Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 58(7): 495-504, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32719099

RESUMO

BACKGROUND: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.


Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Encefalopatias/genética , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Alelos , Encefalopatias/enzimologia , Encefalopatias/metabolismo , Criança , Pré-Escolar , Consanguinidade , Epilepsia/enzimologia , Feminino , Células HEK293 , Humanos , Mutação , Transtornos do Neurodesenvolvimento/enzimologia , Linhagem , Edição de RNA , Proteínas de Ligação a RNA/metabolismo
2.
J Hum Genet ; 65(5): 481-485, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32005903

RESUMO

p21-activated kinases (PAKs) are protein serine/threonine kinases stimulated by Rho-family p21 GTPases such as CDC42 and RAC. PAKs have been implicated in several human disorders, with pathogenic variants in PAK3 associated with intellectual disability and several PAK members, especially PAK1 and PAK4, overexpressed in human cancer. Recently, de novo PAK1 variants were reported to be causative of neurodevelopmental disorder (ND) with secondary macrocephaly in three patients. We herein report a fourth patient with ND, epilepsy, and macrocephaly caused by a de novo PAK1 missense variant. Two previously reported missense PAK1 variants functioned as activating alleles by reducing PAK1 homodimerization. To examine the pathogenicity of the identified novel p.Ser110Thr variant, we carried out in silico structural analysis. Our findings suggest that this variant also prevents PAK1 homodimerization, leading to constitutive PAK1 activation.


Assuntos
Epilepsia , Megalencefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Multimerização Proteica , Quinases Ativadas por p21 , Substituição de Aminoácidos , Criança , Ativação Enzimática/genética , Epilepsia/enzimologia , Epilepsia/genética , Humanos , Masculino , Megalencefalia/enzimologia , Megalencefalia/genética , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos , Quinases Ativadas por p21/química , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
3.
Acta Neuropathol Commun ; 8(1): 6, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000863

RESUMO

Human WWOX gene resides in the chromosomal common fragile site FRA16D and encodes a tumor suppressor WW domain-containing oxidoreductase. Loss-of-function mutations in both alleles of WWOX gene lead to autosomal recessive abnormalities in pediatric patients from consanguineous families, including microcephaly, cerebellar ataxia with epilepsy, mental retardation, retinal degeneration, developmental delay and early death. Here, we report that targeted disruption of Wwox gene in mice causes neurodevelopmental disorders, encompassing abnormal neuronal differentiation and migration in the brain. Cerebral malformations, such as microcephaly and incomplete separation of the hemispheres by a partial interhemispheric fissure, neuronal disorganization and heterotopia, and defective cerebellar midline fusion are observed in Wwox-/- mice. Degenerative alterations including severe hypomyelination in the central nervous system, optic nerve atrophy, Purkinje cell loss and granular cell apoptosis in the cerebellum, and peripheral nerve demyelination due to Schwann cell apoptosis correspond to reduced amplitudes and a latency prolongation of transcranial motor evoked potentials, motor deficits and gait ataxia in Wwox-/- mice. Wwox gene ablation leads to the occurrence of spontaneous epilepsy and increased susceptibility to pilocarpine- and pentylenetetrazol (PTZ)-induced seizures in preweaning mice. We determined that a significantly increased activation of glycogen synthase kinase 3ß (GSK3ß) occurs in Wwox-/- mouse cerebral cortex, hippocampus and cerebellum. Inhibition of GSK3ß by lithium ion significantly abolishes the onset of PTZ-induced seizure in Wwox-/- mice. Together, our findings reveal that the neurodevelopmental and neurodegenerative deficits in Wwox knockout mice strikingly recapitulate the key features of human neuropathies, and that targeting GSK3ß with lithium ion ameliorates epilepsy.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Epilepsia/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Oxidorredutase com Domínios WW/genética , Animais , Movimento Celular , Epilepsia/enzimologia , Camundongos Knockout , Transtornos do Neurodesenvolvimento/enzimologia , Neurônios/patologia , Nervos Periféricos/ultraestrutura , Tratos Piramidais/fisiopatologia , Células de Schwann/patologia , Convulsões/enzimologia
4.
Stem Cell Res ; 41: 101583, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698190

RESUMO

Asparagine synthetase (ASNS) deficiency (ASNSD; MIM #615574) is a rare neurodevelopmental disorder caused by mutations in the ASNS gene. The ASNS gene maps to cytogenetic band 7q21.3 and is 35 kb long. ASNSD is characterised by congenital microcephaly, severely delayed psychomotor development, seizures, and hyperekplexic activity. Here, we reported a family with compound heterozygous mutations in ASNS (NM_001178076:c.551C>T; c. 944A>C) and established induced pluripotent stem cells (iPSCs) from blood samples. To date, limited functional data have been reported to explain the underlying pathophysiology of ASNSD; therefore, iPSCs from these patients may be powerful tools for studying disease mechanisms.


Assuntos
Aspartato-Amônia Ligase/deficiência , Aspartato-Amônia Ligase/genética , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/patologia , Leucócitos Mononucleares/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Adulto , Animais , Células Cultivadas , Criança , Feminino , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Teratoma/enzimologia , Teratoma/genética , Teratoma/patologia
5.
Curr Neuropharmacol ; 17(1): 84-98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28521702

RESUMO

BACKGROUND: Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS: Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS: During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION: Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.


Assuntos
5'-Nucleotidase/metabolismo , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Sinapses/enzimologia , Animais , Encefalopatias/enzimologia , Encefalopatias/patologia , Humanos , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/patologia , Neurogênese , Transdução de Sinais
6.
Mol Cell Biol ; 36(14): 1900-7, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27185879

RESUMO

The lysine acetyltransferase 6 (KAT6) histone acetyltransferase (HAT) complexes are highly conserved from yeast to higher organisms. They acetylate histone H3 and other nonhistone substrates and are involved in cell cycle regulation and stem cell maintenance. In addition, the human KAT6 HATs are recurrently mutated in leukemia and solid tumors. Therefore, it is important to understand the mechanisms underlying the regulation of KAT6 HATs and their roles in cell cycle progression. In this minireview, we summarize the identification and analysis of the KAT6 complexes and discuss the regulatory mechanisms governing their enzymatic activities and substrate specificities. We further focus on the roles of KAT6 HATs in regulating cell proliferation and stem cell maintenance and review recent insights that aid in understanding their involvement in human diseases.


Assuntos
Histona Acetiltransferases/metabolismo , Neoplasias/enzimologia , Transtornos do Neurodesenvolvimento/enzimologia , Acetilação , Ciclo Celular , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Mutação , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Células-Tronco/citologia , Células-Tronco/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA