Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 13(6): 2616-2629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36104842

RESUMO

Short, intermittent episodes of disuse muscle atrophy (DMA) may have negative impact on age related muscle loss. There is evidence of variability in rate of DMA between muscles and over the duration of immobilization. As yet, this is poorly characterized. This review aims to establish and compare the time-course of DMA in immobilized human lower limb muscles in both healthy and critically ill individuals, exploring evidence for an acute phase of DMA and differential rates of atrophy between and muscle groups. MEDLINE, Embase, CINHAL and CENTRAL databases were searched from inception to April 2021 for any study of human lower limb immobilization reporting muscle volume, cross-sectional area (CSA), architecture or lean leg mass over multiple post-immobilization timepoints. Risk of bias was assessed using ROBINS-I. Where possible meta-analysis was performed using a DerSimonian and Laird random effects model with effect sizes reported as mean differences (MD) with 95% confidence intervals (95% CI) at various time-points and a narrative review when meta-analysis was not possible. Twenty-nine studies were included, 12 in healthy volunteers (total n = 140), 18 in patients on an Intensive Therapy Unit (ITU) (total n = 516) and 3 in patients with ankle fracture (total n = 39). The majority of included studies are at moderate risk of bias. Rate of quadriceps atrophy over the first 14 days was significantly greater in the ITU patients (MD -1.01 95% CI -1.32, -0.69), than healthy cohorts (MD -0.12 95% CI -0.49, 0.24) (P < 0.001). Rates of atrophy appeared to vary between muscle groups (greatest in triceps surae (-11.2% day 28), followed by quadriceps (-9.2% day 28), then hamstrings (-6.5% day 28), then foot dorsiflexors (-3.2% day 28)). Rates of atrophy appear to decrease over time in healthy quadriceps (-6.5% day 14 vs. -9.1% day 28) and triceps surae (-7.8% day 14 vs. -11.2% day 28), and ITU quadriceps (-13.2% day 7 vs. -28.2% day 14). There appears to be variability in the rate of DMA between muscle groups, and more rapid atrophy during the earliest period of immobilization, indicating different mechanisms being dominant at different timepoints. Rates of atrophy are greater amongst critically unwell patients. Overall evidence is limited, and existing data has wide variability in the measures reported. Further work is required to fully characterize the time course of DMA in both health and disease.


Assuntos
Força Muscular , Transtornos Musculares Atróficos , Humanos , Força Muscular/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Músculo Quadríceps , Músculo Esquelético/patologia , Extremidade Inferior , Transtornos Musculares Atróficos/etiologia
2.
J Cachexia Sarcopenia Muscle ; 12(3): 717-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675163

RESUMO

BACKGROUND: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Animais , Feminino , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/etiologia , Fatores Sexuais
3.
Clin Transl Sci ; 14(4): 1512-1523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742769

RESUMO

Mechanical ventilation (MV) is a life-saving instrument used to provide ventilatory support for critically ill patients and patients undergoing surgery. Unfortunately, an unintended consequence of prolonged MV is the development of inspiratory weakness due to both diaphragmatic atrophy and contractile dysfunction; this syndrome is labeled ventilator-induced diaphragm dysfunction (VIDD). VIDD is clinically important because diaphragmatic weakness is an important contributor to problems in weaning patients from MV. Investigations into the pathogenesis of VIDD reveal that oxidative stress is essential for the rapid development of VIDD as redox disturbances in diaphragm fibers promote accelerated proteolysis. Currently, no standard treatment exists to prevent VIDD and, therefore, developing a strategy to avert VIDD is vital. Guided by evidence indicating that activation of the classical axis of the renin-angiotensin system (RAS) in diaphragm fibers promotes oxidative stress and VIDD, we hypothesized that activation of the nonclassical RAS signaling pathway via angiotensin 1-7 (Ang1-7) will protect against VIDD. Using an established animal model of prolonged MV, our results disclose that infusion of Ang1-7 protects the diaphragm against MV-induced contractile dysfunction and fiber atrophy in both fast and slow muscle fibers. Further, Ang1-7 shielded diaphragm fibers against MV-induced mitochondrial damage, oxidative stress, and protease activation. Collectively, these results reveal that treatment with Ang1-7 protects against VIDD, in part, due to diminishing oxidative stress and protease activation. These important findings provide robust evidence that Ang1-7 has the therapeutic potential to protect against VIDD by preventing MV-induced contractile dysfunction and atrophy of both slow and fast muscle fibers.


Assuntos
Angiotensina I/administração & dosagem , Diafragma/efeitos dos fármacos , Debilidade Muscular/prevenção & controle , Transtornos Musculares Atróficos/prevenção & controle , Fragmentos de Peptídeos/administração & dosagem , Respiração Artificial/efeitos adversos , Animais , Diafragma/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Infusões Intravenosas , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
4.
Anticancer Res ; 40(4): 2275-2281, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234926

RESUMO

BACKGROUND/AIM: To assess the prognostic effect of muscle loss after esophagectomy and before discharge. PATIENTS AND METHODS: This study retrospectively analysed 159 consecutive patients with oesophageal and gastroesophageal junction cancer who underwent esophagectomy between August 2011 and October 2015. Body composition was evaluated one week before surgery and at discharge using a bioelectrical impedance analyser. RESULTS: The median rate of muscle mass loss (RMML) was 4.38% (range=-3.3 to +18.8). Patients with increased RMML had significantly poorer outcomes of overall survival than those with decreased RMML (p=0.015). On multivariate analysis, RMML [≥4.38, hazard ratio (HR)=2.033, 95% confidence interval (CI)=1.018-5.924, p=0.044) and pathological tumour depth (≥2, HR=3.099, 95%CI=1.339-7.172, p=0.008) were selected as independent prognostic factors. CONCLUSION: RMML after esophagectomy is indicative of poor prognosis in patients with esophageal cancer.


Assuntos
Neoplasias Esofágicas/fisiopatologia , Esofagectomia/métodos , Junção Esofagogástrica/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Neoplasias Gástricas/fisiopatologia , Idoso , Intervalo Livre de Doença , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Esofagectomia/efeitos adversos , Junção Esofagogástrica/patologia , Junção Esofagogástrica/cirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Transtornos Musculares Atróficos/etiologia , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
5.
Surg Today ; 50(7): 693-702, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31834495

RESUMO

PURPOSE: Skeletal muscle loss after gastrectomy can worsen patients' quality of life and prognosis. Laparoscopic gastrectomy is less invasive than open gastrectomy and has become commonly performed. However, the degree of skeletal muscle loss after laparoscopic procedures remains unclear. We herein report the degree and risk factors of psoas muscle loss after laparoscopic gastrectomy for gastric cancer. METHODS: The total psoas area (TPA) on computed tomography of 50 consecutive patients who underwent laparoscopic total gastrectomy (LTG) and 167 consecutive patients who underwent laparoscopic distal gastrectomy (LDG) for gastric cancer was retrospectively evaluated at one postoperative year. The TPA loss was compared between LDG and LTG and univariate and multivariate analyses were performed to identify the risk factors for TPA loss > 10%. RESULTS: The median TPA decrease rate was 5.9% in the LDG group and 15.6% in the LTG group. LTG and postoperative respiratory complications were independent factors associated with a severe TPA loss of > 10%. In the LTG group, no independent factors were identified in a multivariate analysis. In the LDG group, postoperative complications were identified as an independent risk factor for TPA loss > 10%. CONCLUSIONS: Laparoscopic gastrectomy leads to postoperative TPA loss, especially in patients who underwent LTG and had postoperative respiratory complications. Postoperative complications after LDG were also a risk factor for TPA loss.


Assuntos
Gastrectomia/efeitos adversos , Laparoscopia/efeitos adversos , Transtornos Musculares Atróficos/etiologia , Complicações Pós-Operatórias/etiologia , Músculos Psoas/patologia , Idoso , Feminino , Gastrectomia/métodos , Humanos , Laparoscopia/métodos , Masculino , Pessoa de Meia-Idade , Transtornos Musculares Atróficos/patologia , Prognóstico , Qualidade de Vida , Transtornos Respiratórios/complicações , Estudos Retrospectivos , Fatores de Risco
6.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852842

RESUMO

Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non-fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-ß+CD146+CD34-CD56- pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-ß+PDGFR-α- phenotype typified non-fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non-fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-ß+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non-fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.


Assuntos
Células-Tronco Embrionárias Humanas/fisiologia , Transtornos Musculares Atróficos/terapia , Pericitos/transplante , Lesões do Manguito Rotador/complicações , Manguito Rotador/patologia , Animais , Diferenciação Celular , Linhagem Celular , Doença Crônica/terapia , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Injeções Intralesionais , Camundongos , Desenvolvimento Muscular/fisiologia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/patologia , Transtornos Musculares Atróficos/fisiopatologia , Pericitos/fisiologia , Manguito Rotador/fisiopatologia , Transplante Heterólogo/métodos
7.
J Cachexia Sarcopenia Muscle ; 10(6): 1195-1209, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31313502

RESUMO

BACKGROUND: Successful strategies to halt or reverse sarcopenia require a basic understanding of the factors that cause muscle loss with age. Acute periods of muscle loss in older individuals have an incomplete recovery of muscle mass and strength, thus accelerating sarcopenic progression. The purpose of the current study was to further understand the mechanisms underlying the failure of old animals to completely recover muscle mass and function after a period of hindlimb unloading. METHODS: Hindlimb unloading was used to induce muscle atrophy in Fischer 344-Brown Norway (F344BN F1) rats at 24, 28, and 30 months of age. Rats were hindlimb unloaded for 14 days and then reloaded at 24 months (Reloaded 24), 28 months (Reloaded 28), and 24 and 28 months (Reloaded 24/28) of age. Isometric torque was determined at 24 months of age (24 months), at 28 months of age (28 months), immediately after 14 days of reloading, and at 30 months of age (30 months). During control or reloaded conditions, rats were labelled with deuterium oxide (D2 O) to determine rates of muscle protein synthesis and RNA synthesis. RESULTS: After 14 days of reloading, in vivo isometric torque returned to baseline in Reloaded 24, but not Reloaded 28 and Reloaded 24/28. Despite the failure of Reloaded 28 and Reloaded 24/28 to regain peak force, all groups were equally depressed in peak force generation at 30 months. Increased age did not decrease muscle protein synthesis rates, and in fact, increased resting rates of protein synthesis were measured in the myofibrillar fraction (Fractional synthesis rate (FSR): %/day) of the plantaris (24 months: 2.53 ± 0.17; 30 months: 3.29 ± 0.17), and in the myofibrillar (24 months: 2.29 ± 0.07; 30 months: 3.34 ± 0.11), collagen (24 months: 1.11 ± 0.07; 30 months: 1.55 ± 0.14), and mitochondrial (24 months: 2.38 ± 0.16; 30 months: 3.20 ± 0.10) fractions of the tibialis anterior (TA). All muscles increased myofibrillar protein synthesis (%/day) in Reloaded 24 (soleus: 3.36 ± 0.11, 5.23 ± 0.19; plantaris: 2.53 ± 0.17, 3.66 ± 0.07; TA: 2.29 ± 0.14, 3.15 ± 0.12); however, in Reloaded 28, only the soleus had myofibrillar protein synthesis rates (%/day) >28 months (28 months: 3.80 ± 0.10; Reloaded 28: 4.86 ± 0.19). Across the muscles, rates of protein synthesis were correlated with RNA synthesis (all muscles combined, R2 = 0.807, P < 0.0001). CONCLUSIONS: These data add to the growing body of literature that indicate that changes with age, including following disuse atrophy, differ by muscle. In addition, our findings lead to additional questions of the underlying mechanisms by which some muscles are maintained with age while others are not.


Assuntos
Envelhecimento/patologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Transtornos Musculares Atróficos/fisiopatologia , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Elevação dos Membros Posteriores/efeitos adversos , Masculino , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Tamanho do Órgão , Biossíntese de Proteínas , Ratos , Ratos Endogâmicos F344 , Torque
8.
Am J Pathol ; 187(12): 2674-2685, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919112

RESUMO

Muscle dysfunction is the most important modifiable mediating factor in primary osteoarthritis (OA) because properly contracting muscles are a key absorber of forces acting on a joint. However, the pathological features of disuse muscle atrophy in OA patients have been rarely studied. Vastus medialis muscles of 14 female patients with OA (age range, 69 to 86 years), largely immobile for 1 or more years, were obtained during arthroplastic surgery and analyzed histologically. These were compared with female patients without arthritis, two with patellar fracture and two with patellar subluxation. Areas occupied by myofibers and adipose tissue were quantified. Large numbers of myofibers were lost in the vastus medialis of OA patients. The loss of myofibers was a possible cause of the reduction in muscle strength of the operated on knee. These changes were significantly correlated with an increase in intramuscular ectopic adipose tissue, and not observed in knees of nonarthritic patients. Resident platelet-derived growth factor receptor α-positive mesenchymal progenitor cells contributed to ectopic adipogenesis in vastus medialis muscles of OA patients. The present study suggests that significant loss of myofibers and ectopic adipogenesis in vastus medialis muscles are common pathological features of advanced knee OA patients with long-term loss of mobility. These changes may be related to the loss of joint function in patients with knee OA.


Assuntos
Tecido Adiposo , Coristoma/patologia , Transtornos Musculares Atróficos/patologia , Osteoartrite/complicações , Músculo Quadríceps/patologia , Adipogenia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Transtornos Musculares Atróficos/etiologia
9.
Appl Physiol Nutr Metab ; 42(2): 117-127, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28056188

RESUMO

The purpose of this study was to examine the possible mechanism underlying the protective effect of tetramethylpyrazine (TMP) against disuse-induced muscle atrophy. Sprague-Dawley rats were randomly assigned to receive 14 days of hindlimb unloading (HLU, a model of disuse atrophy) or cage controls. The rats were given TMP (60 mg/kg body mass) or vehicle (water) by gavage. Compared with vehicle treatment, TMP significantly attenuated the loss of gastrocnemius muscle mass (-33.56%, P < 0.01), the decrease of cross-sectional area of slow fiber (-10.99%, P < 0.05) and fast fiber (-15.78%, P < 0.01) during HLU. Although TMP failed to further improve recovery of muscle function or fatigability compared with vehicle treatment, it can suppress the higher level of lactate (-22.71%, P < 0.01) induced by HLU. Besides, TMP could effectually reduce the increased protein expression of muscle RING-finger protein 1 induced by HLU (-14.52%, P < 0.01). Furthermore, TMP can ameliorate the calcium overload (-54.39%, P < 0.05), the increase of malondialdehyde content (-19.82%, P < 0.05), the decrease of superoxide dismutase activity (21.34%, P < 0.05), and myonuclear apoptosis (-78.22%, P < 0.01) induced by HLU. Moreover, TMP significantly reduced HLU-induced increase of Bax to B-cell lymphoma 2 (-36.36%, P < 0.01) and cytochrome c release (-36.16%, P < 0.05). In conclusion, TMP attenuated HLU-induced gastrocnemius muscle atrophy through suppression of Ca2+/reactive oxygen species increase and consequent proteolysis and apoptosis. Therefore, TMP might exhibit therapeutic effect against oxidative stress, cytosolic calcium overload, and mitochondrial damage in disuse-induced muscle atrophy.


Assuntos
Apoptose/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Transtornos Musculares Atróficos/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Pirazinas/uso terapêutico , Vasodilatadores/uso terapêutico , Animais , Biomarcadores/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Repressão Enzimática/efeitos dos fármacos , Feminino , Elevação dos Membros Posteriores/efeitos adversos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/patologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/metabolismo , Proteólise/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
10.
Physiol Rep ; 4(18)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27650250

RESUMO

The effects of either eicosapentaenoic (EPA)- or docosahexaenoic (DHA)-rich fish oils on hindlimb suspension (HS)-induced muscle disuse atrophy were compared. Daily oral supplementations (0.3 mL/100 g b.w.) with mineral oil (MO) or high EPA or high DHA fish oils were performed in adult rats. After 2 weeks, the animals were subjected to HS for further 2 weeks. The treatments were maintained alongside HS At the end of 4 weeks, we evaluated: body weight gain, muscle mass and fat depots, composition of fatty acids, cross-sectional areas (CSA) of the soleus muscle and soleus muscle fibers, activities of cathepsin L and 26S proteasome, and content of carbonylated proteins in the soleus muscle. Signaling pathway activities associated with protein synthesis (Akt, p70S6K, S6, 4EBP1, and GSK3-beta) and protein degradation (atrogin-1/MAFbx, and MuRF1) were evaluated. HS decreased muscle mass, CSA of soleus muscle and soleus muscle fibers, and altered signaling associated with protein synthesis (decreased) and protein degradation (increased). The treatment with either fish oil decreased the ratio of omega-6/omega-3 fatty acids and changed protein synthesis-associated signaling. EPA-rich fish oil attenuated the changes induced by HS on 26S proteasome activity, CSA of soleus muscle fibers, and levels of p-Akt, total p70S6K, p-p70S6K/total p70S6K, p-4EBP1, p-GSK3-beta, p-ERK2, and total ERK 1/2 proteins. DHA-rich fish oil attenuated the changes induced by HS on p-4EBP1 and total ERK1 levels. The effects of EPA-rich fish oil on protein synthesis signaling were more pronounced. Both EPA- and DHA-rich fish oils did not impact skeletal muscle mass loss induced by non-inflammatory HS.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/química , Redes Reguladoras de Genes , Elevação dos Membros Posteriores/efeitos adversos , Transtornos Musculares Atróficos/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Transtornos Musculares Atróficos/etiologia , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Clin Adv Hematol Oncol ; 14(6): 436-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27379813

RESUMO

The use of targeted therapies in patients with genitourinary malignancies has significantly improved outcomes. For example, androgen receptor (AR) pathway inhibitors have improved outcomes for patients with prostate cancer, and antiangiogenic agents have improved outcomes for those with kidney cancer. However, these advances have been accompanied by musculoskeletal side effects that manifest as physical dysfunction. Although the effects of androgen deprivation therapy on skeletal muscle are well-known, an additional concern is that the muscle loss associated with these newer drugs-especially AR pathway inhibitors-may result in insulin resistance and metabolic syndrome, thus increasing the risk for cardiovascular events and diabetes. Antiangiogenic agents also may cause muscle loss, although this has been poorly described in the literature. As these targeted therapies begin to be used in the earlier stages of treatment, there will be a critical need to prevent treatment-related toxicities with nonpharmacologic interventions. Over the past decade, exercise training has emerged as a novel nonpharmacologic adjunctive method to address toxicities resulting from these targeted therapies. Despite numerous studies in patients with prostate cancer, there remains a large gap in our knowledge of the true efficacy of exercise therapy, as well as the best way to prescribe exercise programs. Here, we suggest that the central role of skeletal muscle in the development of side effects of AR pathway inhibitors and antiangiogenic agents may unlock a number of unique opportunities to study how exercise prescriptions can be used more effectively. Resistance training may be a particularly important modality.


Assuntos
Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/terapia , Treinamento Resistido , Neoplasias Urogenitais/complicações , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos Hormonais/efeitos adversos , Antineoplásicos Hormonais/uso terapêutico , Humanos , Terapia de Alvo Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Estadiamento de Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento , Neoplasias Urogenitais/diagnóstico , Neoplasias Urogenitais/tratamento farmacológico , Neoplasias Urogenitais/mortalidade
13.
Ann Thorac Surg ; 101(2): 742-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26777926

RESUMO

A 31-year-old woman underwent implantation of a DuraHeart left ventricular assist device as bridge to transplantation. Aortic insufficiency was not observed before implantation but developed after implantation and became severe approximately 2 years later. Macroscopically, the aortic valve excised during heart transplantation showed no morphologic alteration. Microscopically, the collagen fibers in the fibrosa layer and the elastic fibers in the ventricularis layer of the valve leaflets were reduced in number, with irregular arrangement. These characteristics can be explained by a disuse atrophic change, and may lead to a better understanding of the mechanism underlying the development of aortic insufficiency.


Assuntos
Insuficiência da Valva Aórtica/etiologia , Coração Auxiliar/efeitos adversos , Transtornos Musculares Atróficos/etiologia , Adulto , Feminino , Humanos
14.
Am J Physiol Endocrinol Metab ; 306(6): E615-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24425759

RESUMO

Physical inactivity-induced loss of skeletal muscle oxidative phenotype (OXPHEN), often observed in chronic disease, adversely affects physical functioning and quality of life. Potential therapeutic targets remain to be identified, since the molecular mechanisms involved in reloading-induced recovery of muscle OXPHEN remain incompletely understood. We hypothesized a role for alternative NF-κB, as a recently identified positive regulator of muscle OXPHEN, in reloading-induced alterations in muscle OXPHEN. Markers and regulators (including alternative NF-κB signaling) of muscle OXPHEN were investigated in gastrocnemius muscle of mice subjected to a hindlimb suspension/reloading (HLS/RL) protocol. Expression levels of oxidative phosphorylation subunits and slow myosin heavy chain isoforms I and IIA increased rapidly upon RL. After an initial decrease upon HLS, mRNA levels of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC) molecules PGC-1α and PGC-1ß and mRNA levels of mitochondrial transcription factor A (Tfam) and estrogen-related receptor α increased upon RL. PPAR-δ, nuclear respiratory factor 1 (NRF-1), NRF-2α, and sirtuin 1 mRNA levels increased during RL although expression levels were unaltered upon HLS. In addition, both Tfam and NRF-1 protein levels increased significantly during the RL period. Moreover, upon RL, IKK-α mRNA and protein levels increased, and phosphorylation of P100 and subsequent processing to P52 were elevated, reflecting alternative NF-κB activation. We conclude that RL-induced recovery of muscle OXPHEN is associated with activation of alternative NF-κB signaling.


Assuntos
Modelos Animais de Doenças , Imobilização/efeitos adversos , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Animais , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Elevação dos Membros Posteriores , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/reabilitação , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , NF-kappa B/agonistas , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Distribuição Aleatória , Receptores de Estrogênio/biossíntese , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Suporte de Carga , Receptor ERRalfa Relacionado ao Estrogênio
15.
Oral Dis ; 20(1): 6-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23656576

RESUMO

Spinal and bulbar muscular atrophy, or Kennedy's disease, is an X-linked motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. The disease is characterised by weakness, atrophy and fasciculations in the limb and bulbar muscles. Affected males may have signs of androgen insensitivity, such as gynaecomastia and reduced fertility. Neurophysiological studies are typically consistent with diffuse denervation atrophy, and serum creatine kinase is usually elevated 2-5 times above normal. Progression of the disease is slow, and the focus of spinal and bulbar muscular atrophy (SBMA) management is to prevent complications.


Assuntos
Transtornos Musculares Atróficos , Humanos , Transtornos Musculares Atróficos/diagnóstico , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/terapia
16.
Muscle Nerve ; 45(3): 367-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22334171

RESUMO

INTRODUCTION: Passive stretch therapy is utilized to improve the range of motion of chronically shortened muscles. However, human studies show conflicting results as whether passive stretch is clinically effective. METHODS: The soleus muscles of adult rats were tenotomized to induce muscle shortening adaptation. Muscles included were non-treated normal, subjected to daily static stretch, or lengthened and isometrically contracted for 20 min/day. Muscle fiber structure was analyzed histochemically. Sarcomeres per millimeter length were counted to assess the effect of treatment. RESULTS: Passive stretch significantly reduced central core lesion formation, but sarcomere loss was not prevented. The addition of isometric contraction during static stretch significantly (P < 0.001) reduced sarcomere loss. CONCLUSIONS: Passive stretch alone does not prevent shortening adaptation. Contraction is required in combination with stretch to preserve the number of sarcomeres in series. The combination of stretch and contraction is necessary to maintain proper muscle fiber length.


Assuntos
Terapia por Exercício , Contração Muscular/fisiologia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/reabilitação , Sarcômeros/patologia , Tenotomia/efeitos adversos , Análise de Variância , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/patologia , Miosinas/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
17.
Med Hypotheses ; 77(2): 220-2, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21550729

RESUMO

Sleep is essential for the cellular, organic and systemic functions of an organism, with its absence being potentially harmful to health and changing feeding behavior, glucose regulation, blood pressure, cognitive processes and some hormonal axes. Among the hormonal changes, there is an increase in cortisol (humans) and corticosterone (rats) secretion, and a reduction in testosterone and Insulin-like Growth Factor 1, favoring the establishment of a highly proteolytic environment. Consequently, we hypothesized that sleep debt decreases the activity of protein synthesis pathways and increases the activity of degradation pathways, favoring the loss of muscle mass and thus hindering muscle recovery after damage induced by exercise, injuries and certain conditions associated with muscle atrophy, such as sarcopenia and cachexia.


Assuntos
Transtornos Musculares Atróficos/etiologia , Biossíntese de Proteínas/fisiologia , Proteólise , Recuperação de Função Fisiológica/fisiologia , Privação do Sono/complicações , Privação do Sono/metabolismo , Animais , Humanos , Hidrocortisona/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Ratos , Testosterona/metabolismo
18.
Clin Neurol Neurosurg ; 113(1): 48-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956054

RESUMO

OBJECTIVE: Paraspinal muscle atrophy (PMA) after posterior cervical fusion is a known complication that causes considerable morbidity. It has been shown in the lumbar spine that preservation of the posterior ramus of the spinal nerve is important in minimizing paraspinal muscle atrophy. During posterior cervical spine fusions, we modified the exposure of the dorsal cervical spine by exposing only the medial two-thirds of the lateral mass utilizing a low electrocautery setting. In a retrospective analysis, we compared the incidence of paraspinal muscle atrophy using this modified technique with historical cohorts who underwent posterior cervical fusion using the standard technique of exposure of the entire lateral mass. MATERIALS AND METHODS: All patients who underwent posterior cervical fusion and internal fixation between 1999 and 2007 were included. Patients operated from 1999 to 2003 who underwent the standard exposure of the lateral mass formed Group 1 (n=31). Group 2 (n=32) included patients whose lateral masses were exposed using the modified technique of limiting the exposure only to the medial two-thirds of the lateral mass with the cautery on a low setting. All patients were assessed for PMA at six months after surgery. Atrophy was graded as no atrophy, mild atrophy (minimal midline atrophy), moderate atrophy (muscle lost without palpable hardware) and severe atrophy (hardware palpable). Before initiating the study, no atrophy and mild atrophy were grouped together as a non-significant atrophy and moderate atrophy and severe atrophy were grouped together as significant atrophy. RESULTS: We found a statistically lower incidence of paraspinal atrophy using this modified exposure of the lateral mass (p<0.03). CONCLUSIONS: This modified technique of cervical spine exposure is associated with lower paraspinal muscle atrophy secondary to the preservation of the innervation of the paraspinal musculature.


Assuntos
Vértebras Cervicais/cirurgia , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/prevenção & controle , Fusão Vertebral/efeitos adversos , Estudos de Coortes , Feminino , Fixação Interna de Fraturas , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Estudos Retrospectivos , Nervos Espinhais/fisiologia
19.
J Appl Physiol (1985) ; 107(1): 39-46, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19286573

RESUMO

The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group (n = 7) and 2) an AG group (n = 8), which was subjected to 21 days of 6 degrees head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate approximately 220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group (P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by approximately 20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading.


Assuntos
Gravidade Alterada , Músculo Esquelético/fisiologia , Atrofia Muscular/prevenção & controle , Transtornos Musculares Atróficos/prevenção & controle , Contramedidas de Ausência de Peso , Ausência de Peso/efeitos adversos , Adulto , Repouso em Cama/efeitos adversos , Teste de Esforço , Expressão Gênica , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Joelho/anatomia & histologia , Joelho/fisiologia , Perna (Membro)/anatomia & histologia , Perna (Membro)/fisiologia , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Músculo Esquelético/anatomia & histologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Projetos Piloto , RNA Mensageiro/metabolismo , Amplitude de Movimento Articular , Simulação de Ausência de Peso
20.
Intern Med ; 47(14): 1355-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18628586

RESUMO

A 56-year-old man with anti-acetylcholine receptor antibody-mediated myasthenia gravis had bilateral facial muscular atrophy and had noticed blepharoptosis 15 years earlier. From 45 to 51 years of age, 5-10 mg prednisolone and 180 mg pyridostigmine daily relieved his symptoms. Subsequently, these treatments no longer improved the facial weakness, though blepharoptosis was absent. At 56 years of age, the edrophonium test and repetitive supramaximal stimulation testing of the orbicularis oris were negative. Frontalis muscle needle electromyography showed low amplitude polyphasic units and an incomplete interference pattern. Facial muscle atrophy, caused by disuse atrophy from neuromuscular junction depletion, contributed to this patient's facial weakness.


Assuntos
Blefaroptose/etiologia , Músculos Faciais , Atrofia Muscular/etiologia , Transtornos Musculares Atróficos/etiologia , Miastenia Gravis/complicações , Blefaroptose/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA