RESUMO
INTRODUCTION: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although demographic and clinical parameters such as sex, age, comorbidities, genetic background and various biomarkers have been identified as risk factors, there is an unmet need to predict the risk and onset of severe inflammatory disease leading to poor clinical outcomes. In addition, very few mechanistic biomarkers are available to inform targeted treatment of severe (auto)-inflammatory conditions associated with COVID-19. Calprotectin, also known as S100A8/S100A9, MRP8/14 (Myeloid-Related Protein) or L1, is a heterodimer involved in neutrophil-related inflammatory processes. In COVID-19 patients, calprotectin levels were reported to be associated with poor clinical outcomes such as significantly reduced survival time, especially in patients with severe pulmonary disease. AREAS COVERED: Pubmed was searched using the following keywords: Calprotectin + COVID19, S100A8/A9 + COVID19, S100A8 + COVID-19, S100A9 + COVID-19, MRP8/14 + COVID19; L1 + COVID-19 between May 2020 and 8 March 2021. The results summarized in this review provide supporting evidence and propose future directions that define calprotectin as an important biomarker in COVID-19. EXPERT OPINION: Calprotectin represents a promising serological biomarker for the risk assessment of COVID-19 patients.
Assuntos
Transportadores de Cassetes de Ligação de ATP , COVID-19 , Calgranulina A , Calgranulina B , Índice de Gravidade de Doença , Transportadores de Cassetes de Ligação de ATP/sangue , Transportadores de Cassetes de Ligação de ATP/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , Calgranulina A/sangue , Calgranulina A/imunologia , Calgranulina B/sangue , Calgranulina B/imunologia , HumanosRESUMO
The incidence of malignant melanoma, a neoplasm of melanocytic cells, is increasing rapidly. The lymph nodes are often the first site of metastasis and can herald systemic dissemination, which is almost uniformly fatal. RLIP, a multi-specific ATP-dependent transporter that is over-expressed in several types of cancers, plays a central role in cancer cell resistance to radiation and chemotherapy. RLIP appears to be necessary for cancer cell survival because both in vitro cell culture and in vivo animal tumor studies show that the depletion or inhibition of RLIP causes selective toxicity to malignant cells. RLIP depletion/inhibition triggers apoptosis in cancer cells by inducing the accumulation of endogenously formed glutathione-conjugates. In our in vivo studies, we administered RLIP antibodies or antisense oligonucleotides to mice bearing subcutaneous xenografts of SKMEL2 and SKMEL5 melanoma cells and demonstrated that both treatments caused significant xenograft regression with no apparent toxic effects. Anti-RLIP antibodies and antisense, which respectively inhibit RLIP-mediated transport and deplete RLIP expression, showed similar tumor regressing activities, indicating that the inhibition of RLIP transport activity at the cell surface is sufficient to achieve anti-tumor activity. Furthermore, RLIP antisense treatment reduced levels of RLIP, pSTAT3, pJAK2, pSrc, Mcl-1 and Bcl2, as well as CDK4 and cyclin B1, and increased levels of Bax and phospho 5' AMP-activated protein kinase (pAMPK). These studies indicate that RLIP serves as a key effector in the survival of melanoma cells and is a valid target for cancer therapy. Overall, compounds that inhibit, deplete or downregulate RLIP will function as wide-spectrum agents to treat melanoma, independent of common signaling pathway mutations.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Ativadoras de GTPase/genética , Janus Quinase 2/genética , Melanoma/genética , Fator de Transcrição STAT3/genética , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/imunologia , Humanos , Melanoma/patologia , Camundongos , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Farmacorresistência Bacteriana/imunologia , Proteínas de Escherichia coli/imunologia , Escherichia coli/imunologia , Biossíntese de Proteínas/imunologia , Ribossomos/imunologia , Animais , HumanosRESUMO
Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8+ T cells stimulated with TAPlow dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Recidiva Local de Neoplasia/terapia , Neoplasias/terapia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/imunologia , Neoplasias/imunologia , RNA Interferente Pequeno/genéticaRESUMO
The laboratory hosting me for my Ph.D. described in 1994 the first human cases of TAP deficiency in two siblings with recurrent bacterial airway infections and a negative Human Leukocyte Antigen class I (HLA) serotyping. At this time, it became clear that natural killer (NK) cells interact with HLA class I molecules which inhibit them. Inhibitory receptors were postulated, and Alessandro Moretta was the first to generate monoclonal anti-human NK cell antibodies that bound to such molecules, which he characterized in detail (Killer Immunoglobulin-like receptors-KIR). Natural killer cells from healthy donors preferentially kill targets with absent HLA class I molecules ("missing self" concept), whereas we observed that the NK cells from the TAP-deficient patients were hypo-responsive and did not lyse the HLA class I-negative leukemia cell line K562. Moreover, they were not very active in antibody-dependent cellular cytotoxicity assays. To address the question if such NK cells would express KIR or not, my thesis supervisor requested the anti-KIR antibodies from Alessandro Moretta, who was kind enough to provide us generously with aliquots. It turned out that the NK cells from the TAP-deficient individuals expressed most of these inhibitory receptors normally. We then had the privilege to receive almost every new antibody generated in the Moretta lab and to complete the phenotypic studies of the NK cells from our patients. I had the great chance to meet Alessandro Moretta at several occasions. He deeply impressed me each time and strongly influenced my way of thinking.
Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Doenças Genéticas Inatas , Síndromes de Imunodeficiência , Transportadores de Cassetes de Ligação de ATP/imunologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , História do Século XXI , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologiaRESUMO
Neoantigen burden is a major determinant of tumor immunogenicity, underscored by recent clinical experience with checkpoint blockade therapy. Yet the majority of patients do not express, or express too few, neoantigens, and hence are less responsive to immune therapy. Here we describe an approach whereby a common set of new antigens are induced in tumor cells in situ by transient downregulation of the transporter associated with antigen processing (TAP). Administration of TAP siRNA conjugated to a broad-range tumor-targeting nucleolin aptamer inhibited tumor growth in multiple tumor models without measurable toxicity, was comparatively effective to vaccination against prototypic mutation-generated neoantigens, potentiated the antitumor effect of PD-1 antibody or Flt3 ligand, and induced the presentation of a TAP-independent peptide in human tumor cells. Treatment with the chemically-synthesized nucleolin aptamer-TAP siRNA conjugate represents a broadly-applicable approach to increase the antigenicity of tumor lesions and thereby enhance the effectiveness of immune potentiating therapies.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antígenos de Neoplasias/genética , Aptâmeros de Nucleotídeos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Anticâncer , Linhagem Celular Tumoral , Regulação para Baixo , Epitopos/imunologia , Feminino , Humanos , Imunização , Imunogenicidade da Vacina , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Células NIH 3T3 , Neoplasias Experimentais , Oligodesoxirribonucleotídeos , Fosfoproteínas , Receptor de Morte Celular Programada 1/imunologia , RNA Interferente Pequeno/administração & dosagem , Proteínas de Ligação a RNA , Baço/imunologia , Baço/patologia , Vacinação , NucleolinaRESUMO
As an important pathogen in aquaculture, Pseudomonas plecoglossicida has caused heavy losses. The expression of an ABC transporter gene-L321_23611 of P. plecoglossicida at 18⯰C was found significant higher than those at 28⯰C by RNA-seq and qRT-PCR. RNAi significantly reduced the content of L321_23611 mRNA in P. plecoglossicida with a maximal decrease of 89.2%. Compared with the wild type strain, the infection of L321_23611-RNAi strain resulted in the reduction in mortality and the onset time delay of a kind of marine teleosts, Epinephelus coioides. The results of dual RNA-seq showed that the RNAi of L321_23611 resulted in a significant change in both pathogen and host transcriptome in the spleens of infected E. coioides. The result of GO and KEGG analysis from dual RNA-seq data showed both host genes of chemokine signaling pathway, coagulation and complement system, hematopoietic cell lineage pathway as well as hemoglobin complex GO term and pathogenic genes of bacterial-type flagellum-dependent cell mortality GO term and flagellar assembly, biosynthesis of amino acids and lysine biosynthesis systems pathways were mainly affected by L321_23611 gene of P. plecoglossicida. The results indicated that: 1. ABC transporter gene-L321_23611 was a virulent gene of P. plecoglossicida. 2. Both the activation of the host immune pathways and depression of pathogenic virulence-related pathways facilitated E. coioides to remove L321_23611-RNAi strain than the wild type strain of P. plecoglossicida.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Bass , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Pseudomonas/fisiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/veterinária , Análise de Sequência de RNA/veterináriaRESUMO
Sepsis is a bi-phasic inflammatory disease that threatens approximately 30 million lives and claims over 14 million annually, yet little is known regarding the molecular switches and pathways that regulate this disease. Here, we have described ABCF1, an ATP-Binding Cassette (ABC) family member protein, which possesses an E2 ubiquitin enzyme activity, through which it controls the Lipopolysaccharide (LPS)- Toll-like Receptor-4 (TLR4) mediated gram-negative insult by targeting key proteins for K63-polyubiquitination. Ubiquitination by ABCF1 shifts the inflammatory profile from an early phase MyD88-dependent to a late phase TRIF-dependent signaling pathway, thereby regulating TLR4 endocytosis and modulating macrophage polarization from M1 to M2 phase. Physiologically, ABCF1 regulates the shift from the inflammatory phase of sepsis to the endotoxin tolerance phase, and modulates cytokine storm and interferon-ß (IFN-ß)-dependent production by the immunotherapeutic mediator, SIRT1. Consequently, ABCF1 controls sepsis induced mortality by repressing hypotension-induced renal circulatory dysfunction.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Macrófagos/imunologia , Sepse/imunologia , Choque Séptico/imunologia , Enzimas de Conjugação de Ubiquitina/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Interferon beta/imunologia , Interferon beta/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Interferência de RNA , Sepse/genética , Sepse/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/imunologiaRESUMO
The transporter associated with antigen processing (TAP) is a key element of the major histocompatibility complex (MHC) class I antigen processing and presentation pathway. Nonfunctional TAP complexes impair the translocation of cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen. This drastic reduction in the available peptide repertoire leads to a significant decrease in MHC class I cell surface expression. Using mass spectrometry, different studies have analyzed the cellular MHC class I ligandome from TAP-deficient cells, but the analysis of the parental proteins, the source of these ligands, still deserves an in-depth analysis. In the present report, several bioinformatics protocols were applied to investigate the nature of parental proteins for the previously identified TAP-independent MHC class I ligands. Antigen processing in TAP-deficient cells mainly focused on small, abundant or highly integral transmembrane proteins of the cellular proteome. This process involved abundant proteins of the central RNA metabolism. In addition, TAP-independent ligands were preferentially cleaved from the N- and C-terminal ends with respect to the central regions of the parental proteins. The abundance of glycine, proline and aromatic residues in the C-terminal sequences from TAP-independently processed proteins allows the accessibility and specificity required for the proteolytic activities that generates the TAP-independent ligandome. This limited proteolytic activity towards a set of preferred proteins in a TAP-negative environment would therefore suffice to promote the survival of TAP-deficient individuals.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ligantes , Peptídeos/metabolismo , Transporte Proteico , Proteômica/métodosRESUMO
Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Apresentação de Antígeno/imunologia , Fagossomos/imunologia , Animais , Linhagem Celular Tumoral , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/imunologia , Fagocitose/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Transporte Proteico/imunologia , ProteóliseRESUMO
Severe acute respiratory syndrome (SARS) is endemic in South China and is continuing to spread worldwide since the 2003 outbreak, affecting human population of 37 countries till present. SARS is caused by the severe acute respiratory syndrome Coronavirus (SARS-CoV). In the present study, we have designed two multi-epitope vaccines (MEVs) composed of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes overlap, bearing the potential to elicit cellular as well as humoral immune response. We have used truncated (residues 10-153) Onchocerca volvulus activation-associated secreted protein-1 as molecular adjuvants at N-terminal of both the MEVs. Selected overlapping epitopes of both the MEVs were further validated for stable molecular interactions with their respective human leukocyte antigen class I and II allele binders. Moreover, CTL epitopes were further studied for their molecular interaction with transporter associated with antigen processing. Furthermore, after tertiary structure modelling, both the MEVs were validated for their stable molecular interaction with Toll-like receptors 2 and 4. Codon-optimized cDNA of both the MEVs was analysed for their potential high level of expression in the mammalian cell line (Human) needed for their further in vivo testing. Overall, the present study proposes in silico validated design of two MEVs against SARS composed of specific epitopes with the potential to cause a high level of SARS-CoV specific cellular as well as humoral immune response. Communicated by Ramaswamy H. Sarma.
Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Epitopos de Linfócito T/química , Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas do Envelope Viral/química , Vacinas Virais/imunologia , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Linhagem Celular , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA/química , Antígenos HLA/imunologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Onchocerca volvulus/genética , Onchocerca volvulus/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/metabolismoRESUMO
Brain metastasis is an important cause of morbidity and mortality in cancer-patients. Breast tumor cells frequently metastasize to brain and initiate severe therapeutic complications. In the present study, we evaluated the anti-metastatic effects of 2'-hydroxyflavanone (2HF) alone and in combination with RLIP targeted therapy in a novel murine model of breast tumor metastasis. The MDA-MB231Br (brain-seeking) breast cancer (BC) cells stably-transfected with luciferase were injected into the left-ventricle of NSG mouse heart and the migration of cells to brain was monitored using a non-invasive bioluminescent imaging system. To evaluate the tumor growth suppressive effects, mice were given 2HF (50â¯mg/kg, b.w., alternate days orally), RLIP-antibody (Rab; 5â¯mg/kg, b.w., weekly i.p.) or combination of 2HF+Rab starting day1 after intra-cardiac injection. Our results reveal that 2HF and Rab significantly prevented the metastasis of BC cells to brain. Further, mice treated with combination of 2HF+Rab exhibited no metastasis as compared to either or the single agent-treated mice. This study for the first time demonstrates the anti-metastatic effects of 2HF and RLIP-inhibition in-vivo in a novel breast tumor metastasis model and provides the rationale for further clinical investigation.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/prevenção & controle , Neoplasias da Mama/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticorpos/administração & dosagem , Anticorpos/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flavanonas/administração & dosagem , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/imunologia , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCIDRESUMO
Typhoid fever is a severe illness in humans, caused by Salmonella typhi, a Gram-negative bacterium. Membrane proteins of S. typhi have strong potential for its use in development of subunit vaccine against typhoid. In current study, peptide-based subunit vaccine constructed from AI-2 import ATP-binding cassette transporter protein (LsrA) against S. typhi. B-cell and T-cell epitopes were identified at fold level with validated 3-D theoretical modelled structure. T-cell epitope from LsrA (LELPGSRPQ) has binds to maximum number (82.93%) of MHC class I and class II alleles. LsrA epitope was docked with HLA-DR4 and contact map were constructed to analyze molecular interaction (docking) studies. Simulation search for the binding site for full flexibility of the peptide from CABS-dock shows the stable interactions. MD simulation analysis reveals that LsrA epitope was binding and interacting firmly with the HLA-DR4. Hence, we are proposing that LsrA epitope would be a prominent epitope vaccine for human specific pathogen of S. typhi, which requires further steps to be elevated as a vaccine drug in near future.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Antígenos de Bactérias/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Salmonella typhi/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Sítios de Ligação , Biologia Computacional , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Epitopos de Linfócito T/metabolismo , Genes MHC Classe I , Genes MHC da Classe II , Antígeno HLA-DR4/imunologia , Humanos , Imunogenicidade da Vacina , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Conformação Proteica , Percepção de Quorum , Salmonella typhi/patogenicidade , Febre Tifoide/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-ParatíficasRESUMO
Most T cell-based immunotherapies of cancer depend on intact antigen presentation by HLA class I molecules (HLA-I). However, defects in the antigen-processing machinery can cause downregulation of HLA-I, rendering tumor cells resistant to CD8+ T cells. Previously, we demonstrated that a unique category of cancer antigens is selectively presented by tumor cells deficient for the peptide transporter TAP, enabling a specific attack of such tumors without causing immunopathology in mouse models. With a novel combinatorial screening approach, we now identify 16 antigens of this category in humans. These HLA-A*02:01 presented peptides do not derive from the mutanome of cancers, but are of "self" origin and therefore constitute universal neoantigens. Indeed, CD8+ T cells specific for the leader peptide of the ubiquitously expressed LRPAP1 protein recognized TAP-deficient, HLA-Ilow lymphomas, melanomas, and renal and colon carcinomas, but not healthy counterparts. In contrast to personalized mutanome-targeted therapies, these conserved neoantigens and their cognate receptors can be exploited for immune-escaped cancers across diverse histological origins.
Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Evasão Tumoral , Transportadores de Cassetes de Ligação de ATP/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Humanos , Masculino , Neoplasias/patologia , Células Tumorais CultivadasRESUMO
The tunicamycin biosynthetic gene cluster of Streptomyces chartreusis consists of 14 genes (tunA to tunN) with a high degree of apparent translational coupling. Transcriptional analysis revealed that all of these genes are likely to be transcribed as a single operon from two promoters, tunp1 and tunp2. In-frame deletion analysis revealed that just six of these genes (tunABCDEH) are essential for tunicamycin production in the heterologous host Streptomyces coelicolor, while five (tunFGKLN) with likely counterparts in primary metabolism are not necessary, but presumably ensure efficient production of the antibiotic at the onset of tunicamycin biosynthesis. Three genes are implicated in immunity, namely, tunI and tunJ, which encode a two-component ABC transporter presumably required for export of the antibiotic, and tunM, which encodes a putative S-adenosylmethionine (SAM)-dependent methyltransferase. Expression of tunIJ or tunM in S. coelicolor conferred resistance to exogenous tunicamycin. The results presented here provide new insights into tunicamycin biosynthesis and immunity.
Assuntos
Antibacterianos/biossíntese , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Família Multigênica , Streptomyces/genética , Tunicamicina/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Antibacterianos/imunologia , Sequência de Bases , Deleção de Genes , Teste de Complementação Genética , Metiltransferases/genética , Metiltransferases/imunologia , Óperon , Regiões Promotoras Genéticas , Streptomyces/imunologia , Streptomyces/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/imunologia , Streptomyces coelicolor/metabolismo , Tunicamicina/imunologiaRESUMO
BACKGROUND: Liver X receptors (LXRs) are involved in maintaining epidermal barrier and suppressing inflammatory responses in model systems. The LXR agonist VTP-38543 showed promising results in improving barrier function and inflammatory responses in model systems. OBJECTIVE: To assess the safety, tolerability, cellular and molecular changes, and clinical efficacy of the topical VTP-38543 in adults with mild to moderate atopic dermatitis (AD). METHODS: A total of 104 ambulatory patients with mild to moderate AD were enrolled in this randomized, double-blind, vehicle-controlled trial between December 2015 and September 2016. VTP-38543 cream in 3 concentrations (0.05%, 0.15%, and 1.0%) or placebo was applied twice daily for 28 days. Pretreatment and posttreatment skin biopsy specimens were obtained from a subset of 33 patients. Changes in SCORing of Atopic Dermatitis, Eczema Area and Severity Index, Investigator's Global Assessment, and tissue biomarkers (by real-time polymerase chain reaction and immunostaining) were evaluated. RESULTS: Topical VTP-38543 was safe and well tolerated. VTP-38543 significantly increased messenger RNA (mRNA) expression of epidermal barrier differentiation (loricrin and filaggrin, P = .02) and lipid (adenosine triphosphate-binding cassette subfamily G member 1 and sterol regulatory element binding protein 1c, P < .01) measures and reduced epidermal hyperplasia markers (thickness, keratin 16 mRNA). VTP-38543 nonsignificantly suppressed cellular infiltrates and down-regulated mRNA expression of several TH17/TH22-related (phosphatidylinositol 3, S100 calcium-binding protein A12) and innate immunity (interleukin 6) markers. CONCLUSION: Topical VTP-38543 is safe and well tolerated. Its application led to improvement in barrier differentiation and lipids. Longer-term studies are needed to clarify whether a barrier-based approach can induce meaningful suppression of immune abnormalities. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT02655679.
Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Epiderme/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Receptores X do Fígado/agonistas , RNA Mensageiro/agonistas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Administração Cutânea , Adulto , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Método Duplo-Cego , Epiderme/imunologia , Epiderme/patologia , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Queratina-16/genética , Queratina-16/imunologia , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteína S100A12/genética , Proteína S100A12/imunologia , Índice de Gravidade de Doença , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Resultado do TratamentoRESUMO
The intracellular compartments for proteolytic antigen processing in tumor cells produce peptides that are presented by MHC molecules to T cells. But first, the ubiquitin ligase system tags defective, misfolded, aged, and unstable proteins for degradation through the proteasome. Ubiqitinated proteins are unfolded and fed into the barrel-shaped core of the proteasome where a collection of multiple different proteases cleave proteins into oligopeptides. After exiting the proteasome, these oligopeptides are either completely degraded into amino acids or trimmed at the N- and C-termini so that they bind to transporter associated with antigen processing (TAP). TAP translocates oligopeptides into the ER where they are further trimmed and may bind to MHC molecules. Resulting peptide-MHC complexes then travel to the cell surface for T cell recognition. Many defects or anomalies in the proteolytic processing of tumor-derived proteins may suppress the expression of peptide-MHC complexes, which plays a role in escape of tumors from the immune system. However, due to the general dysregulated intracellular machinery of tumors, many proteins are translated from unconventional RNA transcripts including noncoding RNA, exon-intron retentions, and alternative splicing. These products of translation can serve as novel peptides for T cells as they recognize and kill tumors.
Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/imunologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apresentação de Antígeno , Humanos , Neoplasias/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/imunologia , Proteínas Ubiquitinadas/imunologia , Proteínas Ubiquitinadas/metabolismoRESUMO
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection (STI) gonorrhea, is a growing public health threat for which a vaccine is urgently needed. We characterized the functional role of the gonococcal MetQ protein, which is the methionine binding component of an ABC transporter system, and assessed its potential as a candidate antigen for inclusion in a gonococcal vaccine. MetQ has been found to be highly conserved in all strains investigated to date, it is localized on the bacterial surface, and it binds l-methionine with a high affinity. MetQ is also involved in gonococcal adherence to cervical epithelial cells. Mutants lacking MetQ have impaired survival in human monocytes, macrophages, and serum. Furthermore, antibodies raised against MetQ are bactericidal and are able to block gonococcal adherence to epithelial cells. These data suggest that MetQ elicits both bactericidal and functional blocking antibodies and is a valid candidate antigen for additional investigation and possible inclusion in a vaccine for prevention of gonorrhea.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Bloqueadores/imunologia , Antígenos de Bactérias/imunologia , Gonorreia/imunologia , Neisseria gonorrhoeae/imunologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Aderência Bacteriana , Vacinas Bacterianas/imunologia , Técnicas de Inativação de Genes , Ordem dos Genes , Gonorreia/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Metionina , Monócitos/imunologia , Monócitos/metabolismo , Neisseria gonorrhoeae/metabolismo , Fases de Leitura Aberta , Ligação ProteicaRESUMO
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the ß-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Adenosina Trifosfatases/imunologia , Endocitose , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/imunologia , Transdução de SinaisRESUMO
PURPOSE OF REVIEW: To give an overview about the expanding spectrum of autoinflammatory diseases due to mutations in proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) and new insights into their pathogenesis. RECENT FINDINGS: In addition to classical pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome, PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome has been described as a distinct clinical phenotype of PSTPIP1-associated inflammatory diseases (PAID) and other entities are emerging. In addition to dysregulation of IL-1ß release from activated PAPA monocytes that requires NLR family, pyrin domain containing 3 (NLRP3), PSTPIP1 mutations have an general impact on cellular dynamics of cells of the innate immune system. In addition, overwhelming expression and release of the alarmins myeloid-related protein (MRP) 8 and 14 by activated phagocytes and keratinocytes, which promote innate immune mechanisms in a Toll like receptor (TLR) 4-dependent manner, are a characteristic feature of these diseases and form a positive feed-back mechanism with IL-1ß. SUMMARY: Autoinflammatory diseases due to PSTPIP1 mutations are not restricted to the classical PAPA phenotype but might present with other distinct clinical features. MRP8/14 serum levels are a hallmark of PAPA and PAMI and can be used as screening tool to initiate targeted genetic testing in suspected cases. The feedback mechanism of IL-1ß and MRP-alarmin release may offer novel targets for future therapeutic approaches.