Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
3.
Anticancer Res ; 43(3): 1031-1041, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854510

RESUMO

BACKGROUND/AIM: Metal-containing compounds (e.g., platinum complexes) belong to the standard armamentarium of cancer chemotherapy. Copper N-(2-hydroxy acetophenone) glycinate (CuNG) exerts anticancer activity in vitro and in vivo and modulates drug resistance related to glutathione or P-glycoprotein. The potential of CuNG to interact with ATP-binding cassette (ABC) transporters has not been fully explored yet. This study focused on the modulatory effects of CuNG on four ABC transporters (MRP1, MRP1, BCRP, and P-glycoprotein). MATERIALS AND METHODS: Cell viability, drug uptake and ABC transporter expression were measured by resazurin assays, flow cytometry, and ELISA in HL60AR, MDCKII-hBCRP, and Caco-2 cells. RESULTS: CuNG increased doxorubicin sensitivity of MRP1-over-expressing HL60AR with a similar efficacy as the control MRP1 inhibitor MK571. CuNG also increased MRP1's efflux activity. Comparable results were obtained with MDCKII cells over-expressing hBCRP. ELISA assays revealed that the expression of MRP1 in HL60AR cells and BCRP in MDCKII- cells was predominant but other ABC-transporters were also expressed at lower levels. Caco-2 cells expressed high levels of MRP2, but MRP1, BCRP, and P-glycoprotein were also expressed. In contrast to the two former cell lines, CuNG increased doxorubicin resistance and decreased efflux activity in Caco-2 cells. CONCLUSION: CuNG exerted different modulatory activities towards ABC-transporter-expressing cells. While CuNG-mediated ABC-transporter inhibition may improve tumor chemotherapy (like in HL60AR and MDCKII-hBCRP cells), CuNG-mediated enhanced ABC-transport (like in Caco-2 cells) may be a new strategy to ameliorate inflammatory diseases associated with decreased ABC-transporter expression such as ulcerative colitis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Acetofenonas , Compostos de Cobre Orgânico , Humanos , Acetofenonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2/efeitos dos fármacos , Cobre/farmacologia , Doxorrubicina/farmacologia , Proteínas de Neoplasias , Compostos de Cobre Orgânico/farmacologia
4.
Curr Res Transl Med ; 69(1): 103269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33071214

RESUMO

Pediatric acute lymphoblastic leukemia (pALL) includes 75 % of childhood leukemias, and methotrexate (MTX) is one of the most effective chemotherapy agents prescribed for pALL treatment. The aim of this study was to establish and characterize an MTX-resistant tumor cell model in order to study the mechanism contributing to drug sensitivity loss in pALL. Parental CCRF-CEM cells were treated with a gradual increasing concentration of MTX from 5 nM to 1.28 µM. The resistant subline was then characterized according to the cellular morphology, cellular growth curves and specific mRNA expression changes associated with drug resistance in ALL. Moreover, in vitro cytotoxicity assays were used to analyze cells relative responsiveness to a set of clinically used anti-ALL chemotherapy drugs. The morphological changes observed in the new R-CCRF-CEM/MVCD subline were associated with dysregulation of the EMT-related genes, Twist1 and CDH1. Cells demonstrated downregulation of ABCC1 and the overexpression of ABCA2, ABCA3, and ABCB1 membrane transporters. However, short treatment of the sensitive and parental cell line with MTX did not affect the expression profiles of the former ABC pumps. Moreover, R-CCRF-CEM/MVCD cells demonstrated cross-resistance to cytarabine (cytosine arabinoside, ara-C), vincristine, and dexamethasone, but not doxorubicin. The induced cross-resistance to specific chemotherapy drugs may possibly be attributed to selective dysregulation of the ABC transporters and EMT-related genes. These data may pave the way for the development of new cancer therapeutic strategies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metotrexato/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Criança , Citarabina/farmacologia , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Células Tumorais Cultivadas , Vincristina/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32413766

RESUMO

Control of both human and canine leishmaniasis is based on a very short list of chemotherapeutic agents, headed by antimonial derivatives (Sb). The utility of these molecules is severely threatened by high rates of drug resistance. The ABC transporter MRPA is one of the few key Sb resistance proteins described to date, whose role in detoxification has been thoroughly studied in Leishmania parasites. Nonetheless, its rapid amplification during drug selection complicates the discovery of other mechanisms potentially involved in Sb resistance. In this study, stepwise drug-resistance selection and next-generation sequencing were combined in the search for novel Sb-resistance mechanisms deployed by parasites when MRPA is abolished by targeted gene disruption. The gene mrpA is not essential in L. infantum, and its disruption leads to an Sb hypersensitive phenotype in both promastigotes and amastigotes. Five independent mrpA-/- mutants were selected for antimony resistance. These mutants displayed major changes in their ploidy, as well as extrachromosomal linear amplifications of the subtelomeric region of chromosome 23, which includes the genes coding for ABCC1 and ABCC2. Overexpression of ABCC2, but not of ABCC1, resulted in increased Sb tolerance in the mrpA-/- mutant. SNP analyses revealed three different heterozygous mutations in the gene coding for a serine acetyltransferase (SAT) involved in de novo cysteine synthesis in Leishmania. Overexpression of satQ390K, satG321R and satG325R variants led to a 2-3.2 -fold increase in Sb resistance in mrpA-/- parasites. Only satG321R and satG325R induced increased Sb resistance in wild-type parasites. These results reinforce and expand knowledge on the complex nature of Sb resistance in Leishmania parasites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antimônio/farmacologia , Leishmania infantum , Serina O-Acetiltransferase/genética , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Cães , Resistência a Medicamentos/genética , Genes de Protozoários , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmaniose/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Mutação , Proteínas de Protozoários/genética , Serina O-Acetiltransferase/efeitos dos fármacos , Sequenciamento Completo do Genoma
6.
Drug Metab Dispos ; 47(7): 699-709, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31068367

RESUMO

Alectinib is a tyrosine kinase inhibitor currently used as a first-line treatment of anaplastic lymphoma kinase-positive metastatic nonsmall cell lung cancer (NSCLC). In the present work, we investigated possible interactions of this novel drug with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 (P450) biotransformation enzymes that play significant roles in the phenomenon of multidrug resistance (MDR) of cancer cells as well as in pharmacokinetic drug-drug interactions. Using accumulation studies in Madin-Darby canine kidney subtype 2 (MDCKII) cells alectinib was identified as an inhibitor of ABCB1 and ABCG2 but not of ABCC1. In subsequent drug combination studies, we demonstrated the ability for alectinib to effectively overcome MDR in ABCB1- and ABCG2-overexpressing MDCKII and A431 cells. To describe the pharmacokinetic interaction profile of alectinib in a complete fashion, its possible inhibitory properties toward clinically relevant P450 enzymes (i.e., CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, or CYP3A5) were evaluated using human P450-expressing insect microsomes, revealing alectinib as a poor interactor. Advantageously for its use in pharmacotherapy, alectinib further exhibited negligible potential to cause any changes in expression of ABCB1, ABCG2, ABCC1, CYP1A2, CYP3A4, and CYP2B6 in intestine, liver, and NSCLC models. Our in vitro observations might serve as a valuable foundation for future in vivo studies that could support the rationale for our conclusions and possibly enable providing more efficient and safer therapy to many oncological patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Carbazóis/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Biotransformação , Carbazóis/farmacocinética , Cães , Humanos , Células Madin Darby de Rim Canino , Piperidinas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética
7.
Eur J Pharm Sci ; 120: 20-29, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29704644

RESUMO

In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by ß-elemene (ß-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by ß-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOXFluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOXFluc cells being treated with ß-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOXFluc was lessened when pretreated with ß-ELE, which means that ß-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of ß-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of ß-ELE. To verify the efficacy of ß-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and ß-ELE. MTT assay showed that ß-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC50 of the combination group was much lower than that of the single DOX or ß-ELE treatment. In all, ß-ELE may reverse MDR through the substrates of ABC transporters by two ways, to lessen the ABC protein efflux by weakening their functionality, or to reduce the quantity of ABC gene and protein expression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Benzotiazóis/metabolismo , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Células MCF-7
8.
Future Med Chem ; 10(7): 725-741, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570361

RESUMO

AIM: Naringenin (1), isolated in large amount from the aerial parts of Euphorbia pedroi, was chemically derivatized to yield 18 imine derivatives (2-19) and three alkylated derivatives through a Mannich-type reaction (20-22) that were tested as multidrug resistance (MDR) reversers in cancer cells. Results/methodology: While hydrazone (2-4) and azine (5-13) derivatives showed an improvement in their MDR reversal activities against the breast cancer resistance protein, carbohydrazides 14-19 revealed an enhancement in MDR reversal activity toward the multidrug resistance protein 1. CONCLUSION: The observed activities, together with pharmacophoric analysis and molecular docking studies, identified the spatial orientation of the substituents as a key structural feature toward a possible mechanism by which naringenin derivatives may reverse MDR in cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavanonas/farmacologia , Nitrogênio/análise , Transportadores de Cassetes de Ligação de ATP/química , Animais , Neoplasias da Mama/patologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia em Camada Fina , Cricetinae , Euphorbia/química , Feminino , Flavanonas/química , Flavanonas/isolamento & purificação , Humanos , Espectrometria de Massas , Camundongos , Simulação de Acoplamento Molecular , Componentes Aéreos da Planta/química , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
9.
Environ Sci Technol ; 51(18): 10834-10842, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28841301

RESUMO

Sheetlike molybdenum disulfide (MoS2) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS2 and BN nanomaterials decreased cell viability at 30 µg/mL and induced adverse effects on intracellular ROS generation (≥2 µg/mL), mitochondrial depolarization (≥4 µg/mL), and membrane integrity (≥8 µg/mL for MoS2 and ≥2 µg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 µg/mL) of MoS2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS2 and BN nanomaterials at different exposure levels, which is important for their safe use.


Assuntos
Compostos de Boro/toxicidade , Dissulfetos/toxicidade , Molibdênio/toxicidade , Nanoestruturas/toxicidade , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Hep G2 , Humanos
10.
J Neurochem ; 141(4): 565-576, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267198

RESUMO

The Merkel disc is a main type of tactile end organ consisting of Merkel cells and Aß-afferent endings that responds to tactile stimulation with slowly adapting type 1 (SA1) afferent impulses. Our recent study has shown that Merkel discs in whisker hair follicles are serotonergic synapses using endogenous serotonin to transmit tactile signals from Merkel cells to Aß-afferent endings. In this study, we hypothesize that tactile sensitivity of Merkel discs can be modulated by chemical messengers. We tested this hypothesis by determining whether and how SA1 responses of mouse whisker hair follicles may be affected by exogenously applied chemical messengers. We found that SA1 responses were potentiated by serotonin at low concentration (10 µM) but almost completely occluded by serotonin at high concentration (2 mM). In contrast, SA1 responses were not significantly affected by ATP and its metabolically stable analog α,ß-methylene-ATP, glutamate, γ-aminobutyric acid (GABA), and histamine. SA1 responses were also not affected by antagonists for P2X receptors, ionotropic glutamate receptors, and ionotropic GABA and glycine receptors. Whole-cell patch-clamp recordings reconfirm the presence of both ionotropic and metabotropic 5-HT receptors on afferent neurons and their terminals innervating whisker hair follicles. All whisker afferent neurons expressed hyperpolarization-activated inward currents (Ih ), which are potentiated by serotonin through the activation of metabotropic 5-HT receptors. Taken together, the findings substantiate the serotonergic mechanism of tactile transmission at Merkel discs and identify the involvement of Ih currents in postsynaptic excitatory actions of serotonin. In addition, the findings do not favor any significant involvement of ATP, glutamate, histamine, GABA, or glycine in tactile transmission at the Merkel discs of whisker hair follicles.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células de Merkel/fisiologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Transmissão Sináptica/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Aferentes/fisiologia , Técnicas de Patch-Clamp , Receptores 5-HT3 de Serotonina/genética , Sinapses/fisiologia , Vibrissas/inervação
11.
Ecotoxicol Environ Saf ; 136: 14-23, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27810576

RESUMO

Certain ATP binding cassette (ABC) transporter proteins, such as zebrafish Abcb4, are efflux pumps acting as a cellular defence against a wide range of different, potentially toxic chemical compounds thus mediating so called multixenobiotic resistance (MXR). Certain chemicals target MXR proteins and, as so called chemosensitisers, inhibit the activity of these proteins thus increasing the toxicity of other chemicals that would normally be effluxed. In this study 14 pharmaceuticals and personal care products (PPCPs) that are being increasingly detected in aquatic systems, were assessed for interference with the MXR system of zebrafish (Danio rerio). Concentration dependent effects of test compounds were recorded with the dye accumulation assay using zebrafish embryos and in ATPase assays with recombinant zebrafish Abcb4. In the dye accumulation assay embryos at 24h post fertilisation (hpf) were exposed to 8µm rhodamine 123 along with test compounds for 2h. The rhodamine 123 tissue levels upon the exposure served as a measure for MXR transporter efflux activity of the embryo (low rhodamine levels - high activity; high levels - low activity). The known ABC protein inhibitors MK571, vinblastine and verapamil served as positive controls. All tested PPCPs affected rhodamine 123 accumulation in embryos. For seven compounds rhodamine tissue levels were either both decreased and increased depending on the compound concentration indicating both stimulation and inhibition of rhodamine 123 efflux by those compounds, only increased (inhibition, six compounds) or only decreased (stimulation, one compound). Recombinant zebrafish Abcb4 was obtained with the baculovirus expression system and PPCPs were tested for stimulation/inhibition of basal transporter ATPase activity and for inhibition of the transporter ATPase activity stimulated with verapamil. Eight of the tested PPCPs showed effects on Abcb4 ATPase activity indicating that their effects in the dye accumulation assay may have indeed resulted from interference with Abcb4-mediated rhodamine 123 efflux. Slight stimulatory effects were found for musk xylene, nerol, isoeugenol, α-amylcinnamaldehyde, α-hexylcinnamaldehyde and simvastatin indicating Abcb4 substrate/competitive inhibitor properties of those compounds. Likewise, decreases of the verapamil-stimulated Abcb4 ATPase activity by diclofenac and fluoxetine may indicate competitive transporter inhibition. Sertraline inhibited the basal and verapamil-stimulated Abcb4 ATPase activities suggesting its property as non-competitive Abcb4 inhibitor. Taken together, our finding that chemically diverse PPCPs interfere with MXR efflux activity of zebrafish indicates that (1) efflux transporters may influence bioaccumulation of many PPCPs in fish and that (2) many PPCPs may act as chemosensitisers. Furthermore, it appears that interference of PPCPs with efflux activity in zebrafish embryos is not only from effects on Abcb4 but also on other efflux transporter subtypes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Cosméticos/farmacologia , Preparações Farmacêuticas , Acroleína/análogos & derivados , Acroleína/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Bioensaio , Transporte Biológico/efeitos dos fármacos , Resistência a Medicamentos , Rodaminas/metabolismo , Verapamil/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
12.
Eur J Med Chem ; 125: 795-806, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750197

RESUMO

In the present study, a total of 25 novel ningalin B analogues were synthesized and evaluated for their P-gp modulating activity in a P-gp overexpressed breast cancer cell line LCC6MDR. Preliminary structure-activity study shows that A ring and its two methoxy groups are important pharmacophores for P-gp inhibiting activity. Among all derivatives, 23 is the most potent P-gp modulator with EC50 of 120-165 nM in reversing paclitaxel, DOX, vinblastine and vincristine resistance. It is relatively safe to use with selective index at least greater than 606 compared to verapamil. Mechanistic study demonstrates that compound 23 reverses P-gp mediated drug resistance by inhibiting transport activity of P-gp, thereby restoring intracellular drug accumulation. In summary, our study demonstrates that ningalin B analogue 23 is a non-cytotoxic and effective P-gp chemosensitizer that can be used in the future for reversing P-gp mediated clinical cancer drug resistance.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Organismos Aquáticos/química , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Relação Estrutura-Atividade
13.
Mol Nutr Food Res ; 61(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27862930

RESUMO

SCOPE: Increased macrophage cholesterol efflux (ChE) is considered to have anti-atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP-1-derived macrophages, and mechanisms underlying this effect are explored. METHODS AND RESULTS: Without affecting cell viability, piperine concentration-dependently enhances ChE in THP-1-derived macrophages from 25 to 100 µM. The expression level of the key cholesterol transporter protein ATP-binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE-mediating transporter proteins, ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR-B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half-life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain-mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. CONCLUSION: Our findings suggest that piperine promotes ChE in THP-1-derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Macrófagos/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Algoritmos , Aterosclerose/metabolismo , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Meia-Vida , Humanos , Macrófagos/metabolismo , Piper nigrum/química , RNA Mensageiro/metabolismo , Receptores Depuradores Classe B/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Mem Inst Oswaldo Cruz ; 111(11): 707-711, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27783718

RESUMO

The effect of benznidazole (BZL) on the expression and activity of P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 2 (MRP2, ABCC2), the two major transporters of endogenous and exogenous compounds, was evaluated in differentiated THP-1 cells. BZL induced P-gp and MRP2 proteins in a concentration-dependent manner. The increase in mRNA levels of both transporters suggests transcriptional regulation. P-gp and MRP2 activities correlated with increased protein levels. BZL intracellular accumulation was significantly lower in BZL-pre-treated cells than in control cells. PSC833 (a P-gp inhibitor) increased the intracellular BZL concentration in both pre-treated and control cells, confirming P-gp participation in BZL efflux.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Linhagem Celular , Doença de Chagas/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Regulação para Cima
15.
Toxicology ; 363-364: 58-71, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27450509

RESUMO

Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking.


Assuntos
Fígado/efeitos dos fármacos , Fumar/efeitos adversos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Fígado/citologia , Fígado/metabolismo , Interferência de RNA/efeitos dos fármacos , Proteínas Carreadoras de Solutos/efeitos dos fármacos , Proteínas Carreadoras de Solutos/metabolismo
16.
Ann Hepatol ; 15(4): 577-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236157

RESUMO

UNLABELLED:  Introduction and aim. 5-Fluorouracil (5-FU) is the most commonly used chemotherapeutic drug in the treatment of cholangiocarcinoma (CCA). Since development of drug resistance to 5-FU in CCA patients is the primary cause of treatment failure, a better understanding of the mechanism of drug resistance of this cancer is essential to improve the efficacy of 5-FU in CCA therapy. MATERIAL AND METHODS: A 5-FU resistant CCA cell line (M214-5FUR) for a comparative chemo-resistance study was established. Real time RT-PCR was used to determine gene expression levels. Cell cytotoxicity was measured by the MTT assay. Protein expression levels were detected by the immunofluorescene method. RESULTS: It was found that 5-FU resistance was associated with the overexpression of T?10 in CCA cell lines. 5-FU treatment at various concentrations induced the expressions of T?10 and ABC transporters (ABCB1, ABCG2 ABCA3) in two CCA cell lines, KKU-M055 and KKU-M214. M214-5FUR, a 5-FU-resistant cell line, exhibited a 5-FU resistant phenotype with a 16-fold extremely high expression of T?10 and ABC transporters, as compared to the parental cells, KKU-M214. siRNA targeted to T?10 significantly reduced expression of ABC transporters tested in the M214-5FUR cells (P < 0.05). CONCLUSIONS: The present novel findingsof T?10 connected with drug resistance as shown in this study provides a new insight for the therapeutic value of T?10 as a predictive biomarker of 5-FU chemoresistance. Inhibiting T?10 may be a valuable adjunct for suppression of ABC transporters and sensitizing chemotherapy treatment, especially 5-FU in CCA patients.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Timosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Fluoruracila/uso terapêutico , Humanos , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Pharm Sci ; 105(1): 343-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852865

RESUMO

Scutellariae radix (SR, roots of Scutellaria baicalensis Georgi), a popular Chinese medicine, contains plenty of flavonoids such as baicalin, wogonoside, baicalein, and wogonin. Methotrexate (MTX), an important immunosuppressant with a narrow therapeutic index, is a substrate of multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). This study investigated the effect of SR on MTX pharmacokinetics and the underlying mechanisms. Rats were orally administered MTX alone and with 1.0 or 2.0 g/kg of SR. The serum concentrations of MTX were determined by a fluorescence polarization immunoassay. Cell models were used to explore the involvement of MRP2 and BCRP in the interaction. The results showed that 1.0 g/kg of SR significantly increased Cmax, AUC(0-30), AUC(0-2880), and mean residence time (MRT) of MTX by 50%, 45%, 501%, and 347%, respectively, and 2.0 g/kg of SR significantly enhanced the AUC(0-2880) and MRT by 242% and 293%, respectively, but decreased AUC(0-30) by 41%. Cell line studies indicated that SR activated the BCRP-mediated efflux transport, whereas the serum metabolites of SR inhibited both the BCRP- and MRP2-mediated efflux transports. In conclusion, SR ingestion increased the systemic exposure and MRT of MTX via modulation on MRP2 and BCRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimetabólitos/administração & dosagem , Antimetabólitos/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Metotrexato/administração & dosagem , Metotrexato/farmacocinética , Preparações de Plantas/farmacologia , Polifenóis/farmacologia , Scutellaria/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antimetabólitos/toxicidade , Área Sob a Curva , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Masculino , Metotrexato/toxicidade , Ratos , Ratos Sprague-Dawley
18.
Int J Environ Res Public Health ; 13(1): ijerph13010017, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703673

RESUMO

The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2) and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP) function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Células CACO-2/efeitos dos fármacos , Genisteína/farmacologia , Intestinos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/efeitos dos fármacos , Pterocarpanos/farmacologia , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla
19.
Oncotarget ; 6(17): 15494-509, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915534

RESUMO

Overexpression of adenine triphosphate (ATP)-binding cassette (ABC) transporters is one of the main reasons of multidrug resistance (MDR) in cancer cells. Trametinib, a novel specific small-molecule mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor, is currently used for the treatment of melanoma in clinic. In this study, we investigated the effect of trametinib on MDR mediated by ABC transporters. Trametinib significantly potentiated the effects of two ABCB1 substrates vincristine and doxorubicin on inhibition of growth, arrest of cell cycle and induction of apoptosis in cancer cells overexpressed ABCB1, but not ABCC1 and ABCG2. Furthermore, trametinib did not alter the sensitivity of non-ABCB1 substrate cisplatin. Mechanistically, trametinib potently blocked the drug-efflux activity of ABCB1 to increase the intracellular accumulation of rhodamine 123 and doxorubicin and stimulates the ATPase of ABCB1 without alteration of the expression of ABCB1. Importantly, trametinib remarkably enhanced the effect of vincristine against the xenografts of ABCB1-overexpressing cancer cells in nude mice. The predicted binding mode showed the hydrophobic interactions of trametinib within the large drug binding cavity of ABCB1. Consequently, our findings may have important implications for use of trametinib in combination therapy for cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Piridonas/farmacologia , Pirimidinonas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Mariposas , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/efeitos dos fármacos , Rodamina 123/farmacologia , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mem. Inst. Oswaldo Cruz ; 109(7): 964-966, 11/2014. tab
Artigo em Inglês | LILACS | ID: lil-728807

RESUMO

The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.


Assuntos
Animais , Transportadores de Cassetes de Ligação de ATP/fisiologia , Aedes/efeitos dos fármacos , Resistência a Inseticidas , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Temefós/farmacologia , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Aedes/metabolismo , Bloqueadores dos Canais de Cálcio/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacologia , Insetos Vetores/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacocinética , Larva/efeitos dos fármacos , Larva/metabolismo , Temefós/farmacocinética , Verapamil/farmacocinética , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA