Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
2.
Science ; 382(6667): 223-230, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824668

RESUMO

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Assuntos
Transporte Axonal , Neurônios , Fosfatos de Fosfatidilinositol , Vesículas Sinápticas , Humanos , Transporte Axonal/fisiologia , Cinesinas/metabolismo , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
3.
Neurosci Res ; 197: 25-30, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734449

RESUMO

Kinesin motor proteins play crucial roles in anterograde transport of cargo vesicles in neurons, moving them along axons from the cell body towards the synaptic region. Not only the transport force and velocity of single motor protein, but also the number of kinesin molecules involved in transporting a specific cargo, is pivotal for synapse formation. This collective transport by multiple kinesins ensures stable and efficient cargo transport in neurons. Abnormal increases or decreases in the number of engaged kinesin molecules per cargo could potentially act as biomarkers for neurodegenerative diseases such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), spastic paraplegia, polydactyly syndrome, and virus transport disorders. We review here a model constructed using physical measurements to quantify the number of kinesin molecules associated with their cargo, which could shed light on the molecular mechanisms of neurodegenerative diseases related to axonal transport.


Assuntos
Esclerose Lateral Amiotrófica , Cinesinas , Humanos , Cinesinas/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Dineínas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo
4.
Cell Rep ; 42(5): 112448, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37133994

RESUMO

Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive "tug-of-war" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.


Assuntos
GTP Fosfo-Hidrolases , Doença de Parkinson , Humanos , Fator 6 de Ribosilação do ADP , Autofagossomos/metabolismo , Transporte Axonal/fisiologia , Dineínas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação
5.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912529

RESUMO

Neuronal cells are highly polarized cells that stereotypically harbor several dendrites and an axon. The length of an axon necessitates efficient bidirectional transport by motor proteins. Various reports have suggested that defects in axonal transport are associated with neurodegenerative diseases. Also, the mechanism of the coordination of multiple motor proteins has been an attractive topic. Since the axon has uni-directional microtubules, it is easier to determine which motor proteins are involved in the movement. Therefore, understanding the mechanisms underlying the transport of axonal cargo is crucial for uncovering the molecular mechanism of neurodegenerative diseases and the regulation of motor proteins. Here, we introduce the entire process of axonal transport analysis, including the culturing of mouse primary cortical neurons, transfection of plasmids encoding cargo proteins, and directional and velocity analyses without the effect of pauses. Furthermore, the open-access software "KYMOMAKER" is introduced, which enables the generation of a kymograph to highlight transport traces according to their direction and allow easier visualization of axonal transport.


Assuntos
Transporte Axonal , Doenças Neurodegenerativas , Camundongos , Animais , Transporte Axonal/fisiologia , Neurônios/metabolismo , Axônios/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Doenças Neurodegenerativas/metabolismo , Células Cultivadas
6.
J Biomech Eng ; 145(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795013

RESUMO

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.


Assuntos
Transporte Axonal , Dineínas , Dineínas/genética , Transporte Axonal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Axônios/metabolismo , Microtúbulos/metabolismo
7.
Viruses ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680194

RESUMO

Herpes simplex virus (HSV) and varicella zoster virus (VZV) rely on transport of virus particles in neuronal axons to spread from sites of viral latency in sensory ganglia to peripheral tissues then on to other hosts. This process of anterograde axonal transport involves kinesin motors that move virus particles rapidly along microtubules. α-herpesvirus anterograde transport has been extensively studied by characterizing the porcine pseudorabies virus (PRV) and HSV, with most studies focused on two membrane proteins: gE/gI and US9. It was reported that PRV and HSV US9 proteins bind to kinesin motors, promoting tethering of virus particles on the motors, and furthering anterograde transport within axons. Alternatively, other models have argued that HSV and PRV US9 and gE/gI function in the cytoplasm and not in neuronal axons. Specifically, HSV gE/gI and US9 mutants are defective in the assembly of virus particles in the cytoplasm of neurons and the subsequent sorting of virus particles to cell surfaces and into axons. However, PRV US9 and gE/gI mutants have not been characterized for these cytoplasmic defects. We examined neurons infected with PRV mutants, one lacking both gE/gI and US9 and the other lacking just US9, by electron microscopy. Both PRV mutants exhibited similar defects in virus assembly and cytoplasmic sorting of virus particles to cell surfaces. As well, the mutants exhibited reduced quantities of infectious virus in neurons and in cell culture supernatants. We concluded that PRV US9 primarily functions in neurons to promote cytoplasmic steps in anterograde transport.


Assuntos
Herpesvirus Suídeo 1 , Animais , Suínos , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Transporte Axonal/fisiologia , Proteínas do Envelope Viral/metabolismo , Cinesinas/metabolismo , Linhagem Celular , Axônios , Simplexvirus/fisiologia , Citoplasma/metabolismo , Vírion/metabolismo
8.
Cell Rep ; 40(11): 111324, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103832

RESUMO

Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.


Assuntos
Transporte Axonal , Proteínas do Tecido Nervoso , Trifosfato de Adenosina/metabolismo , Transporte Axonal/fisiologia , Suplementos Nutricionais , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
9.
J Vis Exp ; (186)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993756

RESUMO

Mitochondria are the primary suppliers of ATP (adenosine triphosphate) in neurons. Mitochondrial dysfunction is a common phenotype in many neurodegenerative diseases. Given some axons' elaborate architecture and extreme length, it is not surprising that mitochondria in axons can experience different environments compared to their cell body counterparts. Interestingly, dysfunction of axonal mitochondria often precedes effects on the cell body. To model axonal mitochondrial dysfunction in vitro, microfluidic devices allow treatment of axonal mitochondria without affecting the somal mitochondria. The fluidic pressure gradient in these chambers prevents diffusion of molecules against the gradient, thus allowing for analysis of mitochondrial properties in response to local pharmacological challenges within axons. The current protocol describes the seeding of dissociated hippocampal neurons in microfluidic devices, staining with a membrane-potential sensitive dye, treatment with a mitochondrial toxin, and the subsequent microscopic analysis. This versatile method to study axonal biology can be applied to many pharmacological perturbations and imaging readouts, and is suitable for several neuronal subtypes.


Assuntos
Axônios , Microfluídica , Trifosfato de Adenosina/metabolismo , Transporte Axonal/fisiologia , Axônios/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia
10.
Cell Death Dis ; 13(7): 584, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798698

RESUMO

Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Transporte Axonal , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Esclerose Lateral Amiotrófica/metabolismo , Animais , Transporte Axonal/fisiologia , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
11.
Neurotox Res ; 40(4): 1070-1085, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759084

RESUMO

Heroin is a highly addictive drug that causes axonal damage. Here, manganese-enhanced magnetic resonance imaging (MEMRI) was used to dynamically monitor axonal transport at different stages of heroin addiction. Rat models of heroin addiction (HA) and prolonged heroin addiction (PHA) were established by injecting rats with heroin at different stages. Heroin-induced learning and memory deficits were evaluated in the Morris water maze (MWM), and MEMRI was used to dynamically evaluate axonal transport in the olfactory pathway. The expression of proteins related to axonal structure and function was also assessed by Western blotting. Transmission electron microscopy (TEM) was used to observe ultrastructural changes, and protein levels of neurofilament heavy chain (NF-H) were analyzed by immunofluorescence staining. HA rats, especially PHA rats, exhibited worse spatial learning and memory than control rats. Compared with HA rats and control rats, PHA rats exhibited significantly longer escape latencies, significantly fewer platform-location crossings, and significantly more time in the target quadrant during the MWM test. Mn2+ transport was accelerated in HA rats. PHA rats exhibited severely reduced Mn2+ transport, and the axonal transport rate (ATR) was significantly lower in these rats than in control rats (P < 0.001). The levels of cytoplasmic dynein and kinesin-1 were significantly decreased in the PHA group than in the control group (P < 0.001); additionally, the levels of energy-related proteins, including cytochrome c oxidase (COX) IV and ATP synthase subunit beta (ATPB), were lower in the PHA group (P < 0.001). The brains of heroin-exposed rats displayed an abnormal ultrastructure, with neuronal apoptosis and mitochondrial dysfunction. Heroin exposure decreased the expression of NF-H, as indicated by significantly reduced staining intensities in tissues from HA and PHA rats (P < 0.05). MEMRI detected axonal transport dysfunction caused by long-term repeated exposure to heroin. The main causes of axonal transport impairment may be decreases in the levels of motor proteins and mitochondrial dysfunction. This study shows that MEMRI is a potential tool for visualizing axonal transport in individuals with drug addictions, providing a new way to evaluate addictive encephalopathy.


Assuntos
Transporte Axonal , Dependência de Heroína , Animais , Transporte Axonal/fisiologia , Encéfalo/metabolismo , Heroína/metabolismo , Heroína/toxicidade , Dependência de Heroína/diagnóstico por imagem , Dependência de Heroína/metabolismo , Dependência de Heroína/patologia , Cinesinas , Imageamento por Ressonância Magnética/métodos , Ratos
12.
Methods Mol Biol ; 2431: 95-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412273

RESUMO

Visualization and analysis of axonal organelle transport has been mostly conducted in vitro, using primary neuronal cell cultures, although more recently, intravital organelle imaging has been established in model organisms such as drosophila, zebrafish, and mouse. In this chapter, we describe a method to visualize axonal transport of cellular organelles such as dense core vesicles or mitochondria in the living mouse brain in order to study organelle transport in its native environment. We achieve this goal by injecting adeno-associated viruses expressing fluorescently tagged marker proteins into thalamic nuclei of mice, thereby transducing neurons that project to the surface of the brain. Axonal projections and trafficking of organelles can be imaged with a 2-photon microscope through a chronically implanted window in the mouse skull in anesthetized as well as awake mice.


Assuntos
Transporte Axonal , Peixe-Zebra , Animais , Transporte Axonal/fisiologia , Axônios/metabolismo , Encéfalo , Drosophila , Camundongos , Organelas/metabolismo
13.
Methods Mol Biol ; 2431: 547-568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412297

RESUMO

Motor protein-driven transport of mRNAs on microtubules and their local translation underlie important neuronal functions such as development, growth cone steering, and synaptic plasticity. While there is abundant data on how membrane-bound cargoes such as vesicles, endosomes, or mitochondria are coupled to motor proteins, surprisingly little is known on the direct interactions of RNA-protein complexes and kinesins or dynein. Provided the potential building blocks are identified, in vitro reconstitutions coupled to Total Internal Reflection Microscopy (TIRF-M) are a powerful and highly sensitive tool to understand how single molecules dynamically interact to assemble into functional complexes. Here we describe how we assemble TIRF-M imaging chambers suitable for the imaging of single protein-RNA complexes. We give advice on optimal sample preparation procedures and explain how a minimal axonal mRNA transport complex can be assembled in vitro. As these assays work at picomolar-range concentrations of proteins and RNAs, they allow the investigation of molecules that cannot be obtained at high concentrations, such as many large or disordered proteins. This now opens the possibility to study how RNA-binding proteins (RBPs), RNAs, and microtubule-associated proteins act together in real-time at single-molecule sensitivity to create cytoplasmic mRNA distributions.


Assuntos
Transporte Axonal , Cinesinas , Transporte Axonal/fisiologia , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Mol Cell Neurosci ; 119: 103704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131465

RESUMO

In the central nervous system (CNS), many neurons develop axonal arbors that are crucial for information processing. Previous studies have demonstrated that premature axons contain motile and stationary mitochondria, and their balance is important for axonal arborization. However, the mechanisms by which neurons determine the positions of stationary mitochondria as well as their turnover remain to be elucidated. We observed that the distribution of stationary mitochondrial spots along the unmyelinated and nonsynaptic axons is not random but rather relatively uniform both in primary cultured neurons and in tissues. Intriguingly, whereas the positions of each mitochondrial spot changed over time, the overall distribution remained uniform. In addition, local inactivation of mitochondria by KillerRed mediated chromophore-assisted light inactivation (CALI) inhibited the translocation of mitochondrial spots in adjacent axonal regions, suggesting that functional mitochondria enhance the motility of other mitochondria in the vicinity. Signals of ATP:ADP sensor, PercevalHR indicated that the ATP:ADP ratio was relatively high around mitochondria, and treating axons with phosphocreatine (PCr), which supplies ATP, reduced the immobile mitochondria induced by the local mitochondrial inactivation. In a mathematical model, we found that the ATP gradient generated by mitochondria, and ATP dependent regulation of mitochondrial motility could establish uniform mitochondrial distribution. These observations suggest that axons in the CNS possess the system that distributes mitochondria uniformly, and intermitochondrial signaling contribute to the regulation. In addition, our results suggest the possibility that ATP might be one of the molecules mediating the signaling.


Assuntos
Axônios , Mitocôndrias , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo
15.
Autophagy ; 17(11): 3306-3322, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33632058

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis.Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Lisossomos/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Autofagossomos/genética , Autofagossomos/patologia , Autofagossomos/fisiologia , Autofagia/fisiologia , Transporte Axonal/genética , Transporte Axonal/fisiologia , Proteína C9orf72/fisiologia , Expansão das Repetições de DNA/genética , Expansão das Repetições de DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Terapia Genética , Humanos , Lisossomos/fisiologia , Modelos Neurológicos , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/fisiopatologia , Proteostase/genética , Proteostase/fisiologia , Proteínas de Ligação a RNA/fisiologia
16.
J Neurosci Res ; 99(4): 981-990, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33341969

RESUMO

The mammalian nervous system is a complex network of interconnected cells. We review emerging techniques that use the axonal transport of adeno-associated virus (AAV) vectors to dissect neural circuits. These intersectional approaches specifically target AAV-mediated gene expression to discrete neuron populations based on their axonal connectivity, including: (a) neurons with one defined output, (b) neurons with one defined input, (c) neurons with one defined input and one defined output, and (d) neurons with two defined inputs or outputs. The number of labeled neurons can be directly controlled to trace axonal projections and examine cellular morphology. These approaches can precisely target the expression of fluorescent reporters, optogenetic ion channels, chemogenetic receptors, disease-associated proteins, and other factors to defined neural circuits in mammals ranging from mice to macaques, and thereby provide a powerful new means to understand the structure and function of the nervous system.


Assuntos
Transporte Axonal/fisiologia , Dependovirus/genética , Vias Neurais/fisiologia , Optogenética/métodos , Animais , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Integrases , Neurônios/fisiologia , Sinapses/fisiologia
17.
Nat Commun ; 11(1): 5318, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087709

RESUMO

Synaptic vesicles (SVs) can be pooled across multiple synapses, prompting questions about their dynamic allocation for neurotransmission and plasticity. We find that the axonal traffic of recycling vesicles is not supported by ubiquitous microtubule-based motility but relies on actin instead. Vesicles freed from synaptic clusters undergo ~1 µm bouts of active transport, initiated by nearby elongation of actin filaments. Long distance translocation arises when successive bouts of active transport were linked by periods of free diffusion. The availability of SVs for active transport can be promptly increased by protein kinase A, a key player in neuromodulation. Vesicle motion is in turn impeded by shutting off axonal actin polymerization, mediated by nitric oxide-cyclic GMP signaling leading to inhibition of RhoA. These findings provide a potential framework for coordinating post-and pre-synaptic strength, using retrograde regulation of axonal actin dynamics to mobilize and recruit presynaptic SV resources.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Óxido Nítrico/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Transporte Axonal/fisiologia , Transporte Biológico Ativo , Células Cultivadas , GMP Cíclico/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Proteínas Luminescentes/metabolismo , Masculino , Neurônios/fisiologia , Nocodazol/farmacologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/efeitos dos fármacos
18.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938770

RESUMO

The herpes simplex virus (HSV) heterodimer gE/gI and another membrane protein, US9, which has neuron-specific effects, promote the anterograde transport of virus particles in neuronal axons. Deletion of both HSV gE and US9 blocks the assembly of enveloped particles in the neuronal cytoplasm, which explains why HSV virions do not enter axons. Cytoplasmic envelopment depends upon interactions between viral membrane proteins and tegument proteins that encrust capsids. We report that tegument protein UL16 is unstable, i.e., rapidly degraded, in neurons infected with a gE-/US9- double mutant. Immunoprecipitation experiments with lysates of HSV-infected neurons showed that UL16 and three other tegument proteins, namely, VP22, UL11, and UL21, bound either to gE or gI. All four of these tegument proteins were also pulled down with US9. In neurons transfected with tegument proteins and gE/gI or US9, there was good evidence that VP22 and UL16 bound directly to US9 and gE/gI. However, there were lower quantities of these tegument proteins that coprecipitated with gE/gI and US9 from transfected cells than those of infected cells. This apparently relates to a matrix of several different tegument proteins formed in infected cells that bind to gE/gI and US9. In cells transfected with individual tegument proteins, this matrix is less prevalent. Similarly, coprecipitation of gE/gI and US9 was observed in HSV-infected cells but not in transfected cells, which argued against direct US9-gE/gI interactions. These studies suggest that gE/gI and US9 binding to these tegument proteins has neuron-specific effects on virus HSV assembly, a process required for axonal transport of enveloped particles.IMPORTANCE Herpes simplex viruses 1 and 2 and varicella-zoster virus cause significant morbidity and mortality. One basic property of these viruses is the capacity to establish latency in the sensory neurons and to reactivate from latency and then cause disease in peripheral tissues, such as skin and mucosal epithelia. The transport of nascent HSV particles from neuron cell bodies into axons and along axons to axon tips in the periphery is an important component of this reactivation and reinfection. Two HSV membrane proteins, gE/gI and US9, play an essential role in these processes. Our studies help elucidate how HSV gE/gI and US9 promote the assembly of virus particles and sorting of these virions into neuronal axons.


Assuntos
Axônios/virologia , Herpes Simples/virologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoproteínas/metabolismo , Simplexvirus/metabolismo , Proteínas Virais/metabolismo , Transporte Axonal/fisiologia , Capsídeo/metabolismo , Linhagem Celular , Citoplasma/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2 , Transporte Proteico , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus
19.
Aging (Albany NY) ; 12(12): 12142-12159, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32584265

RESUMO

Autophagosome accumulation is observed in the distal axons of Alzheimer disease (AD) patients and AD animal models, suggesting that deficient retrograde transport and impaired autophagic clearance of beta-amyloid (A ß) contribute to AD pathogenesis. Expression of the retrograde axonal transport-related protein dynein intermediate chain (DIC) is also reduced in AD patients, but the contributions of DIC to AD pathology remain elusive. This study investigated the effects of DIC expression levels on cognitive function, autophagosome axonal transport, and A ß clearance in the APP/PS1 double transgenic mouse model of AD. Autophagic activity was enhanced in the hippocampus of young (3-month-old) AD mice, as evidenced by greater expression of autophagosome markers, lysosome markers, axonal transport motors (including DIC), and dynein regulatory proteins. The expression levels of autophagosome markers remained elevated, whereas those of autophagic and axonal transport proteins decreased progressively with age, accompanied by spatial learning and memory deficits, axonal autophagosome accumulation, and A ß deposition. Knockdown of DIC exacerbated while overexpression improved axonal transport, autophagosome maturation, Aß clearance, and spatial learning and memory in aged AD mice. Our study provides evidence that age-dependent failure of axonal autophagic flux contributes to AD-associated neuropathology and cognitive deficits, suggesting DIC as a potential therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Dineínas/metabolismo , Hipocampo/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Transporte Axonal/fisiologia , Linhagem Celular Tumoral , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Dineínas/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA