Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
2.
J Affect Disord ; 356: 316-322, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583598

RESUMO

INTRODUCTION: Multiple lines of research implicate inflammation-related pathways in the molecular pathology of mood disorders, with our data suggesting a critical role for aberrant cortical tumour necrosis factor α (TNF)-signaling in the molecular pathology of bipolar disorders (BPD) and major depressive disorders (MDD). METHODS: To extend our understanding of changes in TNF-signaling pathways in mood disorders we used Western blotting to measure levels of tumour necrosis factor receptor associated factor 1 (TRAF1) and transmembrane TNF receptor superfamily member 1B (tmTNFRSF1B) in Brodmann's areas (BA) 24 and 46 from people with BPD and MDD. These proteins are key rate-limiting components within TNF-signaling pathways. RESULTS: Compared to controls, there were higher levels of TRAF1 of large effect size (η = 0.19, Cohen's d = 0.97) in BA 24, but not BA 46, from people with BPD. Levels of TRAF1 were not altered in MDD and levels of tmTNFRSF1B were not altered in either disorder. LIMITATIONS: The cases studied had been treated with psychotropic drugs prior to death which is an unresolvable study confound. Cohort sizes are relatively small but not untypical of postmortem CNS studies. CONCLUSIONS: To facilitate post-synaptic signaling, TRAF1 is known to associate with tmTNFRSF1B after that receptor takes its activated conformation which occurs predominantly after it binds to transmembrane TNF (tmTNF). Simultaneously, when tmTNFRSF1B binds to tmTNF reverse signaling through tmTNF is activated. Hence our findings in BA 24 argues that bidirectional TNF-signaling may be an important component of the molecular pathology of BPD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Fator 1 Associado a Receptor de TNF , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Bipolar/metabolismo , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Estudos de Casos e Controles
3.
Transl Psychiatry ; 14(1): 199, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678012

RESUMO

Major depressive disorder (MDD) is associated with interoceptive processing dysfunctions, but the molecular mechanisms underlying this dysfunction are poorly understood. This study combined brain neuronal-enriched extracellular vesicle (NEEV) technology and serum markers of inflammation and metabolism with Functional Magnetic Resonance Imaging (fMRI) to identify the contribution of gene regulatory pathways, in particular micro-RNA (miR) 93, to interoceptive dysfunction in MDD. Individuals with MDD (n = 41) and healthy comparisons (HC; n = 35) provided blood samples and completed an interoceptive attention task during fMRI. EVs were separated from plasma using a precipitation method. NEEVs were enriched by magnetic streptavidin bead immunocapture utilizing a neural adhesion marker (L1CAM/CD171) biotinylated antibody. The origin of NEEVs was validated with two other neuronal markers - neuronal cell adhesion molecule (NCAM) and ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3). NEEV specificities were confirmed by flow cytometry, western blot, particle size analyzer, and transmission electron microscopy. NEEV small RNAs were purified and sequenced. Results showed that: (1) MDD exhibited lower NEEV miR-93 expression than HC; (2) within MDD but not HC, those individuals with the lowest NEEV miR-93 expression had the highest serum concentrations of interleukin (IL)-1 receptor antagonist, IL-6, tumor necrosis factor, and leptin; and (3) within HC but not MDD, those participants with the highest miR-93 expression showed the strongest bilateral dorsal mid-insula activation during interoceptive versus exteroceptive attention. Since miR-93 is regulated by stress and affects epigenetic modulation by chromatin re-organization, these results suggest that healthy individuals but not MDD participants show an adaptive epigenetic regulation of insular function during interoceptive processing. Future investigations will need to delineate how specific internal and external environmental conditions contribute to miR-93 expression in MDD and what molecular mechanisms alter brain responsivity to body-relevant signals.


Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , Interocepção , Imageamento por Ressonância Magnética , MicroRNAs , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Feminino , Adulto , Interocepção/fisiologia , Pessoa de Meia-Idade , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles
4.
Neuropharmacology ; 250: 109908, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492883

RESUMO

Decreased hippocampal synaptic plasticity is an important pathological change in stress-related mood disorders, including major depressive disorder. However, the underlying mechanism is unclear. PGC-1α, a transcriptional coactivator, is a key factor in synaptic plasticity. We investigated the relationships between changes in hippocampal PGC-1α expression and depressive-like and stress-coping behaviours, and whether they are related to hippocampal synapses. Adeno-associated virus was used to alter hippocampal PGC-1α expression in male C57BL/6 mice. The sucrose preference test and forced swimming test were used to assess their depressive-like and stress-coping behaviours, respectively. Immunohistochemistry and stereology were used to calculate the total number of excitatory synapses in each hippocampal subregion (the cornu ammonis (CA) 1, CA3, and dentate gyrus). Immunofluorescence was used to visualize the changes in dendritic structure. Western blotting was used to detect the expression of hippocampal PGC-1α and mitochondrial-associated proteins, such as UCP2, NRF1 and mtTFAs. Our results showed that mice with downregulated PGC-1α expression in the hippocampus exhibited depressive-like and passive stress-coping behaviours, while mice with upregulated PGC-1α in the hippocampus exhibited increased stress-coping behaviours. Moreover, the downregulation of hippocampal PGC-1α expression resulted in a decrease in the number of excitatory synapses in the DG and in the protein expression of UCP2 in the hippocampus. Alternatively, upregulation of hippocampal PGC-1α yielded the opposite results. This suggests that hippocampal PGC-1α is involved in regulating depressive-like and stress-coping behaviours and modulating the number of excitatory synapses in the DG. This provides new insight for the development of antidepressants.


Assuntos
Capacidades de Enfrentamento , Transtorno Depressivo Maior , Animais , Masculino , Camundongos , Giro Denteado , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/metabolismo
5.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
6.
Transl Psychiatry ; 14(1): 163, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531835

RESUMO

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Esquizofrenia/metabolismo , Metabolômica , Metaboloma
7.
J Affect Disord ; 351: 738-745, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163566

RESUMO

BACKGROUND: Several studies have suggested an association between major depressive disorder (MDD) and abnormal brain structure. However, it is unclear whether MDD affects cortical gray matter volume, a common indicator of cognitive function. We aimed to determine whether MDD was associated with decreased cortical gray matter volume (GMV) through a Mendelian randomization (MR) study. METHODS: We obtained summary genetic data from a study conducted by the Psychiatric Genomics Consortium, which recruited a total of 480,359 participants (135,458 cases and 344,901 controls). Genetic tools-single nucleotide polymorphisms (SNPs)-of MDD were extracted from the study and their effects on gray matter volumes of the cortex and total brain were evaluated in a large cohort from the UK Biobank (n = 8427). The effects of the SNPs were pooled using inverse variance weighted (IVW) analysis and further tested in several sensitivity analyses. We tested whether C-reactive protein (CRP) levels and interleukin-6 signaling were the mediators of the effects using a multivariate MR model. RESULTS: Thirty-three SNPs were identified and adopted as genetic tools for predicting MDD. IVW analysis showed that MDD was associated with lower overall GMV (beta value -0.106, 95%CI -0.188 to -0.023, p = 0.011) in the frontal pole (left frontal pole, -0.152, 95%CI -0.177 to -0.127, p = 0.013; right frontal pole, -0.133, 95%CI -0.253 to -0.013, p = 0.028). Multivariate and mediation analysis showed that interleukin-6 was an important mediator of GMV reduction. Reverse causality analysis found no evidence that total GMV affected the risk of MDD, but showed that increased left precuneus cortex volume and left posterior cingulate cortex volume were associated with increased risk of MDD. LIMITATIONS: Potential pleiotropic effects and overestimation of real-world effects. Key assumptions for MR analysis may not be satisfactorily met. CONCLUSION: MDD was associated with a reduced GMV, and interleukin-6 might be a mediator of GMV reduction.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Substância Cinzenta , Análise de Mediação , Análise da Randomização Mendeliana , Interleucina-6/genética , Interleucina-6/metabolismo , Imageamento por Ressonância Magnética
8.
Behav Brain Res ; 462: 114870, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38266777

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a severe psychiatric disorder with uncertain causes. Recent studies have indicated correlations between circular RNAs (circRNAs) and psychiatric disorders. However, the potential role of circRNAs in MDD remains largely unknown. METHODS: We investigated the expression and diagnostic significance of circRNA protein tyrosine kinase 2 (circPTK2) by recruiting 50 MDD patients and 40 healthy subjects. Additionally, chronic unpredictable mild stress (CUMS) mouse model was established in animal experiments. QRT-PCR was adopted for circPTK2 and miR-182-5p levels. To investigate the role of circPTK2 in MDD, we utilized microinjection of circPTK2 adeno-associated virus into the mouse hippocampus. Depressive-like behaviors of mice were assessed through forced swim test and open field test. Additionally, the interaction between circPTK2 and miR-182-5p was validated using a dual luciferase reporter assay. RESULTS: Decreased expression of circPTK2 was found in peripheral blood mononuclear cells of MDD patients and in hippocampus of CUMS mice, which was useful for distinguishing MDD patients from healthy subjects. Notably, overexpression of circPTK2 was associated with depressive-like behaviors induced by CUMS. Further mechanism research demonstrated that circPTK2 functioned as the sponge for miR-182-5p, which may contribute to the beneficial effect of circPTK2. CONCLUSION: Collectively, our findings suggest the participation of circPTK2 and its underlying mechanism in MDD, which might provide a potential target for MDD therapy.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Animais , Humanos , Camundongos , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo
9.
Biol Psychiatry ; 95(5): 389-402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678540

RESUMO

BACKGROUND: LHPP was recently shown to be a risk gene for major depressive disorder. LHPP has been proven to dephosphorylate the residues of histidine, serine, threonine, and tyrosine. However, much remains unknown about how LHPP contributes to depression. METHODS: In the current study, we addressed this issue by integrating approaches of genetics, molecular biology, behavioral testing, and electrophysiology. RESULTS: We found that levels of LHPP were upregulated in glutamatergic neurons of the ventral hippocampus in mice that displayed stress-induced depression-like behaviors. Knockout of LHPP in glutamatergic neurons of the brain improved the spontaneous activity of LHPPflox/flox·CaMKIIαCre+ (conditional knockout) mice. Adeno-associated virus-mediated LHPP knockdown in the ventral hippocampus enhanced resistance against chronic social defeat stress in mice. Manipulations of LHPP levels impacted the density of dendritic spines and excitability of CA1 pyramidal neurons by mediating the expressions of BDNF (brain-derived neurotrophic factor) and PSD95 via the modulation of the dephosphorylation of CaMKIIα and ERK. Notably, compared with wild-type LHPP, human mutant LHPP (E56K, S57L) significantly increased the activity of the CaMKIIα/ERK-BDNF/PSD95 signaling pathway. Finally, esketamine, not fluoxetine, markedly alleviated the LHPP upregulation-induced depression-like behaviors. CONCLUSIONS: These findings provide evidence that LHPP contributes to the pathogenesis of depression via threonine and serine hydrolases, thereby identifying LHPP as a potential therapeutic target in treating patients with major depressive disorder.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Camundongos Knockout , Hipocampo/metabolismo , Neurônios/metabolismo , Serina/metabolismo , Treonina/metabolismo , Estresse Psicológico/tratamento farmacológico
10.
CNS Neurosci Ther ; 30(2): e14377, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37622283

RESUMO

INTRODUCTION: Major depressive disorder (MDD) affects about 17% population in the world. Although abnormal energy metabolism plays an important role in the pathophysiology of MDD, however, how deficiency of adenosine triphosphate (ATP) products affects emotional circuit and what regulates ATP synthesis are still need to be elaborated. AIMS: Our study aimed to investigate how deficiency of PGAM5-mediated depressive behavior. RESULTS: We firstly discovered that PGAM5 knockout (PGAM5-/- ) mice generated depressive-like behaviors. The phenotype was reinforced by the observation that chronic unexpected mild stress (CUMS)-induced depressive mice exhibited lowered expression of PGAM5 in prefrontal cortex (PFC), hippocampus (HIP), and striatum. Next, we found, with the using of functional magnetic resonance imaging (fMRI), that the functional connectivity between PFC reward system and the PFC volume were reduced in PGAM5-/- mice. PGAM5 ablation resulted in the loss of dendritic spines and lowered density of PSD95 in PFC, but not in HIP. Finally, we found that PGAM5 ablation led to lowered ATP concentration in PFC, but not in HIP. Coimmunoprecipitation study showed that PGAM5 directly interacted with the ATP F1 F0 synthase without influencing the interaction between ATP F1 F0 synthase and Bcl-xl. We then conducted ATP administration to PGAM5-/- mice and found that ATP could rescue the behavioral and neuronal phenotypes of PGAM5-/- mice. CONCLUSIONS: Our findings provide convincing evidence that PGAM5 ablation generates depressive-like behaviors via restricting neuronal ATP production so as to impair the number of neuronal spines in PFC.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Depressão/diagnóstico por imagem , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Trifosfato de Adenosina/metabolismo , Córtex Pré-Frontal/metabolismo , Metabolismo Energético , Estresse Psicológico/metabolismo , Camundongos Knockout , Fosfoproteínas Fosfatases/metabolismo
11.
Psychoneuroendocrinology ; 161: 106920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128260

RESUMO

Mood disorders, like major depressive disorder, can be precipitated by chronic stress and are more likely to be diagnosed in cisgender women than in cisgender men. This suggests that stress signaling in the brain is sexually dimorphic. We used a chronic variable mild stress paradigm to stress female and male mice for 6 weeks, followed by an assessment of avoidance behavior: the open field test, the elevated plus maze, the light/dark box emergence test, and the novelty suppressed feeding test. Additional cohorts were used for bulk RNA-Sequencing of the anterodorsal bed nucleus of the stria terminalis (adBNST) and whole-cell patch clamp electrophysiology in NPY-expressing neurons of the adBNST to record stress-sensitive M-currents. Our results indicate that females are more affected by chronic stress as indicated by an increase in avoidance behaviors, but that this is also dependent on the estrous stage of the animals such that diestrus females show more avoidant behaviors regardless of stress treatment. Results also indicate that NPY-expressing neurons of the adBNST are not major mediators of chronic stress as the M-current was not affected by treatment. RNA-Sequencing data suggests sex differences in estrogen signaling, serotonin signaling, and orexin signaling in the adBNST. Our results indicate that chronic stress influences behavior in a sex- and estrous stage-dependent manner but NPY-expressing neurons in the BNST are not the mediators of these effects.


Assuntos
Transtorno Depressivo Maior , Núcleos Septais , Humanos , Camundongos , Feminino , Masculino , Animais , Núcleos Septais/fisiologia , Transtorno Depressivo Maior/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , RNA/metabolismo
12.
Brain Behav Immun ; 115: 143-156, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848095

RESUMO

Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.


Assuntos
Barreira Hematoencefálica , Transtorno Depressivo Maior , Humanos , Masculino , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Histonas/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Camundongos Endogâmicos C57BL
13.
Artigo em Inglês | MEDLINE | ID: mdl-38135095

RESUMO

An emerging approach to studying major mental illness is through proteostasis, with the identification of several proteins that form insoluble aggregates in the brains of patients. One of these is Disrupted in Schizophrenia 1 (DISC1), a neurodevelopmentally-important scaffold protein, and product of a classic schizophrenia risk gene. DISC1 aggregates have been detected in post mortem brain tissue from patients with schizophrenia, bipolar disorder and major depressive disorder, as well as various model systems, although the mechanism by which it aggregates is still unclear. Aggregation of two other proteins implicated in mental illness, TRIOBP-1 and NPAS3, was shown to be dependent on very specific structural regions of the protein. We therefore looked at the domain structure of DISC1, and investigated which structural elements are key for its aggregation. While none of the known structured DISC1 regions (named D, I, S and C respectively) formed aggregates individually when expressed in neuroblastoma cells, the combination of the D and I regions, plus the linker region between them, formed visible aggregates. Further refinement revealed that a region of approximately 30 amino acids between these two regions is critical for aggregation, and deletion of this region is sufficient to abolish the aggregation propensity of DISC1. This finding from mammalian cell culture contrasts with the recent determination that the C-region of DISC1 can aggregate in vitro, although some variations of the C-terminal of DISC1 could aggregate in our system. It therefore appears likely that DISC1 aggregation, implicated in mental illness, can occur through at least two distinct mechanisms.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Animais , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transtorno Depressivo Maior/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
14.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136653

RESUMO

The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1ß, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.


Assuntos
Transtorno Depressivo Maior , Resiliência Psicológica , Camundongos , Animais , Depressão/genética , Depressão/psicologia , Anedonia/fisiologia , Transtorno Depressivo Maior/metabolismo , Dinâmica Mitocondrial , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos , Sacarose/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão Gênica
15.
Biomed Pharmacother ; 168: 115810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913736

RESUMO

BACKGROUND: Several studies have reported the association between osteoporosis and major depressive disorder (MDD) as well as the use of antidepressants. However, it remains to be elucidated whether these associations are related to exposure to antidepressants, a consequence of a disease process, or a combination of both. METHODS: This study investigates the independent effect of the antidepressant duloxetine hydrochloride (DH) on ovariectomy-induced bone loss in mice. One week after ovariectomy, the treated mice received DH. To explore the mechanism underlying the rescue of bone loss, bone marrow cells were isolated from mouse femurs and tibias, and macrophages extracted from them were induced to become osteoclasts in vitro while being treated with DH. Subsequently, the osteoclasts underwent Bulk RNA-Seq to reveal the involved signaling pathways. The results of the bioinformatic analysis were then validated through in vitro experiments. RESULTS: The in vivo experiments demonstrated that DH treatment compromised ovariectomy-induced bone loss after 7 weeks. The in vitro experiments suggested that DH treatment attenuated osteoclast differentiation via the MAPKs/NFATc1 signaling pathway. CONCLUSION: The findings from this study suggest that DH, instead of causing bone mass loss, may assist in alleviating postmenopausal osteoporosis. These results can serve as a reference for the clinical treatment of patients with perimenopausal or postmenopausal depression using antidepressants.


Assuntos
Transtorno Depressivo Maior , Osteoclastos , Humanos , Feminino , Animais , Camundongos , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Transtorno Depressivo Maior/metabolismo , Diferenciação Celular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ovariectomia/efeitos adversos , Osteogênese , Ligante RANK/metabolismo
16.
Cells ; 12(10)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37408194

RESUMO

A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.


Assuntos
Transtorno Depressivo Maior , Ketamina , Camundongos , Animais , Ratos , Ketamina/farmacologia , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Neurônios
17.
Cells ; 12(14)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37508512

RESUMO

BACKGROUND: Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1. It is unclear, however, whether these proteins normally aggregate together in the same individuals and, if so, whether each protein aggregates independently of each other ("parallel aggregation") or if the proteins physically interact and aggregate together ("co-aggregation"). MATERIALS AND METHODS: Post mortem insular cortex samples from major depressive disorder and Alzheimer's disease patients, suicide victims and control individuals had their insoluble fractions isolated and tested by Western blotting to determine which of these proteins are insoluble and, therefore, likely to be aggregating. The ability of the proteins to co-aggregate (directly interact and form common aggregate structures) was tested by systematic pairwise expression of the proteins in SH-SY5Y neuroblastoma cells, which were then examined by immunofluorescent microscopy. RESULTS: Many individuals displayed multiple insoluble proteins in the brain, although not enough to imply interaction between the proteins. Cell culture analysis revealed that only a few of the proteins analyzed can consistently co-aggregate with each other: DISC1 with each of CRMP1 and TRIOBP-1. DISC1 was able to induce aggregation of full length TRIOBP-1, but not individual domains of TRIOBP-1 when they were expressed individually. CONCLUSIONS: While specific proteins are capable of co-aggregating, and appear to do so in the brains of individuals with mental illness and potentially also with suicidal tendency, it is more common for such proteins to aggregate in a parallel manner, through independent mechanisms. This information aids in understanding the distribution of protein aggregates among mental illness patients and is therefore important for any future diagnostic or therapeutic approaches based on this aspect of mental illness pathology.


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , Neuroblastoma , Humanos , Agregados Proteicos , Transtorno Depressivo Maior/metabolismo , Neuroblastoma/metabolismo , Transtornos Mentais/metabolismo , Encéfalo/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
18.
Neurobiol Dis ; 185: 106229, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453562

RESUMO

Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.


Assuntos
Transtorno Depressivo Maior , Doenças do Sistema Nervoso , Animais , Camundongos , Transtorno Depressivo Maior/metabolismo , Receptores Purinérgicos/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cognição
19.
Psychol Med ; 53(16): 7537-7549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37226771

RESUMO

BACKGROUND: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS: PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS: PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION: The results support the possibility that PACAP plays a role in mood disorder pathophysiology.


Assuntos
Doença de Alzheimer , Transtorno Bipolar , Transtorno Depressivo Maior , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Transtorno Bipolar/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Hipotálamo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Córtex Pré-Frontal/metabolismo
20.
Behav Brain Res ; 450: 114503, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37209878

RESUMO

BACKGROUND: Major depressive disorder is a serious psychiatric illness having serious damaging effect on the quality of life of suffers. Quercetin is a plant flavonoid, mostly used as a constituent in dietary products. This study evaluated antidepressant effect of quercetin on lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS: Twenty-one male rats were randomly assigned into three groups (n = 7): group 1 (vehicle only), group 2 (quercetin), group 3 (LPS). Rats were treated with vehicle (10 mL/kg, p.o.) or quercetin (50 mg/kg, p.o.) for seven days. Sixty minutes after treatment on day seven, all animals were injected with LPS (0.83 mg/kg, i.p.) except group 1 (vehicle only). Twenty-four hours after LPS injection, animals were assessed for depressive symptoms using forced swim, sucrose splash and open field tests. Animals were sacrificed; brain samples collected for bioassay of pro-inflammatory mediators, TNF-α, IL-6 and IL-17 were measured using enzyme-linked immunosorbent assay (ELISA) while expressions of NF-κB, inflammasomes, microglia and iNOS were quantified by immunohistochemistry. RESULTS: The LPS significantly (p < 0.05) decreased mobility of rats in FST and decreased sucrose preference, which is indicative of depressive-like behaviours. These behaviours were significantly (p < 0.05) attenuated by quercetin compared to control (vehicle only). Following LPS exposure, the expressions of inflammasomes, NF-κB, iNOS, proinflammatory cytokines and microglia positive cells in the hippocampus and prefrontal cortex were significantly (p < 0.05) elevated. All these were attenuated by pretreating animals with quercetin. CONCLUSION: Quercetin exhibit antidepressant-like property, which may be related to inhibition of neuroinflammatory signaling pathways.


Assuntos
Transtorno Depressivo Maior , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quercetina/farmacologia , Microglia , Inflamassomos/metabolismo , Doenças Neuroinflamatórias , Transtorno Depressivo Maior/metabolismo , Qualidade de Vida , Transdução de Sinais , Antidepressivos/uso terapêutico , Sacarose/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA