Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Data ; 9(1): 446, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882865

RESUMO

Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural patterns are of the highest importance for the drug discovery process as demonstrated by the novel drug discovery tool 'computer-aided pattern analysis' ('C@PA'). Here, we report a multitarget dataset of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design in general in terms of pharmacokinetics and pharmacodynamics.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Preparações Farmacêuticas , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Humanos
2.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948362

RESUMO

ATP-binding cassette (ABC) transporters are conserved in all kingdoms of life, where they transport substrates against a concentration gradient across membranes. Some ABC transporters are known to cause multidrug resistances in humans and are able to transport chemotherapeutics across cellular membranes. Similarly, BmrA, the ABC transporter of Bacillus subtilis, is involved in excretion of certain antibiotics out of bacterial cells. Screening of extract libraries isolated from fungi revealed that the C14 fatty acid myristic acid has an inhibitory effect on the BmrA ATPase as well as the transport activity. Thus, a natural membrane constituent inhibits the BmrA activity, a finding with physiological consequences as to the activity and regulation of ABC transporter activities in biological membranes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Ácido Mirístico/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Descoberta de Drogas
3.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769363

RESUMO

Tepotinib is a novel tyrosine kinase inhibitor recently approved for the treatment of non-small cell lung cancer (NSCLC). In this study, we evaluated the tepotinib's potential to perpetrate pharmacokinetic drug interactions and modulate multidrug resistance (MDR). Accumulation studies showed that tepotinib potently inhibits ABCB1 and ABCG2 efflux transporters, which was confirmed by molecular docking. In addition, tepotinib inhibited several recombinant cytochrome P450 (CYP) isoforms with varying potency. In subsequent drug combination experiments, tepotinib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCB1 and ABCG2 overexpression, respectively. Remarkably, MDR-modulatory properties were confirmed in ex vivo explants derived from NSCLC patients. Furthermore, we demonstrated that anticancer effect of tepotinib is not influenced by the presence of ABC transporters associated with MDR, although monolayer transport assays designated it as ABCB1 substrate. Finally, tested drug was observed to have negligible effect on the expression of clinically relevant drug efflux transporters and CYP enzymes. In conclusion, our findings provide complex overview on the tepotinib's drug interaction profile and suggest a promising novel therapeutic strategy for future clinical investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citostáticos/farmacologia , Interações Medicamentosas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
4.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500796

RESUMO

Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Células Precursoras de Linfócitos B/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Adesão Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , NF-kappa B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Células Tumorais Cultivadas
5.
Science ; 374(6567): 580-585, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34554829

RESUMO

ATP-binding cassette (ABC) transporters couple adenosine 5'-triphosphate (ATP) hydrolysis to substrate transport across biological membranes. Although many are promising drug targets, their mechanisms of modulation by small-molecule inhibitors remain largely unknown. Two first-generation inhibitors of the MsbA transporter, tetrahydrobenzothiophene 1 (TBT1) and G247, induce opposite effects on ATP hydrolysis. Using single-particle cryo­electron microscopy and functional assays, we show that TBT1 and G247 bind adjacent yet separate pockets in the MsbA transmembrane domains. Two TBT1 molecules asymmetrically occupy the substrate-binding site, which leads to a collapsed inward-facing conformation with decreased distance between the nucleotide-binding domains (NBDs). By contrast, two G247 molecules symmetrically increase NBD distance in a wide inward-open state of MsbA. The divergent mechanisms of action of these MsbA inhibitors provide important insights into ABC transporter pharmacology.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Sítios de Ligação , Microscopia Crioeletrônica , Descoberta de Drogas , Imageamento Tridimensional , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas
6.
Theranostics ; 11(13): 6334-6354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995661

RESUMO

Clinically, the primary cause of chemotherapy failure belongs to the occurrence of cancer multidrug resistance (MDR), which directly leads to the recurrence and metastasis of cancer along with high mortality. More and more attention has been paid to multifunctional nanoplatform-based dual-therapeutic combination to eliminate resistant cancers. In addition to helping both cargoes improve hydrophobicity and pharmacokinetic properties, increase bioavailability, release on demand and enhance therapeutic efficacy with low toxic effects, these smart co-delivery nanocarriers can even overcome drug resistance. Here, this review will not only present different types of co-delivery nanocarriers, but also summarize targeted and stimuli-responsive combination nanomedicines. Furthermore, we will focus on the recent progress in the co-delivery of dual-drug using such intelligent nanocarriers for surmounting cancer MDR. Whereas it remains to be seriously considered that there are some knotty issues in the fight against MDR of cancers via using co-delivery nanoplatforms, including limited intratumoral retention, the possible changes of combinatorial ratio under complex biological environments, drug release sequence from the nanocarriers, and subsequent free-drug resistance after detachment from the nanocarriers. It is hoped that, with the advantage of continuously developing nanomaterials, two personalized therapeutic agents in combination can be better exploited to achieve the goal of cooperatively combating cancer MDR, thus advancing the time to clinical transformation.


Assuntos
Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Nanomedicina Teranóstica/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Gases/administração & dosagem , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Neoplasias/antagonistas & inibidores , Oxirredução , Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Tensoativos/administração & dosagem , Tensoativos/uso terapêutico
7.
Carcinogenesis ; 42(5): 742-752, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33623991

RESUMO

The incidence of malignant melanoma, a neoplasm of melanocytic cells, is increasing rapidly. The lymph nodes are often the first site of metastasis and can herald systemic dissemination, which is almost uniformly fatal. RLIP, a multi-specific ATP-dependent transporter that is over-expressed in several types of cancers, plays a central role in cancer cell resistance to radiation and chemotherapy. RLIP appears to be necessary for cancer cell survival because both in vitro cell culture and in vivo animal tumor studies show that the depletion or inhibition of RLIP causes selective toxicity to malignant cells. RLIP depletion/inhibition triggers apoptosis in cancer cells by inducing the accumulation of endogenously formed glutathione-conjugates. In our in vivo studies, we administered RLIP antibodies or antisense oligonucleotides to mice bearing subcutaneous xenografts of SKMEL2 and SKMEL5 melanoma cells and demonstrated that both treatments caused significant xenograft regression with no apparent toxic effects. Anti-RLIP antibodies and antisense, which respectively inhibit RLIP-mediated transport and deplete RLIP expression, showed similar tumor regressing activities, indicating that the inhibition of RLIP transport activity at the cell surface is sufficient to achieve anti-tumor activity. Furthermore, RLIP antisense treatment reduced levels of RLIP, pSTAT3, pJAK2, pSrc, Mcl-1 and Bcl2, as well as CDK4 and cyclin B1, and increased levels of Bax and phospho 5' AMP-activated protein kinase (pAMPK). These studies indicate that RLIP serves as a key effector in the survival of melanoma cells and is a valid target for cancer therapy. Overall, compounds that inhibit, deplete or downregulate RLIP will function as wide-spectrum agents to treat melanoma, independent of common signaling pathway mutations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Ativadoras de GTPase/genética , Janus Quinase 2/genética , Melanoma/genética , Fator de Transcrição STAT3/genética , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/imunologia , Humanos , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Biol Rep ; 48(2): 1883-1901, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33616835

RESUMO

The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Medicina de Precisão/métodos , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Resistência a Múltiplos Medicamentos/genética , Humanos , Neoplasias/genética , Farmacogenética/métodos
9.
Semin Cancer Biol ; 68: 199-208, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044470

RESUMO

While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Leucemia/tratamento farmacológico , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos
10.
Biochem Biophys Res Commun ; 536: 1-6, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360015

RESUMO

Bacterial wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two-component transporter, TagGH, comprising the transmembrane and ATPase subunits TagG and TagH. Here the dimeric structure of the N-terminal domain of TagH (TagH-N) was solved by single-wavelength anomalous diffraction using a selenomethionine-containing crystal, which shows an ATP-binding cassette (ABC) architecture with RecA-like and helical subdomains. Besides significant structural differences from other ABC transporters, a prominent patch of positively charged surface is seen in the center of the TagH-N dimer, suggesting a potential binding site for the glycerol phosphate chain of WTA. The ATPase activity of TagH-N was inhibited by clodronate, a bisphosphonate, in a non-competitive manner, consistent with the proposed WTA-binding site for drug targeting.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Hidrolases/química , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Difosfonatos/farmacologia , Hidrolases/antagonistas & inibidores , Hidrolases/metabolismo , Cinética , Modelos Moleculares
11.
FEBS Lett ; 594(23): 4158-4185, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33222203

RESUMO

Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas Carreadoras de Solutos/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteínas Carreadoras de Solutos/química , Proteínas Carreadoras de Solutos/metabolismo
12.
Nutrients ; 12(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751996

RESUMO

Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Quercetina/farmacologia , Linhagem Celular , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Quercetina/análogos & derivados
13.
Gene ; 759: 145000, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32717310

RESUMO

Upregulation of the ATP-binding cassette (ABC) transporter is one of the most important factors leading to multidrug resistance (MDR) in several types of cancer. In the present study, we investigated the ability of rucaparib, a Poly (ADP-ribose) polymerase (PARP) inhibitor which is currently in clinical development, on overcoming ABC transporters-mediated MDR in cervical cancer cell lines. Rucaparib significantly enhanced the cytotoxic effects of a series of conventional chemotherapeutic drugs in drug resistance cervical cancer cell lines. Moreover, rucaparib significantly increased the accumulation of rhodamine 123 in doxorubicin- and paclitaxel-resistance cervical cancer cell lines. In addition, rucaparib significantly increased the accumulation of tritium-labeled chemotherapeutic drugs in drug resistance cervical cancer cells, and decrease the efflux of tritium-labeled chemotherapeutic drugs. Molecular docking study indicated that rucaparib could bind to the active site of the ABC transporters. The present study indicated that rucaparib could antagonize MDR in cervical cancer cells by blocking the function of ABC transporters. The results obtained in the present study provide the potential possibilities that the combination of rucaparib with other chemotherapeutic agents may benefit patients with cervical cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias do Colo do Útero/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Ligação Proteica
14.
Eur J Med Chem ; 200: 112458, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32497962

RESUMO

The multidrug resistance (MDR) phenomenon in cancer cells is the major obstacle leading to failure of chemotherapy accompanied by the feature of intractable and recurrence of cancers. As significant contributors that cause MDR, ABC superfamily proteins can transport the chemotherapeutic drugs out of the tumor cells by the energy of adenosine triphosphate (ATP) hydrolysis, thereby reducing their intracellular accumulation. The ABC transports like ABCB1, ABCC1 and ABCG2 have been extensively studied to develop modulators for overcoming MDR. To date, no reversal agents have been successfully marketed for clinical application, and little information about the ABC proteins bound to specific inhibitors is known, which make the design of MDR inhibitors with potency, selectivity and low toxicity a major challenge. In recent years, it has been increasingly recognized that pyrimidine-based derivatives have the potential for reversing ABC-mediated MDR. In this review, we summarized the pyrimidine-based inhibitors of ABC transporters, and mainly focused on their structure optimizations, development strategies and structure-activity relationship studies in hope of providing a reference for medicinal chemists to develop new modulators of MDR with highly potency and fewer side effects.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Pirimidinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Estrutura Molecular , Pirimidinas/química
15.
Future Oncol ; 16(16): 1091-1100, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32374193

RESUMO

Aim: To assess safety and efficacy of vismodegib in the Italian cohort from the SafeTy Events in VIsmodEgib study. Materials & methods: Data from Italian patients with locally advanced basal cell carcinoma (laBCC) or metastatic BCC were analyzed. Results: Among 182 Italian patients, adverse events occurred with similar incidence to the overall population. Overall response rate was 67.1% in laBCC, 20% in metastatic BCC; complete response rate was 33.1% overall and 37.4% in laBCC. Median time to response was 2 months in complete responders versus 3.6 months overall. Quality of life improved from baseline. Conclusion: In the Italian cohort of STEVIE, vismodegib showed a safety profile consistent with the whole population; older age did not affect safety or efficacy. ClinicalTrials.gov registration: NCT01367665.


Assuntos
Anilidas/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Piridinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anilidas/efeitos adversos , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma Basocelular/epidemiologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Piridinas/efeitos adversos , Qualidade de Vida , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
16.
Cancer Immunol Res ; 8(7): 856-868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32295785

RESUMO

Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8+ T cells stimulated with TAPlow dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Recidiva Local de Neoplasia/terapia , Neoplasias/terapia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/imunologia , Neoplasias/imunologia , RNA Interferente Pequeno/genética
17.
Cells ; 9(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143347

RESUMO

ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Proteínas de Neoplasias/metabolismo
18.
Cells ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098199

RESUMO

The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the "cancer transportome", defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Membrana Celular/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Carreadoras de Solutos/metabolismo , Transportadores de Cassetes de Ligação de ATP/agonistas , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores/metabolismo , Colangiocarcinoma/diagnóstico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Transporte Proteico , Proteínas Carreadoras de Solutos/agonistas , Proteínas Carreadoras de Solutos/antagonistas & inibidores
19.
J Biochem Mol Toxicol ; 34(4): e22459, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32003934

RESUMO

We aimed to investigate the intestinal permeability and interaction of cyazofamid with clinically important transporters. The intestinal permeability of cyazofamid was low (0.21 ± 0.02 cm/s), and it is a substrate for P-glycoprotein (P-gp) with a Km value of 83.1 µM, indicated that P-gp in the intestinal lumen could serve as a protective barrier to this fungicide. Cyazofamid was not a substrate for clinically important transporters. However, cyazofamid inhibited organic cation transporter 3 (OCT3) and OAT1, with IC50 values of 1.54 and 17.3 µM, respectively, but could not result in OAT3- and OAT1-mediated cyazofamid-drug interactions because of its low plasma concentration. Cyazofamid poorly interacted with OCT1, OCT2, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, P-gp, breast cancer resistance-related protein, and multidrug resistance-related protein 2. In conclusion, the interactions of cyazofamid with human drug transporters have been evaluated as part of the safety assessment. Given its low intestinal permeability and poor interaction with human drug transporters, cyazofamid might not cause serious toxicity or adverse events.


Assuntos
Permeabilidade da Membrana Celular , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Imidazóis/metabolismo , Imidazóis/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Interações Medicamentosas , Fungicidas Industriais/farmacocinética , Células HEK293 , Humanos , Imidazóis/farmacocinética , Concentração Inibidora 50 , Intestinos/fisiologia , Células LLC-PK1 , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Sulfonamidas/farmacocinética , Suínos
20.
J Mater Chem B ; 8(6): 1290-1301, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31967176

RESUMO

Multidrug resistance (MDR) is one of the major obstacles for tumor therapy. Intake by receptor-mediated endocytosis enables molecules to bypass ABC transporter efflux, which is the primary mechanism of MDR. Here, we developed a novel pH/enzyme dual-responsive polypeptide prodrug to reverse multidrug resistance. This drug is composed of pH/MMP2-sensitive nanoparticles (MSNPs) self-assembled from mPEG-peptide-DOX. MSNPs can overcome sequential physiological barriers of multidrug resistance by prolonging the circulation time through PEGylation, enhancing tumor accumulation through passive targeting, increasing tumor penetration by enzyme-sensitive PEG deshielding, bypassing ABC transporter efflux by undergoing receptor-mediated endocytosis, and inducing sufficient DOX release from nanoparticles triggered by lysosomal pH. The reversal of MDR by MSNPs was evaluated in MCF-7/ADR cells and nude mice bearing tumors consisting of MCF-7/ADR cells. Both in vitro and in vivo studies showed that the MSNPs can effectively reverse MDR. Thus, MSNPs may constitute a potentially promising strategy for overcoming MDR in clinical applications.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Polietilenoglicóis/farmacologia , Pró-Fármacos/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metaloproteinase 2 da Matriz/química , Camundongos , Camundongos Nus , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Pró-Fármacos/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA