn2+ homeostasis in the hippocampus, which induces hippocampal neuron death. Glutathione (GSH) is present in all mammalian cells and plays a crucial role in neuronal cell defense against oxidative stress. On the other hand, thiol group of GSH chemically chelates Zn2+ and functions as a regulator of neuronal Zn2+ homeostasis. These evidences suggest that neuronal GSH levels could be an important factor affecting neuronal surviving. The synthesis of GSH is largely influenced by intracellular cysteine availability. In neurons, excitatory amino acid carrier type 1 (EAAC1) acts as a cysteine transporter and provides cysteine substrate for GSH synthesis. Recently, several animal studies have revealed that promotion of neuronal GSH synthesis through EAAC1 reduces ischemia-induced hippocampal neuron death. This review aims to describe neuroprotective role of GSH against hippocampal injury following ischemia-reperfusion, focusing on EAAC1.


Assuntos
Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Glutationa/farmacologia , Hipocampo/metabolismo , Isquemia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Reperfusão
15.
Nihon Yakurigaku Zasshi ; 156(1): 26-30, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33390476

RESUMO

Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine, and glycine that acts as an important neuroprotective molecule in the central nervous system. In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, GSH levels in the brain would be decreased before the onset, and GSH dysregulation is considered to be involved in the development of these neurodegenerative diseases. Cysteine uptake into neurons is the rate-limiting step for GSH synthesis. Excitatory amino acid carrier 1 (EAAC1), which is a glutamate/cysteine cotransporter, is responsible for the neuronal cysteine uptake, and EAAC1 dysfunction reduces GSH levels in the brain and has a significant influence on the process of neurodegeneration. Since miR-96-5p, which is one of microRNAs, suppresses EAAC1 expression, it is conceivable that miR-96-5p inhibitor suppresses the onset or slows the progression of neurodegenerative diseases by increasing EAAC1 levels leading to promoting neuronal GSH production.


Assuntos
Glutationa , Doenças Neurodegenerativas , Cisteína , Transportador 3 de Aminoácido Excitatório , Glutationa/metabolismo , Humanos , Neurônios/metabolismo
16.
Exp Neurol ; 336: 113538, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253705

RESUMO

Accumulating evidence indicates time-of-day variations in ischemic neuronal injury. Under ischemic conditions, Zn2+ is massively released from hippocampal glutamatergic neurons, and intracellular Zn2+ accumulation results in neuron death. Notably, excitatory amino acid carrier 1 (EAAC1), known as a cysteine transporter, is involved in Zn2+ homeostasis, and its expressions exhibit a diurnal fluctuation. This study aimed to investigate whether time of day of an ischemic insult affects Zn2+ accumulation and neuronal injury and determine whether altered Zn2+ accumulation is modulated by EAAC1 diurnal fluctuation in the hippocampus in a mouse model of ischemic stroke. Mice subjected to transient global ischemia for 40 min at Zeitgeber time 18 (ZT18) (23:00) exhibited reduced Zn2+ accumulation and neuronal death in the hilar region of the hippocampus compared to those at ZT4 (09:00). The EAAC1 protein expression in the hippocampus was increased at ZT18 relative to ZT4. Intracerebroventricular injection of a non-selective excitatory amino acid transporter inhibitor, DL-threo-ß-benzyloxyaspartate, or a selective EAAC1 inhibitor, L-aspartic acid ß-hydroxamate, increased ischemia-induced Zn2+ accumulation and neuronal death in the hilus at ZT18. These findings suggest that ischemia-induced Zn2+ accumulation displays circadian fluctuations through diurnal variations in EAAC1 expressions and affects susceptibility to ischemic neuronal injury in the hippocampal hilar region.


Assuntos
Isquemia Encefálica/metabolismo , Ritmo Circadiano/fisiologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Hipocampo/metabolismo , Zinco/metabolismo , Animais , Morte Celular , Transportador 3 de Aminoácido Excitatório/antagonistas & inibidores , Glutationa/metabolismo , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Neurônios/patologia
17.
Cancer Res ; 81(3): 552-566, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229341

RESUMO

Cancer cells need to generate large amounts of glutathione (GSH) to buffer oxidative stress during tumor development. A rate-limiting step for GSH biosynthesis is cystine uptake via a cystine/glutamate antiporter Xc-. Xc- is a sodium-independent antiporter passively driven by concentration gradients from extracellular cystine and intracellular glutamate across the cell membrane. Increased uptake of cystine via Xc- in cancer cells increases the level of extracellular glutamate, which would subsequently restrain cystine uptake via Xc-. Cancer cells must therefore evolve a mechanism to overcome this negative feedback regulation. In this study, we report that glutamate transporters, in particular SLC1A1, are tightly intertwined with cystine uptake and GSH biosynthesis in lung cancer cells. Dysregulated SLC1A1, a sodium-dependent glutamate carrier, actively recycled extracellular glutamate into cells, which enhanced the efficiency of cystine uptake via Xc- and GSH biosynthesis as measured by stable isotope-assisted metabolomics. Conversely, depletion of glutamate transporter SLC1A1 increased extracellular glutamate, which inhibited cystine uptake, blocked GSH synthesis, and induced oxidative stress-mediated cell death or growth inhibition. Moreover, glutamate transporters were frequently upregulated in tissue samples of patients with non-small cell lung cancer. Taken together, active uptake of glutamate via SLC1A1 propels cystine uptake via Xc- for GSH biosynthesis in lung tumorigenesis. SIGNIFICANCE: Cellular GSH in cancer cells is not only determined by upregulated Xc- but also by dysregulated glutamate transporters, which provide additional targets for therapeutic intervention.


Assuntos
Cistina/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/biossíntese , Neoplasias Pulmonares/metabolismo , Animais , Antiporters/metabolismo , Morte Celular , Linhagem Celular Tumoral , Glutamina/deficiência , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Estresse Oxidativo , Receptores Acoplados a Proteínas G , Estresse Fisiológico , Regulação para Cima
18.
Mol Brain ; 13(1): 153, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187547

RESUMO

Excitatory amino acid carrier 1 (EAAC1) is an important subtype of excitatory amino acid transporters (EAATs) and is the route for neuronal cysteine uptake. CoCl2 is not only a hypoxia-mimetic reagent but also an oxidative stress inducer. Here, we found that CoCl2 induced significant EAAC1 overexpression in SH-SY5Y cells and the hippocampus of mice. Transient transfection of EAAC1 reduced CoCl2-induced cytotoxicity in SH-SY5Y cells. Based on this result, upregulation of EAAC1 expression by CoCl2 is thought to represent a compensatory response against oxidative stress in an acute hypoxic state. We further demonstrated that pretreatment with Neuregulin-1 (NRG1) rescued CoCl2-induced upregulation of EAAC1 and tau expression. NRG1 plays a protective role in the CoCl2-induced accumulation of reactive oxygen species (ROS) and reduction in antioxidative enzyme (SOD and GPx) activity. Moreover, NRG1 attenuated CoCl2-induced apoptosis and cell death. NRG1 inhibited the CoCl2-induced release of cleaved caspase-3 and reduction in Bcl-XL levels. Our novel finding suggests that NRG1 may play a protective role in hypoxia through the inhibition of oxidative stress and thereby maintain normal EAAC1 expression levels.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Hipocampo/patologia , Neuregulina-1/farmacologia , Estresse Oxidativo , Regulação para Cima , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cobalto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microinjeções , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo , Proteínas tau/metabolismo
19.
Cells ; 9(9)2020 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899900

RESUMO

Increasing evidence suggests that metabolic alterations may be etiologically linked to neurodegenerative disorders such as Parkinson's disease (PD) and in particular empathizes the possibility of targeting mitochondrial dysfunctions to improve PD progression. Under different pathological conditions (i.e., cardiac and neuronal ischemia/reperfusion injury), we showed that supplementation of energetic substrates like glutamate exerts a protective role by preserving mitochondrial functions and enhancing ATP synthesis through a mechanism involving the Na+-dependent excitatory amino acid transporters (EAATs) and the Na+/Ca2+ exchanger (NCX). In this study, we investigated whether a similar approach aimed at promoting glutamate metabolism would be also beneficial against cell damage in an in vitro PD-like model. In retinoic acid (RA)-differentiated SH-SY5Y cells challenged with α-synuclein (α-syn) plus rotenone (Rot), glutamate significantly improved cell viability by increasing ATP levels, reducing oxidative damage and cytosolic and mitochondrial Ca2+ overload. Glutamate benefits were strikingly lost when either EAAT3 or NCX1 expression was knocked down by RNA silencing. Overall, our results open the possibility of targeting EAAT3/NCX1 functions to limit PD pathology by simultaneously favoring glutamate uptake and metabolic use in dopaminergic neurons.


Assuntos
Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Doença de Parkinson/genética , Trocador de Sódio e Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroproteção , Doença de Parkinson/metabolismo , Transfecção
20.
Cell Calcium ; 91: 102268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827867

RESUMO

Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid ß protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Substâncias Protetoras/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Córtex Cerebral/patologia , Gliceraldeído , Humanos , Modelos Biológicos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA