Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003313

RESUMO

Exertional heat illness (EHI) is an occupational health hazard for athletes and military personnel-characterised by the inability to thermoregulate during exercise. The ability to thermoregulate can be studied using a standardised heat tolerance test (HTT) developed by The Institute of Naval Medicine. In this study, we investigated whole blood gene expression (at baseline, 2 h post-HTT and 24 h post-HTT) in male subjects with either a history of EHI or known susceptibility to malignant hyperthermia (MHS): a pharmacogenetic condition with similar clinical phenotype. Compared to healthy controls at baseline, 291 genes were differentially expressed in the EHI cohort, with functional enrichment in inflammatory response genes (up to a four-fold increase). In contrast, the MHS cohort featured 1019 differentially expressed genes with significant down-regulation of genes associated with oxidative phosphorylation (OXPHOS). A number of differentially expressed genes in the inflammation and OXPHOS pathways overlapped between the EHI and MHS subjects, indicating a common underlying pathophysiology. Transcriptome profiles between subjects who passed and failed the HTT (based on whether they achieved a plateau in core temperature or not, respectively) were not discernable at baseline, and HTT was shown to elevate inflammatory response gene expression across all clinical phenotypes.


Assuntos
Transtornos de Estresse por Calor , Hipertermia Maligna , Humanos , Masculino , Transcriptoma , Transtornos de Estresse por Calor/genética , Exercício Físico/fisiologia , Sobreviventes
2.
Reprod Fertil Dev ; 34(16): 1003-1022, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36109870

RESUMO

CONTEXT: Dairy cattle experience stressful environmental situations that affect production. Heat stress during gestation can influence the intrauterine development of offspring, resulting in long-term damage that can affect the reproductive life of the adult offspring. AIM: The aim of the present study was to evaluate changes in the expression and regulation of steroid hormone receptors in the ovary of Holstein cows gestated under different temperature-humidity index (THI) during their in utero development. METHODS: Animals were classified by their exposure to temperature-humidity index (THI) ≥72 during their development in utero according to date of birth or date of effective service of their mother. This study was not carried out under controlled conditions, but the conditions to which the cows were naturally exposed during their development were considered retrospectively, controlling the variables in the statistical analyses (age as a covariate, dairy farm as a random factor). Gestation was divided into two periods (P1=days 0-150; and P2=day 151 to calving) and three trimesters (T1=days 0-90; T2=days 91-180; and T3=day 181 to calving), and the exposure to THI ≥72 was calculated in each one. The following characteristics were evaluated: gene expression of estrogen receptor (ESR) 1, ESR2 and progesterone receptor (PGR), CpG methylation in the 5'UTR of ESR1 and ESR2, and protein expression of ESR1, ESR2, PGR and coregulatory proteins in the dominant follicles of daughter cows in adulthood. KEY RESULTS: We found associations between heat stress variables during gestation and the methylation status of CpG sites in the 5'UTR of ESR1 and ESR2 in dominant follicles. Results also showed association between exposure to high THI values during intrauterine development and expression of ESR1, ESR2 and PGR and coregulatory proteins in dominant follicles of adult cows. CONCLUSIONS: These results provide novel information about the impact of prenatal heat stress on molecular aspects at the ovary level in the offspring, during their adult life, which probably impacts the reproductive aspects of the herd.


Assuntos
Doenças dos Bovinos , Transtornos de Estresse por Calor , Regiões 5' não Traduzidas , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Feminino , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/fisiologia , Hormônios , Temperatura Alta , Lactação/fisiologia , Leite/metabolismo , Ovário , Gravidez , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Esteroides
3.
Theriogenology ; 187: 152-163, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35569414

RESUMO

In this study, the transcriptome of oviductal epithelial cells and certain characteristics of their extracellular vesicles of dairy cows were described under thermoneutral and heat stress conditions. Twenty cows were compared in springtime at THI = 65.6 ± 0.90 and in summertime at THI = 78.36 ± 2.73. During each season, the estrous cycles of the cows were synchronized, and on day 3 of the ensuing cycle, a blood sample was collected for progesterone determination, while their oviducts were collected after slaughter. Epithelial cells and oviductal fluid were collected from the oviduct ipsilateral and contralateral to the corpus, respectively. For the gene expression study, a comparative transcriptomic approach, using RNASeq, was performed on cells collected from the ipsilateral and the contralateral oviducts. The size and the concentration of extracellular vesicles (EVs) at both seasons were analyzed using Transmission Electron Microscopy and Nanoparticle tracking analysis and specific proteins were detected by Western blotting. Progesterone concentration was higher during the thermoneutral period. Between seasons, divergent expression of genes related to immune system, contractility, gamete protection and lncRNAs was found. The size and the concentration of the EVs did not differ between seasons, however, the concentration in the ipsilateral oviduct tended to be lower (p = 0.09) from the contralateral one in the summer, but not in the spring. Our results show for the first time that HS could be involved with alterations in the oviductal cells' gene expression and in the changes in concentration of EVs in the oviductal lumen. Our results imply that the altered oviductal environment during HS could be associated with the suppressed summer fertility in dairy cows.


Assuntos
Doenças dos Bovinos , Vesículas Extracelulares , Transtornos de Estresse por Calor , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/metabolismo , Células Epiteliais , Vesículas Extracelulares/metabolismo , Feminino , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Oviductos/metabolismo , Progesterona/metabolismo , Transcriptoma
4.
Res Vet Sci ; 139: 200-210, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34358923

RESUMO

The study aimed to evaluate the differential expression of HSF1 and GM-CSF mRNA in PBMCs and correlate it with myocardial injury in crossbred Jersey heifers during heat stress. The study also assessed the effect of heat stress on cardiac electrical activity, vascular health, liver function and kidney function. The experiment was conducted in two phases: for heat stressed animals; HS in June (THI ranged from 80.0 to 89.8) and for control group i.e. not exposed to heat stress in January (THI ranged between 70.1 and 71.4). Results of the study revealed that the relative abundance of HSF1 and GM-CSF mRNA increased significantly (P < 0.05) in HS. Serum cardiac biomarkers such as CK-MB, AST and CRP were significantly elevated (P < 0.05) in HS. cTnI was detected 'positive' in nineteen out of twenty four cases in HS. Correlation of HSF1 and GM-CSF expression with concentration of LDH, CKMB, CRP and AST in HS was negative but non-significant (P > 0.05). Significant (P < 0.05) ECG findings in HS were increased heart rate, decreased RR interval, decreased PR interval, decreased QRS amplitude and decreased amplitude of P wave. Marked reduction (P < 0.05) in serum cholesterol and triglyceride levels was observed in HS. ALP, AST, bilirubin and urea levels in serum were significantly elevated (P < 0.05) in HS. In conclusion, cardiac enzymes in serum were significantly elevated in HS indicating myocardial injury. HSF1 and GM-CSF mRNA expression alone was inadequate in conferring cytoprotection to cardiac cells in HS. Cardiac electrical activity, vascular status, liver and kidney function were significantly altered in HS.


Assuntos
Doenças dos Bovinos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Transtornos de Estresse por Calor , Animais , Bovinos , Doenças dos Bovinos/genética , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Coração , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Temperatura Alta , Leucócitos Mononucleares
5.
J Therm Biol ; 98: 102927, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016350

RESUMO

The purpose of this study was to discuss the effects of N-acetyl-l-cysteine (NAC) on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens in different periods. A total of 120 Hy-Line variety brown laying hens (12 weeks old) were randomly assigned to 4 groups with 6 replicates. The control group (C group) (22 ± 1 °C) received a basal diet, the NAC-treated group (N group) (22 ± 1 °C) received a basal diet with 1000 mg/kg NAC, and 2 heat-stressed groups (36 ± 1 °C for 10 h per day and 22 ± 1 °C for the remaining time) were fed a basal diet (HS group) or a basal diet with 1000 mg/kg NAC (HS + N group) for 21 consecutive days. The influence of NAC on histologic changes, oxidative stress and proinflammatory cytokine production was measured and analysed in hens with heat stress-induced hypothalamic changes. NAC effectively alleviated the hypothalamic morphological changes induced by heat stress. In addition, NAC attenuated the activity of the Nf-κB pathway activated by heat stress and decreased the expression of the proinflammatory cytokines IL-6, IL-18, TNF-α, IKK, and IFN-γ. In addition, NAC treatment regulated the expression of HO-1, GSH, SOD2 and PRDX3 by regulating the activity of Nrf2 at different time points to resist oxidative stress caused by heat exposure. In summary, dietary NAC may be an effective candidate for the treatment and prevention of heat stress-induced hypothalamus injury by preventing Nf-κB activation and controlling the Nrf2 pathway.


Assuntos
Acetilcisteína/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Transtornos de Estresse por Calor/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Feminino , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Quinase I-kappa B/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
6.
Vet Immunol Immunopathol ; 235: 110232, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799007

RESUMO

Heat stress is one of the environmental factors that most severely affects milk industry, as it has impact on production, immune responses and reproductive performance. The present study was conducted with high-performance Holando-Argentino cows. Our objective was to study TNF-α and its receptors pattern expression in cows from a region characterized by extreme climatic seasonality. Animals were evaluated in three periods: spring (n = 15), summer (n = 14) and autumn (n = 11). Meteorological records from a local station were used to estimate the temperature and humidity index (THI) by means of an equation previously defined. A THI higher than 68 is indicative of stressing conditions. During the summer period, the animals were exposed to 8.5 ±â€¯1.09 h of heat stress, or THI > 68. In spring, stress hours were reduced to 1.4 ±â€¯0.5 every day, while during the autumn, there were no recorded heat stress events. Expression of TNF-α, and its receptors was determined by qPCR. During the summer, TNF-α and its receptors expression diminished drastically compared to the rest of the year, when stressful conditions were infrequent. We conclude that animals that are not physiologically prepared to resist high temperatures might have a less efficient immune response, reinforcing the need to develop new strategies to improve animal welfare.


Assuntos
Transtornos de Estresse por Calor/imunologia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/imunologia , Receptores do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Animais , Bovinos , Doenças dos Bovinos/imunologia , Feminino , Transtornos de Estresse por Calor/genética , Temperatura Alta , Umidade , Lactação , Leucócitos Mononucleares/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Estações do Ano , Fator de Necrose Tumoral alfa/imunologia
7.
J Therm Biol ; 96: 102827, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627267

RESUMO

Testicular heat stress (HS) can lead to testicular tissue destruction and spermatogenesis disturbances. Royal Jelly (RJ) has been introduced as a potent antioxidant. We investigated the effects of RJ on testicular tissue, oxidative stress and sperm apoptosis in HS-exposed rats. Compared to HS-exposed groups, RJ co-treatment could improve testosterone reduction and histopathological damages. The RJ co-administration decreased MDA level in testicular tissue, while TAC and CAT levels were remarkably increased compared to HS-exposed groups. Moreover, significant higher expression level of Bcl-2 and lower expression levels of P53 and Caspase-3 were seen following RJ co-administration compared to HS-exposed groups. Our data suggest that RJ can effectively ameliorate experimental HS-induced testiculopathies in rats through testicular antioxidant defense system restoration and germ cells apoptosis regulation.


Assuntos
Ácidos Graxos/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Testículo/efeitos dos fármacos , Adaptação Fisiológica , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Catalase/metabolismo , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/patologia , Masculino , Malondialdeído/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Wistar , Espermatozoides/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Proteína Supressora de Tumor p53/genética
8.
Fish Physiol Biochem ; 47(1): 21-32, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33058003

RESUMO

Fish mortality generally occurs during extreme summer temperatures in India which are apprehended to be more frequent in near future and may reduce the fish population, particularly in closed aquatic systems. This present study is conducted with the objectives to find out heat shock and associated oxidative stress responses that occurred in selected fish Labeo rohita due to extremely high water temperature (treated, 37-38 °C against control, 28-30 °C) exposure for 2 weeks. Calculated mortality was 30% during the experimental period. The results revealed the biomolecules associated with both the anti-oxidative response (reduced glutathione in serum, liver, muscle; catalase activity in liver, muscle; superoxide dismutase gene expression in the liver) and the heat shock response (hsp70 gene expression in the liver) were elevated under thermal stress. Pro-inflammatory responses (expression of complement protein 3, glyceraldehyde 3-phosphate dehydrogenase in the liver) and oxidative damages (lipid peroxidation in all studied tissue and DNA fragmentation in the liver) were more under thermal stress. Extreme thermal stress induced by partial lethal temperature exposure in this study led to the activation of both the heat shock response and the anti-oxidative response. However, these responses were not elicited to the level so that they can protect from oxidative damages and inflammation in the liver of all the studied fish that caused partial mortality in fish. Thermal stress-induced hepatotoxicity caused fish death which was documented for the first time in freshwater fish.


Assuntos
Doenças dos Peixes , Transtornos de Estresse por Calor , Resposta ao Choque Térmico , Fígado/metabolismo , Estresse Oxidativo , Animais , Cyprinidae/metabolismo , Fragmentação do DNA , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/mortalidade , Proteínas de Peixes/genética , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/genética , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/mortalidade , Transtornos de Estresse por Calor/veterinária , Peroxidação de Lipídeos , Mortalidade , Músculos/metabolismo , Superóxido Dismutase/genética
9.
J Therm Biol ; 94: 102751, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33292992

RESUMO

The medicinal plant Artemisia annua L. is well known for its antimalarial compound artemisinin and the antioxidant capacity of its active ingredients. However, low bioavailability of Artemisia annua L. limits its therapeutic potential, fermentation of Artemisia annua L. can improve its bioavailability. This study was aimed to investigate the effects of dietary supplementation of enzymatically-treated Artemisia annua L. (EA) on reproductive performance, antioxidant status, milk composition of heat-stressed sows and intestinal barrier integrity of their preweaning offspring. 135 multiparous sows of average parity 4.65 (Landrace × large white) at day 85 of pregnancy were randomly distributed into 3 treatments. Sows in the control group were housed at control rooms (temperature: 27.12 ± 0.18 °C, temperature-humidity index (THI): 70.90 ± 0.80) and fed the basal diet. Sows in the HS, HS + EA groups were fed the basal diet supplemented with 0 or 1.0 g/kg EA respectively, and reared at heat stress rooms (temperature: 30.11 ± 0.16 °C, THI: 72.70 ± 0.60). Heat stress increased the malondialdehyde (MDA) content, reduced the activities of total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD) of sows and piglets, and seriously compromised the antioxidant capacity of the sows and the intestinal integrity of their offspring. However, dietary supplementation of 1.0 g/kg EA reduced the MDA content, increased the activities of T-SOD and T-AOC in serum, colostrum, and milk of heat-stressed sows, and increased colostrum yield and 14-d milk fat content. EA supplementation also increased piglet weaning weight and the activities of T-SOD and T-AOC in serum. In addition, the abundances of intestinal tight junction proteins claudin-1 and occludin were up-regulated in piglets in EA-supplemented group. In conclusion, dietary EA supplementation at 1.0 g/kg can alleviate the oxidative stress in heat-stressed sows, improve the antioxidant capacity in both sows and their offspring, and promote the intestinal barrier integrity in their offspring. EA may be a potent dietary supplement that ameliorates oxidative stress in livestock production by improving the antioxidant capacity.


Assuntos
Artemisia annua , Suplementos Nutricionais , Temperatura Alta/efeitos adversos , Estresse Oxidativo , Reprodução , Ração Animal , Animais , Artemisia annua/química , Celulase/química , Dieta/veterinária , Feminino , Glutationa/sangue , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/veterinária , Leite/química , Oxirredutases/sangue , Poligalacturonase/química , Gravidez , Suínos/sangue , Suínos/genética , Doenças dos Suínos/sangue , Doenças dos Suínos/genética , Proteínas de Junções Íntimas/genética
10.
Sci Rep ; 10(1): 15076, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934293

RESUMO

It is well known that the quality and quantity of bioactive metabolites in plants and microorganisms are affected by environmental factors. We applied heat stress as a promising approach to stimulate the production of antioxidants in four heat-tolerant bacterial strains (HT1 to HT4) isolated from Aushazia Lake, Qassim Region, Saudi Arabia. The phylogenetic analysis of the 16S rRNA sequences indicated that HT1, HT3 and HT4 belong to genus Bacillus. While HT2 is closely related to Pseudooceanicola marinus with 96.78% similarity. Heat stress differentially induced oxidative damage i.e., high lipid peroxidation, lipoxygenase and xanthine oxidase levels in HT strains. Subsequently, heat stress induced the levels of flavonoids and polyphenols in all strains and glutathione (GSH) in HT2. Heat stress also improved the antioxidant enzyme activities, namely, CAT, SOD and POX in all strains and thioredoxin activity in HT3 and HT4. While GSH cycle (GSH level and GPX, GR, Grx and GST activities) was only detectable and enhanced by heat stress in HT2. The hierarchical cluster analysis of the antioxidants also supported the strain-specific responses. In conclusion, heat stress is a promising approach to enhance antioxidant production in bacteria with potential applications in food quality improvement and health promotion.


Assuntos
Antioxidantes/metabolismo , Bacillus/genética , Resposta ao Choque Térmico/genética , Rhodobacteraceae/genética , Catalase/genética , Glutationa/genética , Glutationa Peroxidase/genética , Transtornos de Estresse por Calor/genética , Peroxidação de Lipídeos/genética , Oxirredução , Estresse Oxidativo/genética , Filogenia , RNA Ribossômico 16S/genética , Arábia Saudita , Superóxido Dismutase/genética
11.
J Med Genet ; 57(8): 531-541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32054689

RESUMO

BACKGROUND: We aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap. METHODS: The coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature. RESULTS: We found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI. CONCLUSION: We confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.


Assuntos
Canais de Cálcio Tipo L/genética , Transtornos de Estresse por Calor/genética , Rabdomiólise/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sinalização do Cálcio/genética , Feminino , Predisposição Genética para Doença , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/patologia , Homeostase , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Rabdomiólise/epidemiologia , Rabdomiólise/patologia
12.
J Therm Biol ; 85: 102415, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31657756

RESUMO

Heat stress, experienced by humans and animals under high ambient temperatures, is known to induce oxidative stress and inflammation, which endangers human health as well as animal welfare and production. The gastrointestinal tract is predominantly responsive to heat stress and compromised intestinal functions can contribute to multi-organ injury under heat environment. Resveratrol (RSV) has significant antioxidant and anti-inflammatory activities. The aim of this study was to investigate the potential effects of RSV on intestinal function (digestion and barrier), oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg RSV/kg body weight/day prior to daily heat stress (40 °C per day for 1.5 h) exposure for 3 consecutive days. The results showed that RSV reversed the increased serum cortisol level and diamine oxidase activity, the altered jejunal morphology, the decreased jejunal disaccharidase activities, the elevated malondialdehyde and tumor necrosis factor alpha concentrations and antioxidant enzymes activities in the jejunum, as well as the increased jejunal mRNA expression of toll-like receptor 4, cytokines, antioxidant enzymes and tight junction proteins in heat-stressed rats, to various degrees. In conclusion, RSV could alleviate intestinal injury and dysfunctions by improving oxidative status and suppressing inflammation in heat-stressed rats.


Assuntos
Anti-Inflamatórios/uso terapêutico , Transtornos de Estresse por Calor/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Citocinas/genética , Dissacaridases/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/patologia , Hidrocortisona/sangue , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Malondialdeído/metabolismo , Ratos Sprague-Dawley , Resveratrol/farmacologia , Superóxido Dismutase/metabolismo
13.
Int J Biometeorol ; 62(12): 2257-2265, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368674

RESUMO

The relationships between rectal temperatures and physiological and cellular responses to heat stress can improve the productivity of Saanen goats in tropical environments. In this context, this study evaluated the physiological responses and gene expression of heat shock proteins (HSP60, 70, and 90) and genes related to apoptosis (Bax, Bcl-2, and p53) of Saanen goats subjected to acute heat stress. Ten health Saanen goats were exposed to solar radiation during 3 consecutive days. The expression of HSP60, HSP70, HSP90, Bax, Bcl-2, and p53 genes in blood leukocytes, rectal and superficial temperatures, respiratory frequency, cortisol, triiodothyronine, and thyroxine was measured at 06:00, 13:00, and 18:00 h. In vitro, blood leukocytes were subjected to 38 °C and 40 °C for 3 h to measure the expression of the same target genes. The temperature humidity index, measured from 12:00 to 15:00, was greater than 80 and black globe temperatures were greater at 40 °C, indicating the intensity of the solar radiation. Although the solar radiation caused acute heat stress, increased cortisol release, and the expression of HSP60 and 70 in dry Saanen goats, the increased respiratory frequency and decreased T4 and T3 restored the homeothermy of the experimental goats. In vitro, the 40 °C increased the expression of p53 (pro-apoptotic protein), Bcl-2 (anti-apoptotic protein), HSP60, HSP70, and HSP90, suggesting that these genes have protective functions. However, further studies are necessary to understand the physiological and cellular responses to heat stress.


Assuntos
Doenças das Cabras/fisiopatologia , Cabras/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Transtornos de Estresse por Calor/veterinária , Animais , Temperatura Corporal , Feminino , Doenças das Cabras/sangue , Doenças das Cabras/genética , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/genética , Proteínas de Choque Térmico/genética , Umidade , Hidrocortisona/sangue , Leucócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Temperatura , Tiroxina/sangue , Tri-Iodotironina/sangue , Proteína Supressora de Tumor p53/genética
14.
Br J Anaesth ; 121(4): 953-961, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30236258

RESUMO

BACKGROUND: The human p.G2434R variant of the RYR1 gene is most frequently associated with malignant hyperthermia (MH) in the UK. We report the phenotype of a knock-in mouse that expresses the RYR1 variant p.G2435R, which is isogenetic with the human variant. METHODS: We observed the general phenotype; determined the sensitivity of myotubes to caffeine-, KCl, and halothane-induced Ca2+ release; determined the in vivo response to halothane or increased ambient temperature; and determined the in vivo myoplasmic intracellular Ca2+ concentration in skeletal muscle before and during exposure to volatile anaesthetics. RESULTS: RYR1 pG2435R/MH normal (MHS-Heterozygous[Het]) or RYR1 pG2435R/pG2435R (MHS-Homozygous[Hom]) mice were fully viable under typical rearing conditions, although some male MHS-Hom mice died spontaneously. The normalised half-maximal effective concentration (95% confidence interval) for intracellular Ca2+ release in myotubes in response to KCl [MH normal, MHN, 21.4 (19.8-23.1) mM; MHS-Het 16.2 (15.2-17.2) mM; MHS-Hom 11.2 (10.2-12.2) mM] and caffeine (MHN, 5.7 (5-6.3) mM; MHS-Het 4.5 (3.9-5.0) mM; MHS-Hom 1.77 (1.5-2.1) mM] exhibited a gene dose-dependent decrease, and there was a gene dose-dependent increase in halothane sensitivity. Intact animals show a gene dose-dependent susceptibility to MH with volatile anaesthetics or to heat stroke. RYR1 p.G2435R mice had elevated skeletal muscle intracellular resting [Ca2+]i, (values are expressed as mean (SD)) (MHN 123 (3) nM; MHS-Het 156 (16) nM; MHS-Hom 265 (32) nM; P<0.001) and [Na+]i (MHN 8 (0.1) mM; MHS-Het 10 (1) mM; MHS-Hom 14 (0.7) mM; P<0.001) that was further increased by exposure to volatile anaesthetics. CONCLUSIONS: RYR1 pG2435R mice demonstrated gene dose-dependent in vitro and in vivo responses to pharmacological and environmental stressors that parallel those seen in patients with the human RYR1 variant p.G2434R.


Assuntos
Cálcio/metabolismo , Transtornos de Estresse por Calor/genética , Hipertermia Maligna/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Anestésicos Inalatórios/farmacologia , Animais , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Relação Dose-Resposta a Droga , Técnicas de Introdução de Genes , Halotano/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mutação/genética , Fenótipo , Cloreto de Potássio/farmacologia
16.
Int J Biometeorol ; 61(9): 1687-1693, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28451769

RESUMO

Heat stress is an important domain of research in livestock due to its negative impact on production and disease resistance. The augmentation of stress in the body stimulates the antioxidative activity comprising various enzymes (viz., catalase, superoxide dismutase), metabolites (reduced glutathione, etc.), vitamins, minerals, etc. to combat the situation. The major key players involved in regulation of heat shock response in eukaryotes are the transcription factors, called as heat shock factors (HSF). They activate the heat shock protein (HSP) genes by binding to their promoters. Lymphocytes are considered to be the best model to evaluate the immunity in any living body as it contains plethora of white blood cells (WBCs).In this study, the peripheral blood mononuclear cells (PBMC) obtained from non-lactating Sahiwal vis-à-vis crossbred (Holstein Friesian × Sahiwal) cattle with 75% or more exotic inheritance were subjected to heat shock at 39, 41, and 43 °C in three different incubators, in vitro. The cell count and viability test of pre and post heat stress of concerned PBMCs indicated that the crossbreeds are more prone to heat stress as compared to Sahiwal. The reverse transcription PCR (qRT-PCR) expression data revealed an increment in HSF1 expression at 41 °C which subsequently declined (non-significantly) at 43 °C in both breeds post 1 h heat shock. However, the association between the HSF 1 expression and antioxidative activity through correlation analysis was found to be non-significant (P < 0.05), though enzymatic activity appeared to behave in a similar fashion in both breeds at 5% level of significance (P < 0.05). This rule out the role of HSF1 expression level on the activity of enzymes involved in oxidative stress in vitro in zebu and crossbred cattle.


Assuntos
Doenças dos Bovinos , Fatores de Transcrição de Choque Térmico/genética , Transtornos de Estresse por Calor , Leucócitos Mononucleares/metabolismo , Termotolerância/fisiologia , Animais , Catalase/metabolismo , Bovinos/sangue , Bovinos/genética , Bovinos/metabolismo , Doenças dos Bovinos/sangue , Doenças dos Bovinos/genética , Doenças dos Bovinos/fisiopatologia , Sobrevivência Celular , Glutationa/metabolismo , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/fisiopatologia , Transtornos de Estresse por Calor/veterinária , Hibridização Genética , Contagem de Leucócitos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Termotolerância/genética
17.
Chin J Nat Med ; 15(3): 178-191, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28411686

RESUMO

Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.


Assuntos
Berberina/farmacologia , Proteínas de Choque Térmico HSP70/genética , Transtornos de Estresse por Calor/tratamento farmacológico , TATA Box/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Temperatura Alta , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Biometeorol ; 61(9): 1629-1636, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28352954

RESUMO

Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group (P < 0.05). EA treatment downregulated the mRNA levels of heat shock proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers (P < 0.05). In conclusion, EA alleviated heat stress-induced growth depression and liver oxidative injury in broilers, possibly through improving the antioxidant capacity and regulating the pertinent mRNA expression. The appropriate inclusion level of EA in broiler diet is 1.00-1.25 g/kg.


Assuntos
Artemisia annua/química , Galinhas , Suplementos Nutricionais , Transtornos de Estresse por Calor/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Ração Animal , Animais , Catalase/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Heme Oxigenase-1/genética , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
19.
Int J Mol Med ; 37(5): 1429-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035111

RESUMO

Heat stress (HS) is commonly used to refer to the heat load that an individual is subjected to due to either metabolic heat, or environmental factors, including high temperatures and high humidity levels. HS has been reported to affect and even damage the functioning of various organs; overexposure to high temperatures and high humidity may lead to accidental deaths. It has been suggested that the cardiovascular system is primarily targeted by exposure to HS conditions; the HS-induced dysfunction of cardiomyocytes, which is characterized by mitochondrial dysfunction, may result in the development of cardiovascular diseases. The excessive production of reactive oxygen species (ROS) also participates in mitochondrial dysfunction. However, effective methods for the prevention and treatment of mitochondrial and cardiovascular dysfunction induced by exposure to HS are lacking. In the present study, we hypothesized that vitamin E (VE), an antioxidant, is capable of preventing oxidative stress and mitochondrial injury in cardiomyocytes induced by exposure to HS. The results revealed that pre­treatment with VE increased the expression of metallothionein (MT), which has previously been reported to confer cytoprotective effects, particularly on the cardiovascular system. Pre-treatment with VE restored mitochondrial function in cardiomyocytes under conditions of HS by increasing the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), and by increasing adenosine triphosphate (ATP) levels. Furthermore, pre-treatment with VE decreased the production of ROS, which was induced by exposure to HS and thus exerted antioxidant effects. In addition, pre-treatment with VE attenuated oxidative stress induced by exposure to HS, as demonstrated by the increased levels of antioxidant enzymes [superoxide dismutase (SOD) and glutathione (GSH)], and by the decreased levels of markers of oxidative injury [malondialdehyde (MDA) and lactate dehydrogenase (LDH)]. Taken together, these findings suggest that pre-treatment with VE can prevent mitochondrial dysfunction and oxidative stress in cardiomyocytes induced by exposure to HS, by increasing the expression of MT.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Metalotioneína/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/farmacologia , Vitamina E/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Metalotioneína/metabolismo , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA