Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Arch Biochem Biophys ; 703: 108853, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33811847

RESUMO

Generation of mitochondrial reactive oxygen species (ROS), lipid peroxidation, 4-hydroxy-2-nonenal, and heat-shock protein (HSP) 47 after electron and X-ray irradiations were detected in the human neuroblastoma cell line SK-N-SH. After 10 Gy electron irradiation and 15 Gy X-ray irradiation, mitochondrial ROS production and lipid peroxidation were significantly increased. Additionally, we observed a significant increase in the levels of HSP47 after 3 and 10 Gy electron irradiation as well as 15 Gy X-ray irradiation. Furthermore, myristoylation and farnesylation were increased after 10 Gy electron and 15 Gy X-ray irradiations. We found that the level of HSP47 increased in the mitochondria after 10 Gy electron and 15 Gy X-ray irradiations. HSP47 coexisted with myristoylation and farnesylation. Furthermore, HSP47 overexpression increased mitochondrial ROS production. These results suggest that HSP47 plays an important role in mitochondria and induces mitochondrial ROS production in SK-N-SH cells.


Assuntos
Elétrons , Proteínas de Choque Térmico HSP47/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Transporte Proteico/efeitos da radiação , Raios X
2.
Nat Commun ; 11(1): 2381, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404906

RESUMO

Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.


Assuntos
Proteínas de Bactérias/metabolismo , Células Eucarióticas/metabolismo , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Citosol/microbiologia , Células Eucarióticas/microbiologia , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/fisiologia , Humanos , Luz , Microscopia de Fluorescência , Optogenética/métodos , Transporte Proteico/efeitos da radiação , Análise Espacial , Sistemas de Secreção Tipo III/genética , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/fisiologia
3.
J Radiat Res ; 60(6): 780-785, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31599956

RESUMO

Bacterial flagellin is a pathogen-associated molecular pattern recognized by surface-localized Toll-like receptor 5 (TLR5) and cytosolic NOD-like receptor protein 4 (NLRC4). CBLB502, derived from Salmonella flagellin, exhibits high radioprotective efficacy in mice and primates by regulating TLR5 and the nuclear factor kappa B (NF-κB) signaling pathway. In this study, we examined the effects of CBLB502 and mutations in its NLRC4- and TLR5-binding domains on radioprotective efficacy and the immune inflammatory response. The results showed that CBLB502 mutation with I213A in the TLR5-binding domain significantly reduced NF-κB activity and radioprotective activity, whereas CBLB502 mutation with L292A in NLRC4-binding domain did not. Additionally, CBLB502 with both mutations greatly reduced NF-κB activity and eliminated radioprotection in mice. In contrast, NLRC4-binding domain mutation reduced the secretion of inflammatory interleukin-1ß and interleukin-18. CBLB502 exerts its radioprotective effects through both the TLR5 and NLRC4 pathways. Additionally, deletion in the NLRC4-binding domain did not reduce radioprotective activity but reduced the inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Flagelina/química , Mutação/genética , Peptídeos/química , Peptídeos/genética , Protetores contra Radiação/metabolismo , Animais , Citocinas/sangue , Raios gama , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Peptídeos/metabolismo , Ligação Proteica/efeitos da radiação , Domínios Proteicos , Transporte Proteico/efeitos da radiação
4.
Radiat Res ; 192(2): 135-144, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31141469

RESUMO

Radiotherapy for head and neck cancers can result in extensive damage to the salivary glands, significantly affecting patient quality of life. However, the salivary gland can recover in patients receiving lower doses of radiation. In addition, there is considerable interest in delineating the mechanisms by which stem cells survive radiation exposure and promote tissue regeneration. In this study, we isolated stable radioresistant acinar progenitor cells from the submaxillary gland of the Sprague Dawley rat. Progenitor cells are characterized as c-Kithigh/alpha-amylase+ and are resistant to X rays (≤5 Gy).We further isolated a radiosensitive acinar counterpart, characterized as c-Kitlow/alpha-amylase+, which is effectively killed by exposure to 2 Gy X ray of radiation. Phosphopeptides with homology to the treacle protein (TCOF1) were disproportionately increased in progenitor cells, compared to their radiosensitive counterparts. Silencing of TCOF1 expression (shRNA) radiosensitized progenitor cells, a response conserved in human cells with TCOF1 knockdown. Collectively, these observations indicate that radiation resistance is an intrinsic property of c-Kithigh salivary gland progenitor cells. Since human salivary gland stem cells with c-Kit expression are believed to have enhanced regenerative potencies, our model system provides a stable platform to investigate molecular features associated with c-Kit expression that may contribute to protection or stabilization of the stem cell niche.


Assuntos
Células Acinares/citologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Tolerância a Radiação , Células-Tronco/efeitos da radiação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Relação Dose-Resposta à Radiação , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Transporte Proteico/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
Oncogene ; 38(4): 549-563, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30158672

RESUMO

Ionizing radiation (IR) is a conventional cancer therapeutic, to which cancer cells develop radioresistance with exposure. The residual cancer cells after radiation treatment also have increased metastatic potential. The mechanisms by which cancer cells develop radioresistance and gain metastatic potential are still unknown. In this study acute IR exposure induced cancer cell senescence and apoptosis, but after long-term IR exposure, cancer cells exhibited radioresistance. The proliferation of radioresistant cells was retarded, and most cells were arrested in G0/G1 phase. The radioresistant cells simultaneously showed resistance to further IR-induced apoptosis, premature senescence, and epithelial to mesenchymal transformation (EMT). Acute IR exposure steadily elevated CDC6 protein levels due to the attenuation of ubiquitination, while CDC6 overexpression was observed in the radioresistant cells because the insufficiency of CDC6 phosphorylation blocked protein translocation from nucleus to cytoplasm, resulting in subcellular protein accumulation when the cells were arrested in G0/G1 phase. CDC6 ectopic overexpression in CNE2 cells resulted in apoptosis resistance, G0/G1 cell cycle arrest, premature senescence, and EMT, similar to the characteristics of radioresistant CNE2-R cells. Targeting CDC6 with siRNA promoted IR-induced senescence, sensitized cancer cells to IR-induced apoptosis, and reversed EMT. Furthermore, CDC6 depletion synergistically repressed the growth of CNE2-R xenografts when combined with IR. The study describes for the first time cell models for IR-induced senescence, apoptosis resistance, and EMT, three major mechanisms by which radioresistance develops. CDC6 is a novel radioresistance switch regulating senescence, apoptosis, and EMT. These studies suggest that CDC6highKI67low represents a new diagnostic marker of radiosensitivity, and CDC6 represents a new therapeutic target for cancer radiosensitization.


Assuntos
Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Apoptose/efeitos da radiação , Carcinoma/patologia , Senescência Celular/fisiologia , Transição Epitelial-Mesenquimal/efeitos da radiação , Neoplasias Nasofaríngeas/patologia , Proteínas de Neoplasias/fisiologia , Processamento de Proteína Pós-Traducional/efeitos da radiação , Tolerância a Radiação/fisiologia , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Carcinoma/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Antígeno Ki-67/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Nasofaríngeas/radioterapia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fosforilação/efeitos da radiação , Estabilidade Proteica , Transporte Proteico/efeitos da radiação , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitinação/efeitos da radiação , Raios X
6.
Anticancer Res ; 38(11): 6247-6252, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30396944

RESUMO

BACKGROUND/AIM: Epigallocatechin-3-gallate (EGCG) is a major polyphenolic component of green tea. EGCG plays a potential role in radio-sensitizing cancer cells. The combined effect of EGCG and radiation was investigated in a colorectal cancer cell line, focusing on nuclear factor (erythroid-derived 2)-like 2 (Nrf2) autophagy signalling. MATERIALS AND METHODS: HCT-116 cells were treated with 12.5 µM EGCG for different periods of time, 2 Gy radiation, or both. Cell viability was determined with the WST-8 assay. The number of colonies was determined with the colony formation assay. mRNA expression of LC3 and caspase-9 was analyzed with quantitative real-time polymerase chain reaction. RESULTS: Combination treatment with EGCG and radiation significantly decreased the growth of HCT-116 cells. The number of colonies was reduced to 34.2% compared to the control group. Immunofluorescence microscopy images showed that nuclear translocation of Nrf2 was significantly increased when cells were treated with the combination of EGCG and radiation compared to the control and single-treatment groups. Combined treatment with EGCG and radiation significantly induced LC3 and caspase-9 mRNA expression. CONCLUSION: EGCG increased the sensitivity of colorectal cancer cells to radiation by inhibiting cell proliferation and inducing Nrf2 nuclear translocation and autophagy.


Assuntos
Catequina/análogos & derivados , Neoplasias Colorretais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Radiossensibilizantes/farmacologia , Caspase 9/genética , Catequina/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HCT116 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fator 2 Relacionado a NF-E2/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/efeitos da radiação
7.
Int J Radiat Biol ; 94(7): 628-644, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775397

RESUMO

PURPOSE: One of the most important implications of 'Radiation Biology' research is to improve cancer radiotherapy with minimum side effects. In this regard, combination of chemotherapy with radiation has significantly improved tumor control as well as overall survival in a variety of cancers. However, this has been achieved at the cost of significant normal tissue toxicity, due to the lack of specificity of chemotherapy. Membrane-localized receptor tyrosine kinases (RTKs) have been found to play a driving role in various hallmarks of cancer. Moreover, an early successful clinical trial using RTK-antagonist (cetuximab) to improve tumor radiosensitivity has led to an advancement in this field of research. However, a comprehensive review integrating these findings of various oncogenic RTKs, from basic radiobiology-to-radiotherapy clinical trials, is lacking in literature. Therefore, the present review analyses relevant in-vitro, in-vivo, preclinical/clinical studies and postulates the concept of 'Radiation Biology of RTKs in Cancer'. CONCLUSIONS: The present review elucidates the effect of IR on various oncogenic RTKs and their mechanisms, downstream signaling, intracellular translocations, their role in the repair of radiation-induced DNA damage and post-irradiation survival. Based on the knowledge derived from RTK biology and the analysis of relevant clinical trials, this review attempts to identify radiobiological considerations, which could be implemented in future trials, combining radiotherapy with RTK-antagonist. Additionally, we identify the radiosensitizing potential of recently developed RTK-targeted nanoformulations. This review would probably change the Radiation Oncologist's view for translation of tumor-specific radiosensitization in clinic.


Assuntos
Neoplasias/radioterapia , Inibidores de Proteínas Quinases/uso terapêutico , Tolerância a Radiação , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular , Apoptose , Quimiorradioterapia , Reparo do DNA , Endocitose , Receptores ErbB/antagonistas & inibidores , Humanos , Invasividade Neoplásica , Neoplasias/metabolismo , Transporte Proteico/efeitos da radiação , Receptor IGF Tipo 1/antagonistas & inibidores , Evasão Tumoral
8.
Int J Oncol ; 52(3): 709-720, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29328365

RESUMO

Glioblastoma is the most malignant and lethal subtype brain tumors with high risk of recurrence and therapeutic resistance. Emerging evidence has indicated that glycogen synthesis kinase 3 (GSK3)ß plays oncogenic roles in multiple tumor types; however, the underlying mechanisms remain largely unknown. It has also been demonstrated that p53 binding protein 1 (53BP1) plays a central role in DNA double-strand break (DSB) repair. This study aimed to reveal the significance of GSK3ß translocation from the cytoplasm to the nucleus, and to determine whether GSK3ß induces DNA DSB repair in the nuclei of glioblastoma cells via phospho-53BP1. By performing in vitro experiments, we found that GSK3ß translocated from the cytoplasm to the nucleus, and it then bound to 53BP1 following exposure to IR (IR). In addition, 53BP1-mediated DNA DSB repair was observed to be abrogated by the inhibition of GSK3ß. Further experiments on the phosphorylation site of 53BP1 by GSK3ß revealed that the S/T-Q motif may play a critical role. Importantly, our in vivo and in vitro data clearly indicated that GSK3ß induced the phosphorylation of 53BP1 at the Ser166 site. Moreover, brain tumor xenograft models revealed that following exposure to IR plus SB216763, a specific GSK3ß inhibitor, tumor growth was markedly inhibited and the survival of mice markedly increased. Based on these results, we concluded that the phosphorylation of 53BP1 by GSK3ß was indispensable for DNA DSB repair. Our study also suggested that the inhibition of GSK3ß by SB216763 significantly inhibited the proliferation and induced the apoptosis of glioblastoma cells. Taken together, our data indicate that GSK3ß, a key phosphorylation protein for 53BP1, may be a potential target for enhancing the sensitivity of glioblastoma cells to radiation.


Assuntos
Neoplasias Encefálicas/genética , Núcleo Celular/metabolismo , Reparo do DNA , Glioblastoma/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Glioblastoma/mortalidade , Glioblastoma/patologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Transporte Proteico/efeitos da radiação , Radiação Ionizante , Serina/metabolismo , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Agric Food Chem ; 66(1): 45-52, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232945

RESUMO

Sea cucumber body-wall melting occurs under certain circumstances. We have shown that apoptosis but not autolysis plays a critical role in the initial stage. However, it is still unclear how apoptosis is triggered in this process. In this study, we examined the levels of reactive oxygen species (ROS), the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax) proteins, the depolarization of mitochondrial transmembrane potentials, and cytochrome c (Cyt c) release during sea cucumber melting induced by ultraviolet (UV) exposure. We also investigated the contribution of caspase in this process by injecting a pan-caspase inhibitor. Our data showed that UV exposure stimulates ROS production, dysfunction of mitochondria, and the release of Cyt c in sea cucumber coelomic fluid cells and body walls. We found a decrease of Bcl-2 and increase of Bax in the mitochondria after UV exposure. We also demonstrated that these changes are associated with elevated caspase-9 and -3 activity. Finally, our data showed that the inhibition of caspases-9 and -3 using an inhibitor suppresses UV-induced sea cucumber melting. These results suggest that apoptosis during sea cucumber melting is mediated by mitochondrial dysfunction and follows the activation of the caspase-signaling pathway. This study presents a novel insight into the mechanism of sea cucumber melting.


Assuntos
Caspases/metabolismo , Pepinos-do-Mar/fisiologia , Pepinos-do-Mar/efeitos da radiação , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos da radiação , Inibidores de Caspase/farmacologia , Citocromos c/metabolismo , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/metabolismo , Transporte Proteico/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pepinos-do-Mar/efeitos dos fármacos , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo
10.
Mol Cell Biol ; 37(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760776

RESUMO

DNA repair pathways are aberrant in cancer, enabling tumor cells to survive standard therapies-chemotherapy and radiotherapy. Our group previously reported that, upon irradiation, the membrane-bound tyrosine kinase receptor TIE2 translocates into the nucleus and phosphorylates histone H4 at Tyr51, recruiting ABL1 to the DNA repair complexes that participate in the nonhomologous end-joining pathway. However, no specific molecular mechanisms of TIE2 endocytosis have been reported. Here, we show that irradiation or ligand-induced TIE2 trafficking is dependent on caveolin-1, the main component of caveolae. Subcellular fractionation and confocal microscopy demonstrated TIE2/caveolin-1 complexes in the nucleus, and using inhibitor or small interfering RNAs (siRNAs) against caveolin-1 or Tie2 inhibited their trafficking. TIE2 was found in caveolae and directly phosphorylated caveolin-1 at Tyr14 in vitro and in vivo This modification regulated the generation of TIE2/caveolin-1 complexes and was essential for TIE2/caveolin-1 nuclear translocation. Our data further demonstrate that the combination of TIE2 and caveolin-1 inhibitors resulted in significant radiosensitization of malignant glioma cells, which will guide the development of combinatorial treatment with radiotherapy for patients with glioblastoma.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Glioma/metabolismo , Receptor TIE-2/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos da radiação , Transporte Proteico/efeitos da radiação , Regulação para Cima/efeitos da radiação
11.
Am J Pathol ; 187(10): 2208-2221, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739342

RESUMO

Current treatments for choroidal neovascularization, a major cause of blindness for patients with age-related macular degeneration, treat symptoms but not the underlying causes of the disease. Inflammation has been strongly implicated in the pathogenesis of choroidal neovascularization. We examined the inflammatory role of Toll-like receptor 2 (TLR2) in age-related macular degeneration. TLR2 was robustly expressed by the retinal pigment epithelium in mouse and human eyes, both normal and with macular degeneration/choroidal neovascularization. Nuclear localization of NF-κB, a major downstream target of TLR2 signaling, was detected in the retinal pigment epithelium of human eyes, particularly in eyes with advanced stages of age-related macular degeneration. TLR2 antagonism effectively suppressed initiation and growth of spontaneous choroidal neovascularization in a mouse model, and the combination of anti-TLR2 and antivascular endothelial growth factor receptor 2 yielded an additive therapeutic effect on both area and number of spontaneous choroidal neovascularization lesions. Finally, in primary human fetal retinal pigment epithelium cells, ligand binding to TLR2 induced robust expression of proinflammatory cytokines, and end products of lipid oxidation had a synergistic effect on TLR2 activation. Our data illustrate a functional role for TLR2 in the pathogenesis of choroidal neovascularization, likely by promoting inflammation of the retinal pigment epithelium, and validate TLR2 as a novel therapeutic target for reducing choroidal neovascularization.


Assuntos
Neovascularização de Coroide/patologia , Inflamação/patologia , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Receptor 2 Toll-Like/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Chlamydia/efeitos dos fármacos , Chlamydia/efeitos da radiação , Neovascularização de Coroide/complicações , Neovascularização de Coroide/metabolismo , Citocinas/metabolismo , Dipeptídeos/farmacologia , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Inflamação/complicações , Inflamação/genética , Lipídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Degeneração Macular/complicações , Degeneração Macular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Oxirredução , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação
12.
PLoS One ; 12(6): e0179175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594941

RESUMO

BACKGROUND: Considering promising results in animal models and patients, therapeutic use of MSCs for immune disease is likely to undergo continued evaluation. Low-lever laser (LLL) has been widely applied to retard the inflammatory reaction. LLL treatment can potentially be applied in anti-inflammatory therapy followed by stem cell therapy. AIM OF THE STUDY: The purpose of this study was to investigate the effect of LLL (660 nm) on the inflammatory reaction induced by LPS in human adipose derived mesenchymal stem cells (hADSCs) and pertinent mechanism. MATERIALS AND METHODS: Anti-inflammatory activity of LLL was investigated by LPS-induced mesenchymal stem cells. The production and expression of pro-inflammatory cytokines were evaluated by ELISA kits and RT-qPCR. Nuclear translocation of NF-κB was indicated by immunofluorescent staining. Phosphorylation status of NF-κB p65 and IκBα were illustrated by western blot assay. ROS generation was measured with CM-H2DCFDA, and NO secretion was determined by DAF-FM. We studied surface expression of lymphocyte activation markers when Purified peripheral blood mononuclear cell (PBMC) were activated by phytohaemagglutinin (PHA) in the presence of 3 types of treated MSCs. RESULTS: LLL reduced the secretion of IL-1ß, IL-6, IL8, ROS and NO in LPS treated MSCs. Immunofluorescent assay demonstrated the nuclear translocation decrease of NF-κB in LLL treated LPS induced MSCs. Western blot analysis also suggested that LLL suppressed NF-κB activation via regulating the phosphorylation of p65 and IκBα. MSC significantly reduced the expression of activation markers CD25 and CD69 on PHA-stimulated lymphocytes. CONCLUSION: The results indicate that LLL suppressed the activation of NF-κB signaling pathway in LPS treated MSCs through inhibiting phosphorylation of p65 and IκBα, which results in good anti-inflammatory effect. In addition, LLL attenuated activation-associated markers CD25 and CD69 in co-cultures of PBMC and 3 types of treated MSCs.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Lasers , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , NF-kappa B/metabolismo , Transdução de Sinais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Inflamação/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Lipopolissacarídeos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fito-Hemaglutininas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fator de Transcrição RelA/metabolismo
13.
Exp Dermatol ; 26(11): 1125-1133, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28636748

RESUMO

Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+ , while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and ß-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased ß-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.


Assuntos
Caderinas/metabolismo , Cálcio/farmacologia , Melaninas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Raios Ultravioleta , Adulto , Caderinas/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Células Epidérmicas , Feminino , Técnicas de Silenciamento de Genes , Humanos , Junções Intercelulares , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Sistema de Sinalização das MAP Quinases , Masculino , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanossomas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/efeitos da radiação , RNA Interferente Pequeno , Regulação para Cima/efeitos da radiação , beta Catenina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
14.
Nat Commun ; 8: 14791, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337980

RESUMO

Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms.


Assuntos
Peróxido de Hidrogênio/metabolismo , Transdução de Sinal Luminoso , Peroxidases/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálise/efeitos da radiação , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Modelos Biológicos , Fosforilação/efeitos da radiação , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação
15.
Exp Dermatol ; 26(10): 875-882, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28191677

RESUMO

The exposure of skin to ultraviolet (UV) radiation can have both beneficial and deleterious effects: it can lead, for instance, to increased pigmentation and vitamin D synthesis but also to inflammation and skin cancer. UVB may induce genetic and epigenetic alterations and have reversible effects associated with post-translational and gene regulation modifications. ß-catenin is a main driver in melanocyte development; although infrequently mutated in melanoma, its cellular localization and activity are frequently altered. Here, we evaluate the consequence of UVB on ß-catenin in the melanocyte lineage. We report that in vivo, UVB induces cytoplasmic/nuclear relocalization of ß-catenin in melanocytes of newborn mice and adult human skin. In mouse melanocyte and human melanoma cell lines in vitro, UVB increases ß-catenin stability, accumulation in the nucleus and cotranscriptional activity, leading to the repression of cell motility and velocity. The activation of the ß-catenin signalling pathway and its effect on migration by UVB are increased by an inhibitor of GSK3ß, and decreased by an inhibitor of ß-catenin. In conclusion, UVB represses melanocyte migration and does so by acting through the GSK3-ß-catenin axis.


Assuntos
Movimento Celular/efeitos da radiação , Melanócitos/efeitos da radiação , Melanoma/metabolismo , Transporte Proteico/efeitos da radiação , Raios Ultravioleta , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Queratinócitos , Melanócitos/fisiologia , Camundongos , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , beta Catenina/antagonistas & inibidores , beta Catenina/genética
16.
Int J Mol Sci ; 18(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208769

RESUMO

In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin- 1 ß application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ -irradiation or alternatively neuregulin- 1 ß application mobilized ErbB receptors in a nucleograde fashion-a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.


Assuntos
Epitélio/metabolismo , Junções Comunicantes/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos/farmacologia , Conexina 43/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/patologia , Epitélio/efeitos da radiação , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/efeitos da radiação , Microscopia Confocal , Neuregulina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Trastuzumab/farmacologia
17.
Radiat Res ; 187(1): 66-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28054837

RESUMO

Stereotactic radiosurgery (SRS) is an established treatment for brain arteriovenous malformations (AVMs) that drives blood vessel closure through cellular proliferation, thrombosis and fibrosis, but is limited by a delay to occlusion of 2-3 years and a maximum treatable size of 3 cm. In this current study we used SRS as a priming tool to elicit novel protein expression on the endothelium of irradiated AVM vessels, and these proteins were then targeted with prothrombotic conjugates to induce rapid thrombosis and vessel closure. SRS-induced protein changes on the endothelium in an animal model of AVM were examined using in vivo biotin labeling of surface-accessible proteins and comparative proteomics. LC-MS/MS using SWATH acquisition label-free mass spectrometry identified 280 proteins in biotin-enriched fractions. The abundance of 56 proteins increased after irradiation of the rat arteriovenous fistula (20 Gy, ≥1.5-fold). A large proportion of intracellular proteins were present in this subset: 29 mitochondrial and 9 cytoskeletal. Three of these proteins were chosen for further validation based on previously published evidence for surface localization and a role in autoimmune stimulation: cardiac troponin I (TNNI3); manganese superoxide dismutase (SOD2); and the E2 subunit of the pyruvate dehydrogenase complex (PDCE2). Immunostaining of AVM vessels confirmed an increase in abundance of PDCE2 across the vessel wall, but not a measurable increase in TNNI3 or SOD2. All three proteins co-localized with the endothelium after irradiation, however, more detailed subcellular distribution could not be accurately established. In vitro, radiation-stimulated surface translocation of all three proteins was confirmed in nonpermeabilized brain endothelial cells using immunocytochemistry. Total protein abundance increased modestly after irradiation for PDCE2 and SOD2 but decreased for TNNI3, suggesting that radiation primarily affects subcellular distribution rather than protein levels. The novel identification of these proteins as surface exposed in response to radiation raises important questions about their potential role in radiation-induced inflammation, fibrosis and autoimmunity, but may also provide unique candidates for vascular targeting in brain AVMs and other vascular tissues.


Assuntos
Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/radioterapia , Encéfalo/patologia , Células Endoteliais/efeitos da radiação , Espaço Intracelular/efeitos da radiação , Proteoma/metabolismo , Radiocirurgia , Animais , Malformações Arteriovenosas/patologia , Encéfalo/efeitos da radiação , Linhagem Celular , Células Endoteliais/metabolismo , Espaço Intracelular/metabolismo , Masculino , Transporte Proteico/efeitos da radiação , Ratos , Ratos Sprague-Dawley
18.
J Cell Mol Med ; 21(2): 336-348, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27641753

RESUMO

Solar ultraviolet (UV) radiation-induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB-induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR-1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB-induced reactive oxygen species and lactate dehydrogenase. Dose-dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase-1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5-Methoxyindole-2-carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle-associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal-regulated kinase, Jun N-terminal kinase and p38, which consequently reduced phosphorylated c-fos and c-jun. Our results suggest that TV is a potential botanical agent for use against UV radiation-induced oxidative stress mediated skin damages.


Assuntos
Elementos de Resposta Antioxidante/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Pele/patologia , Thymus (Planta)/química , Fator de Transcrição AP-1/metabolismo , Raios Ultravioleta , Animais , Antioxidantes/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Elastina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Interleucina-6/biossíntese , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos Pelados , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Coloração e Rotulagem , Fator de Crescimento Transformador beta1/metabolismo
19.
Biochem Biophys Res Commun ; 486(1): 1-5, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27940360

RESUMO

The ΔpH-dependent/Tat pathway is unique for using only the proton motive force for driving proteins transport across the thylakoid membrane in chloroplasts. 9-aminoacridine fluorescence quenching is widely used to monitor the ΔpH developed across the thylakoid membrane in the light. However, this method suffers from limited sensitivity to low ΔpH values and to spurious fluorescence signals due to membrane binding. In order to develop a more sensitive method for monitoring the real pH of the thylakoid lumen without these problems we transformed Arabidopsis thaliana with a ratiometric pH-sensitive GFP variant (termed pHluorin) targeted to the lumen by the prOE17 transit peptide. Positive transgenic plants displayed localization of pHluorin in the chloroplast by confocal microscopy, and fractionation experiments revealed that it is in the lumen. The pHluorin signal was the strongest in very young plants and diminished as the plants matured. The pHluorin released from the lumen displayed the expected fluorescence intensity changes in response to pH titration. The fluorescence signal in isolated chloroplasts responded to illumination in a manner consistent with light-dependent lumen acidification. Future experiments will exploit the use of this new pH-indicating probe of the thylakoid lumen to examine the influence of the thylakoid ΔpH on ATP synthesis and protein transport.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tilacoides/metabolismo , Arabidopsis/química , Arabidopsis/genética , Cloroplastos/química , Cloroplastos/genética , Fluorescência , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Luz , Microscopia Confocal/métodos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos da radiação , Espectrometria de Fluorescência/métodos , Tilacoides/química , Tilacoides/genética , Fatores de Tempo
20.
Radiat Res ; 186(6): 602-613, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27905868

RESUMO

A significant target for radiation-induced effects is the microvascular system, which is critical to healthy tissue function and its pathology is linked to disrupted endothelial barrier function. Low-linear energy transfer (LET) ionizing radiation is a source of noncancer pathologies in humans and little is known about the early events that could initiate subsequent diseases. However, it is well known that gamma radiation causes a very early disruption of the endothelial barrier at doses below those required for cytotoxic effects. After irradiation of human umbilical vein endothelial cells (HUVECs) to doses as low as 2 Gy, transendothelial electrical resistance (TEER) is transiently reduced at 3 h, and the platelet-derived endothothelial cell adhesion molecule (PECAM-1 or CD31) is uncoupled from the cells along with the release of endothelial microparticles (EMPs). In this study, we measured TEER reduction as an indicator of barrier function loss, and specifically examined the shedding of EMPs from human endothelial barrier models after a variety of low-LET irradiations, including photons and charged particles. Our findings showed two TEER responses, dependent on radiation type and environmental conditions. The first response was diminishing oscillations of TEER, which occurred during the first 10 h postirradiation. This response occurred after a 5 Gy proton or helium-ion (1 GeV/n) dose in addition to a 5 Gy gamma or X radiation dose. This occurred only in the presence of multiple growth factors and did not show a dose response, nor was it associated with EMP release. The second response was a single acute drop in TEER at 3 h after photon irradiation. Dose response was observed and was associated with the shedding of EMPs in 2D barrier cultures and in 3D vessel models. In this case, helium-ion and proton irradiations did not induce a drop in TEER or shedding of EMPs. The photon radiation effects was observed both in serum-free media and in the presence of multiple growth factors, indicating that it occurs under a range of environmental conditions. These results show an acute response of the human endothelial barrier that is relevant to photon irradiation. Significantly, it involves the release of EMPs, which have recently attracted attention due to their emerging clinical importance.


Assuntos
Micropartículas Derivadas de Células/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Transferência Linear de Energia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Relação Dose-Resposta à Radiação , Raios gama , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transporte Proteico/efeitos da radiação , Prótons , Soro/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA