Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 14(4): 1737-1752, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212018

RESUMO

BACKGROUND: It has been observed that Slo1 knockout mice have reduced motor function, and people with certain Slo1 mutations have movement problems, but there is no answer whether the movement disorder is caused by the loss of Slo1 in the nervous system, or skeletal muscle, or both. Here, to ascertain in which tissues Slo1 functions to regulate motor function and offer deeper insight in treating related movement disorder, we generated skeletal muscle-specific Slo1 knockout mice, studied the functional changes in Slo1-deficient skeletal muscle and explored the underlying mechanism. METHODS: We used skeletal muscle-specific Slo1 knockout mice (Myf5-Cre; Slo1flox/flox mice, called CKO) as in vivo models to examine the role of Slo1 in muscle growth and muscle regeneration. The forelimb grip strength test was used to assess skeletal muscle function and treadmill exhaustion test was used to test whole-body endurance. Mouse primary myoblasts derived from CKO (myoblast/CKO) mice were used to extend the findings to in vitro effects on myoblast differentiation and fusion. Quantitative real-time PCR, western blot and immunofluorescence approaches were used to analyse Slo1 expression during myoblast differentiation and muscle regeneration. To investigate the involvement of genes in the regulation of muscle dysfunction induced by Slo1 deletion, RNA-seq analysis was performed in primary myoblasts. Immunoprecipitation and mass spectrometry were used to identify the protein interacting with Slo1. A dual-luciferase reporter assay was used to identify whether Slo1 deletion affects NFAT activity. RESULTS: We found that the body weight and size of CKO mice were not significantly different from those of Slo1flox/flox mice (called WT). Deficiency of Slo1 in muscles leads to reduced endurance (~30% reduction, P < 0.05) and strength (~30% reduction, P < 0.001). Although there was no difference in the general morphology of the muscles, electron microscopy revealed a considerable reduction in the content of mitochondria in the soleus muscle (~40% reduction, P < 0.01). We found that Slo1 was expressed mainly on the cell membrane and showed higher expression in slow-twitch fibres. Slo1 protein expression is progressively reduced during muscle postnatal development and regeneration after injury, and the expression is strongly reduced during myoblast differentiation. Slo1 deletion impaired myoblast differentiation and slow-twitch fibre formation. Mechanistically, RNA-seq analysis showed that Slo1 influences the expression of genes related to myogenic differentiation and slow-twitch fibre formation. Slo1 interacts with FAK to influence myogenic differentiation, and Slo1 deletion diminishes NFAT activity. CONCLUSIONS: Our data reveal that Slo1 deficiency impaired skeletal muscle regeneration and slow-twitch fibre formation.


Assuntos
Transtornos dos Movimentos , Músculo Esquelético , Animais , Camundongos , Diferenciação Celular/genética , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
2.
Sci Rep ; 11(1): 11311, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050212

RESUMO

Motor resilience proteins may be a high value therapeutic target that offset the negative effects of pathologies on motor function. This study sought to identify cortical proteins associated with motor decline unexplained by brain pathologies that provide motor resilience. We studied 1226 older decedents with annual motor testing, postmortem brain pathologies and quantified 226 proteotypic peptides in prefrontal cortex. Twenty peptides remained associated with motor decline in models controlling for ten brain pathologies (FDR < 0.05). Higher levels of nine peptides and lower levels of eleven peptides were related to slower decline. A higher motor resilience protein score based on averaging the levels of all 20 peptides was related to slower motor decline, less severe parkinsonism and lower odds of mobility disability before death. Cortical proteins may provide motor resilience. Targeting these proteins in further drug discovery may yield novel interventions to maintain motor function in old age.


Assuntos
Transtornos dos Movimentos/metabolismo , Peptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Desempenho Psicomotor , Feminino , Humanos , Masculino , Transtornos dos Movimentos/etiologia , Córtex Pré-Frontal/patologia , Estudos Prospectivos
3.
Eur J Paediatr Neurol ; 28: 81-88, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32811771

RESUMO

BACKGROUND: Neurodegeneration with brain iron accumulation constitutes a group of rare progressive movement disorders sharing intellectual disability and neuroimaging findings as common denominators. Beta-propeller protein-associated neurodegeneration (BPAN) represents approximately 7% of the cases, and its first signs are typically epilepsy and developmental delay. We aimed to describe in detail the phenotype of BPAN with a special focus on iron metabolism. MATERIAL AND METHODS: We present a cohort of paediatric patients with pathogenic variants of WD-Repeat Domain 45 gene (WDR45). The diagnosis was established by targeted panel sequencing of genes associated with epileptic encephalopathies (n = 9) or by Sanger sequencing of WDR45 (n = 1). Data on clinical characteristics, molecular-genetic findings and other performed investigations were gathered from all participating centres. Markers of iron metabolism were analysed in 6 patients. RESULTS: Ten children (3 males, 7 females, median age 8.4 years) from five centres (Prague, Berlin, Vogtareuth, Tubingen and Cologne) were enrolled in the study. All patients manifested first symptoms (e.g. epilepsy, developmental delay) between 2 and 31 months (median 16 months). Seven patients were seizure-free (6 on antiepileptic medication, one drug-free) at the time of data collection. Neurological findings were non-specific with deep tendon hyperreflexia (n = 4) and orofacial dystonia (n = 3) being the most common. Soluble transferrin receptor/log ferritin ratio was elevated in 5/6 examined subjects; other parameters of iron metabolism were normal. CONCLUSION: Severity of epilepsy often gradually decreases in BPAN patients. Elevation of soluble transferrin receptor/log ferritin ratio could be another biochemical marker of the disease and should be explored by further studies.


Assuntos
Proteínas de Transporte/genética , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/sangue , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Biomarcadores/sangue , Criança , Epilepsia/sangue , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Distúrbios do Metabolismo do Ferro/sangue , Masculino , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Doenças Neurodegenerativas/sangue , Fenótipo
4.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
5.
Nicotine Tob Res ; 21(3): 357-369, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30137517

RESUMO

Emerging studies indicate that striatal cholinergic interneurons play an important role in synaptic plasticity and motor control under normal physiological conditions, while their disruption may lead to movement disorders. Here we discuss the involvement of the cholinergic system in motor dysfunction, with a focus on the role of the nicotinic cholinergic system in Parkinson's disease and drug-induced dyskinesias. Evidence for a role for the striatal nicotinic cholinergic system stems from studies showing that administration of nicotine or nicotinic receptor drugs protects against nigrostriatal degeneration and decreases L-dopa-induced dyskinesias. In addition, nicotinic receptor drugs may ameliorate tardive dyskinesia, Tourette's syndrome and ataxia, although further study is required to understand their full potential in the treatment of these disorders. A role for the striatal muscarinic cholinergic system in movement disorders stems from studies showing that muscarinic receptor drugs acutely improve Parkinson's disease motor symptoms, and may reduce dyskinesias and dystonia. Selective stimulation or lesioning of striatal cholinergic interneurons suggests they are primary players in this regulation, although multiple central nervous systems appear to be involved. IMPLICATIONS: Accumulating data from preclinical studies and clinical trials suggest that drugs targeting CNS cholinergic systems may be useful for symptomatic treatment of movement disorders. Nicotinic cholinergic drugs, including nicotine and selective nAChR receptor agonists, reduce L-dopa-induced dyskinesias, as well as antipsychotic-induced tardive dyskinesia, and may be useful in Tourette's syndrome and ataxia. Subtype selective muscarinic cholinergic drugs may also provide effective therapies for Parkinson's disease, dyskinesias and dystonia. Continued studies/trials will help address this important issue.


Assuntos
Terapia de Alvo Molecular , Transtornos dos Movimentos/tratamento farmacológico , Agonistas Nicotínicos/uso terapêutico , Receptores Nicotínicos/metabolismo , Animais , Humanos , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia
6.
J Control Release ; 283: 135-142, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859955

RESUMO

G protein-coupled adenosine receptors are promising therapeutic targets for a wide range of neuropathological conditions, including Parkinson's disease (PD). However, the ubiquity of adenosine receptors and the ultimate lack of selectivity of certain adenosine-based drugs have frequently diminished their therapeutic use. Photopharmacology is a novel approach that allows the spatiotemporal control of receptor function, thus circumventing some of these limitations. Here, we aimed to develop a light-sensitive caged adenosine A2A receptor (A2AR) antagonist to photocontrol movement disorders. We synthesized MRS7145 by blocking with coumarin the 5-amino position of the selective A2AR antagonist SCH442416, which could be photoreleased upon violet light illumination (405 nm). First, the light-dependent pharmacological profile of MRS7145 was determined in A2AR-expressing cells. Upon photoactivation, MRS7145 precluded A2AR ligand binding and agonist-induced cAMP accumulation. Next, the ability of MRS7145 to block A2AR in a light-dependent manner was assessed in vivo. To this end, A2AR antagonist-mediated locomotor activity potentiation was evaluated in brain (striatum) fiber-optic implanted mice. Upon irradiation (405 nm) of the dorsal striatum, MRS7145 induced significant hyperlocomotion and counteracted haloperidol-induced catalepsy and pilocarpine-induced tremor. Finally, its efficacy in reversing motor impairment was evaluated in a PD animal model, namely the hemiparkinsonian 6-hydroxydopamine (6-OHDA)-lesioned mouse. Photo-activated MRS7145 was able to potentiate the number of contralateral rotations induced by L-3,4-dihydroxyphenylalanine (l-DOPA). Overall, MRS7145 is a new light-operated A2AR antagonist with potential utility to manage movement disorders, including PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/administração & dosagem , Antagonistas do Receptor A2 de Adenosina/efeitos da radiação , Luz , Transtornos dos Movimentos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Fibras Ópticas , Receptor A2A de Adenosina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28499899

RESUMO

The wake-promoting drug Modafinil has been used for many years for treatment of Narcolepsy and Excessive Daytime Sleepiness, due to a dopamine-related psychostimulant action. Recent studies have indicated that Modafinil prevents neuroinflammation in animal models. Thus, the aim of the present study was to evaluate the effect of Modafinil pretreatment in the Lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors. Adult male C57BL/6J mice were pretreated with Vehicle or Modafinil (90mg/Kg) and, 30min later, received a single saline or LPS (2mg/Kg) administration, and were submitted to the open field and elevated plus maze test 2h later. After 24h, mice were subjected to tail suspension test, followed by either flow cytometry with whole brain for CD11b+CD45+ cells or qPCR in brain areas for cytokine gene expression. Modafinil treatment prevented the LPS-induced motor impairment, anxiety-like and depressive-like behaviors, as well as the increase in brain CD11b+CD45high cells induced by LPS. Our results indicate that Modafinil pretreatment also decreased the IL-1ß gene upregulation caused by LPS in brain areas, which is possibly correlated with the preventive behavioral effects. The pharmacological blockage of the dopaminergic D1R by the drug SCH-23390 counteracted the effect of Modafinil on locomotion and anxiety-like behavior, but not on depressive-like behavior and brain immune cells. The dopaminergic D1 receptor signaling is essential to the Modafinil effects on LPS-induced alterations in locomotion and anxiety, but not on depression and brain macrophages. This evidence suggests that Modafinil treatment might be useful to prevent inflammation-related behavioral alterations, possibly due to a neuroimmune mechanism.


Assuntos
Compostos Benzidrílicos/farmacologia , Dopaminérgicos/farmacologia , Comportamento de Doença/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Receptores de Dopamina D1/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/patologia , Benzazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Escherichia coli , Comportamento de Doença/fisiologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Modafinila , Atividade Motora/fisiologia , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Promotores da Vigília/farmacologia
8.
Neurology ; 89(8): 762-770, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28747448

RESUMO

OBJECTIVE: To define molecular mechanisms underlying the clinical spectrum of epilepsy and movement disorder in individuals with de novo mutations in the GNAO1 gene. METHODS: We identified all GNAO1 mutations reported in individuals with epilepsy (early infantile epileptiform encephalopathy 17) or movement disorders through April 2016; 15 de novo mutant alleles from 25 individuals were introduced into the Gαo subunit by site-directed mutagenesis in a mammalian expression plasmid. We assessed protein expression and function in vitro in HEK-293T cells by Western blot and determined functional Gαo-dependent cyclic adenosine monophosphate (cAMP) inhibition with a coexpressed α2A adrenergic receptor. RESULTS: Of the 15 clinical GNAO1 mutations studied, 9 show reduced expression and loss of function (LOF; <90% maximal inhibition). Six other mutations show variable levels of expression but exhibit normal or even gain-of-function (GOF) behavior, as demonstrated by significantly lower EC50 values for α2A adrenergic receptor-mediated inhibition of cAMP. The GNAO1 LOF mutations are associated with epileptic encephalopathy while GOF mutants (such as G42R, G203R, and E246K) or normally functioning mutants (R209) were found in patients with movement disorders with or without seizures. CONCLUSIONS: Both LOF and GOF mutations in Gαo (encoded by GNAO1) are associated with neurologic pathophysiology. There appears to be a strong predictive correlation between the in vitro biochemical phenotype and the clinical pattern of epilepsy vs movement disorder.


Assuntos
Epilepsia/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transtornos dos Movimentos/genética , Mutação , Adolescente , Far-Western Blotting , Criança , Pré-Escolar , AMP Cíclico/metabolismo , Epilepsia/metabolismo , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Masculino , Transtornos dos Movimentos/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Transfecção
9.
Prog Neurobiol ; 151: 157-174, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159574

RESUMO

Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtornos dos Movimentos , Neuroquímica , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia , Animais , Humanos , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/terapia
11.
J Neurotrauma ; 33(14): 1317-30, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26651029

RESUMO

Throughout the world, traumatic brain injury (TBI) is one of the major causes of disability, which can include deficits in motor function and memory, as well as acquired epilepsy. Although some studies have shown the beneficial effects of physical exercise after TBI, the prophylactic effects are poorly understood. In the current study, we demonstrated that TBI induced by fluid percussion injury (FPI) in adult male Wistar rats caused early motor impairment (24 h), learning deficit (15 days), spontaneous epileptiform events (SEE), and hilar cell loss in the hippocampus (35 days) after TBI. The hippocampal alterations in the redox status, which were characterized by dichlorofluorescein diacetate oxidation and superoxide dismutase (SOD) activity inhibition, led to the impairment of protein function (Na(+), K(+)-adenosine triphosphatase [ATPase] activity inhibition) and glutamate uptake inhibition 24 h after neuronal injury. The molecular adaptations elicited by previous swim training protected against the glutamate uptake inhibition, oxidative stress, and inhibition of selected targets for free radicals (e.g., Na(+), K(+)-ATPase) 24 h after neuronal injury. Our data indicate that this protocol of exercise protected against FPI-induced motor impairment, learning deficits, and SEE. In addition, the enhancement of the hippocampal phosphorylated nuclear factor erythroid 2-related factor (P-Nrf2)/Nrf2, heat shock protein 70, and brain-derived neurotrophic factor immune content in the trained injured rats suggests that protein expression modulation associated with an antioxidant defense elicited by previous physical exercise can prevent toxicity induced by TBI, which is characterized by cell loss in the dentate gyrus hilus at 35 days after TBI. Therefore, this report suggests that previous physical exercise can decrease lesion progression in this model of brain damage.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Disfunção Cognitiva/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Transtornos dos Movimentos/metabolismo , Oxirredução , Condicionamento Físico Animal/fisiologia , Transdução de Sinais/fisiologia , Animais , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Giro Denteado/patologia , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/prevenção & controle , Aprendizagem/fisiologia , Masculino , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Ratos , Ratos Wistar
12.
Brain Res ; 1550: 47-60, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24463035

RESUMO

BACKGROUND: Alpha-synuclein (SNCA) downregulation shows therapeutic potential for synucleinopathies, including Parkinson's disease (PD). Previously we showed that human (h)SNCA gene silencing using a short hairpin (sh)RNA in rat substantia nigra (SN) protects against a hSNCA-induced forelimb deficit, but not dopamine (DA) neuron loss. Furthermore, the shRNA increases cell death in vitro, but the same target sequence embedded in a microRNA30 transcript (mir30-hSNCA) does not. OBJECTIVE: Examine hSNCA gene silencing using mir30-hSNCA in vivo. METHODS: Rats were stereotaxically injected into one SN with adeno-associated virus serotype 2/8 (AAV)-hSNCA, AAV-hSNCA plus AAV-mir30-SNCA or AAV-hSNCA plus a control non-silencing mir30-embedded siRNA and DA neuron markers and associated behavior were examined. RESULTS: AAV2/8-mediated SN hSNCA expression induces a forelimb deficit and tyrosine hydroxylase-immunoreactive (TH-IR) neuron loss. hSNCA gene silencing using mir30-hSNCA protects against this forelimb deficit at 2 m and ameliorates TH-IR neuron loss. Striatal (ST) TH-IR fiber density and DA markers, assessed by western blot, are unaffected by AAV-hSNCA alone. Co-expression of either silencing vector reduces ST TH-IR fibers, panTH in SN and Ser40 phosphorylated TH in SN and ST, but does not affect vesicular monoamine transporter-2. However, hSNCA gene silencing promotes partial TH-IR fiber recovery by 2 m. Co-expression of either silencing vector also induces SN inflammation, although some recovery was observed by 2 m in hSNCA-silenced SN. CONCLUSION: hSNCA gene silencing with AAV-mir30-hSNCA has positive effects on forelimb behavior and SN DA neurons, which are compromised by inflammation and reduced TH expression, suggesting that AAV2/8-mir30-hSNCA-mediated gene silencing, although promising in vitro, is not a candidate for therapeutic translation for PD.


Assuntos
MicroRNAs/metabolismo , Interferência de RNA , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus/genética , Dopamina/metabolismo , Membro Anterior/fisiopatologia , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Masculino , MicroRNAs/genética , Atividade Motora/fisiologia , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
13.
Curr Pharm Des ; 19(24): 4437-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23360275

RESUMO

Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.


Assuntos
Senilidade Prematura/etiologia , Modelos Animais de Doenças , Atividade Motora/fisiologia , Transtornos dos Movimentos/radioterapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Senilidade Prematura/tratamento farmacológico , Senilidade Prematura/metabolismo , Senilidade Prematura/patologia , Animais , Proteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-23123399

RESUMO

Tardive dyskinesia (TD) is a serious adverse effect of long-term antipsychotic use. Because of genetic susceptibility for developing TD and because it is difficult to predict and prevent its development prior to or during the early stages of medication, pharmacogenetic research of TD is important. Additionally, these studies enhance our knowledge of the genetic mechanisms underlying abnormal dyskinetic movements, such as Parkinson's disease. However, the pathophysiology of TD remains unclear. The oxidative stress hypothesis of TD is one of the possible pathophysiologic models for TD. Preclinical and clinical studies of the oxidative stress hypothesis of TD indicate that neurotoxic free radical production is likely a consequence of antipsychotic medication and is related to the occurrence of TD. Several studies on TD have focused on examining the genes involved in oxidative stress. Among them, manganese superoxide dismutase gene Ala-9Val polymorphisms show a relatively consistent association with TD susceptibility, although not all studies support this. Numerous pharmacogenetic studies have found a positive relationship between TD and oxidative stress based on genes involved in the antioxidant defense mechanism, dopamine turnover and metabolism, and other antioxidants such as estrogen and melatonin. However, many of the positive findings have not been replicated. We expect that more research will be needed to address these issues.


Assuntos
Antipsicóticos/uso terapêutico , Transtornos dos Movimentos/metabolismo , Estresse Oxidativo/fisiologia , Farmacogenética/métodos , Animais , Antipsicóticos/farmacologia , Humanos , Transtornos dos Movimentos/diagnóstico , Estresse Oxidativo/efeitos dos fármacos , Farmacogenética/tendências
15.
J Neuroimmune Pharmacol ; 7(4): 927-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054369

RESUMO

Animal models and clinical studies have linked the innate and adaptive immune system to the pathology of Parkinson's disease (PD). Despite such progress, the specific immune responses that influence disease progression have eluded investigators. Herein, we assessed relationships between T cell phenotype and function with PD progression. Peripheral blood lymphocytes from two separate cohorts, a discovery cohort and a validation cohort, totaling 113 PD patients and 96 age- and environment-matched caregivers were examined by flow cytometric analysis and T cell proliferation assays. Increased effector/memory T cells (Tem), defined as CD45RO+ and FAS+ CD4+ T cells and decreased CD31+ and α4ß7+ CD4+ T cells were associated with progressive Unified Parkinson's Disease Rating Scale III scores. However, no associations were seen between immune biomarkers and increased age or disease duration. Impaired abilities of regulatory T cells (Treg) from PD patients to suppress effector T cell function was observed. These data support the concept that chronic immune stimulation, notably Tem activation and Treg dysfunction is linked to PD pathobiology and disease severity, but not disease duration. The association of T cell phenotypes with motor symptoms provides fresh avenues for novel biomarkers and therapeutic designs.


Assuntos
Linfócitos T CD4-Positivos/patologia , Transtornos dos Movimentos/patologia , Doença de Parkinson/patologia , Subpopulações de Linfócitos T/patologia , Contagem de Células Sanguíneas , Linfócitos T CD4-Positivos/metabolismo , Estudos de Coortes , Biologia Computacional , Citometria de Fluxo , Expressão Gênica/fisiologia , Humanos , Interleucina-6/biossíntese , Interleucina-9/biossíntese , Monócitos/patologia , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Subpopulações de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
16.
Neurobiol Dis ; 46(1): 1-18, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266337

RESUMO

Iron is an essential element necessary for energy production, DNA and neurotransmitter synthesis, myelination and phospholipid metabolism. Neurodegeneration with brain iron accumulation (NBIA) involves several genetic disorders, two of which, aceruloplasminemia and neuroferritinopathy, are caused by mutations in genes directly involved in iron metabolic pathway, and others, such as pantothenate-kinase 2, phospholipase-A2 and fatty acid 2-hydroxylase associated neurodegeneration, are caused by mutations in genes coding for proteins involved in phospholipid metabolism. Phospholipids are major constituents of myelin and iron accumulation has been linked to myelin derangements. Another group of NBIAs is caused by mutations in lysosomal enzymes or transporters such as ATP13A2, mucolipin-1 and possibly also ß-galactosidase and α-fucosidase. Increased cellular iron uptake in these diseases may be caused by impaired recycling of iron which normally involves lysosomes. Abnormal iron utilization by mitochondria, as has been proposed in Friedreich's ataxia, is another possible mechanism of iron accumulation. Other, more common degenerative movement disorders, such as Parkinson's disease, Huntington's disease, multiple system atrophy and progressive supranuclear palsy also exhibit increased brain iron content. Finally, brain iron deficiency has been implicated in restless legs syndrome. This review provides an update on recent findings related to genetics, pathogenic mechanisms, diagnosis, and treatment of movement disorders associated with dysregulation of brain iron. We also propose a new classification of NBIAs.


Assuntos
Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Transtornos dos Movimentos/metabolismo , Animais , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/fisiopatologia , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia
17.
Behav Pharmacol ; 22(7): 674-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21918383

RESUMO

Tardive dyskinesia (TD) is a serious motor disorder related to antipsychotic therapy, whose pathophysiology is associated to oxidative stress. Treatments that maintain antipsychotic efficacy while reducing TD risk are awaited. Haloperidol (HAL), a typical antipsychotic, is used as a putative murine model of TD. Here, we evaluated the protective role of vitamins B1, B6, and B12 alone or in combination (vitamin B cocktail) in preventing the HAL-induced orofacial dyskinesia (OD), based on their antioxidant properties. HAL (1 mg/kg) administered intraperitoneally to Wistar rats for 21 days caused OD and increased catalepsy time. The daily administration of B vitamins (B1 : B6 : B12 at 60 : 60 : 0.6 mg/kg) alone or the vitamin B cocktail, along with HAL, prevented the development of OD. Catalepsy time reduced in all groups treated with B vitamins, but to a lesser extent than OD. The participation of oxidative stress was assessed by the determination of reduced glutathione (GSH) levels and lipid peroxide formation in the striatum. HAL significantly decreased GSH levels and enhanced lipid peroxidation, whereas B1, B12, and vitamin B cocktail prevented the decrease in GSH levels. All groups treated with B vitamins presented a decrease in lipid peroxide formation. The data suggest a promising role for B vitamins in the prevention of OD.


Assuntos
Antioxidantes/farmacologia , Antipsicóticos/toxicidade , Comportamento Animal , Discinesia Induzida por Medicamentos/tratamento farmacológico , Haloperidol/toxicidade , Transtornos dos Movimentos/prevenção & controle , Complexo Vitamínico B/farmacologia , Animais , Antioxidantes/uso terapêutico , Antipsicóticos/farmacologia , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/fisiopatologia , Glutationa/análise , Glutationa/metabolismo , Haloperidol/farmacologia , Peroxidação de Lipídeos/fisiologia , Masculino , Malondialdeído/análise , Malondialdeído/metabolismo , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Estresse Oxidativo , Transtornos Psicóticos/complicações , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Complexo Vitamínico B/uso terapêutico
18.
Neuroscience ; 177: 195-206, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21241779

RESUMO

Insulin-like growth factor-I (IGF-I) is a powerful neuroprotective molecule in the brain and spinal cord. We have previously shown that intracerebroventricular (i.c.v.) IGF-I gene therapy is an effective strategy to increase IGF-I levels in the cerebrospinal fluid (CSF). Since aging in rats is associated with severe motor function deterioration, we implemented i.c.v. IGF-I gene therapy in very old rats (30-31 months) and assessed the beneficial impact on motor performance. We used recombinant adenovectors (RAds) expressing either green fluorescent protein (GFP) or rat IGF-I. Injection in the lateral or fourth ventricle led to high transgene expression in the ependymal cell layer in the brain and cervical spinal cord. RAd-IGF-I-injected rats but not RAd-GFP-injected controls, showed significantly increased levels of CSF IGF-I. Motor tests showed the expected age-related decline in aged rats. Seventeen-day IGF-I gene therapy induced a significant improvement in motor performance in the aged but not in the young animals. These results show that IGF-I is an effective restorative molecule in the aging brain and spinal cord. The data also reveal that the ependymal route constitutes a promising approach for implementing protective IGF-I gene therapy in the aging CNS.


Assuntos
Envelhecimento/metabolismo , Terapia Genética/métodos , Vetores Genéticos/farmacologia , Fator de Crescimento Insulin-Like I/genética , Transtornos dos Movimentos/terapia , Fatores Etários , Envelhecimento/genética , Animais , Feminino , Vetores Genéticos/genética , Injeções Intraventriculares/métodos , Fator de Crescimento Insulin-Like I/administração & dosagem , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Neurobiol Dis ; 41(2): 570-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21062644

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative genetic disorder that leads to motor, cognitive, and psychiatric disturbances. The primary neuropathological hallmark is atrophy of the striatum. HD preferentially affects efferent striato-pallidal neurons that express enkephalin as well as dopamine D2 and A(2A) adenosine receptors (A(2A)Rs). Expression and function of A(2A)Rs are altered in HD but, despite being an important modulator of the striato-pallidal function, the subsequent pathophysiological consequence of such changes remains unclear. Whether blockade of A(2A)Rs is of therapeutic interest in HD remains ill-defined. In the present work, we aimed to determine the pathophysiological consequences of genetic deletion of A(2A)Rs in HD by crossing A(2A)R knockout mice with the N171-82Q HD transgenic model. Our data demonstrate that knockout of A(2A)Rs moderately but significantly worsens motor performances and survival of N171-82Q mice and leads to a decrease in striatal enkephalin expression. These results support that early and chronic blockade of A(2A)Rs might not be beneficial in HD.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/genética , Animais , Encefalinas/antagonistas & inibidores , Encefalinas/metabolismo , Feminino , Proteína Huntingtina , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos dos Movimentos/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Taxa de Sobrevida
20.
Am J Geriatr Pharmacother ; 8(4): 331-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20869622

RESUMO

BACKGROUND: Few drugs are available for the management of hyperkinetic movement disorders such as the dystonias, choreas, dyskinesias, and tics. Those that are available (primarily neuroleptics) are associated with a wide range of potentially serious adverse effects, including induction of tardive movement disorders. Tetrabenazine (TBZ) is a monoamine-depleting agent initially studied in the 1950s and currently approved by the US Food and Drug Administration for the treatment of chorea in Huntington's disease. OBJECTIVE: This article reviews the chemistry, pharmacology, pharmacokinetics, therapeutic use, tolerability, drug-interaction potential, and dosing and administration of TBZ. METHODS: MEDLINE was searched (1950-February 2010) for English-language articles investigating any aspect of TBZ. Search terms included tetrabenazine, Ro 1-9569, Nitoman, benzoquinolizines, and reserpine. The reference lists of the identified articles were searched for other pertinent publications, particularly those that were not indexed in the 1950s and 1960s. RESULTS: In the search for a chemical compound that was simpler than reserpine while preserving reserpine-like psychotropic activity, TBZ was identified in the 1950s as one member of a large group of benzoquinolizine derivatives. TBZ acts by depletion of the monoamines serotonin, norepinephrine, and dopamine in the central nervous system (CNS). It does this by reversibly inhibiting vesicle monoamine transporter type 2 and thus preventing monoamine uptake into presynaptic neurons. Clinical studies suggest that TBZ may have therapeutic applications in a wide range of hyperkinetic movement disorders. TBZ has been associated with numerous adverse effects, some of them serious and potentially fatal; these include parkinsonism, other extrapyramidal symptoms (particularly akathisia), depression and suicidality, neuroleptic malignant syndrome, and sedation. TBZ is subject to important drug-drug interactions with inhibitors and inducers of cytochrome P450 (CYP) 2D6, reserpine, and lithium. It is one of very few drugs whose dosing is based, in part, on the results of genotyping (in its case, genotyping for CYP2D6 metabolizer status). CONCLUSIONS: TBZ is a complicated drug in terms of its mechanism of action and its activities against the 3 major monoamines in the CNS, making it difficult to predict its efficacy and tolerability in patients with hyperkinetic movement disorders. It is associated with numerous adverse effects and several important drug-drug interactions. Much work remains to be done to determine the therapeutic potential of TBZ in the treatment of hyperkinetic movement disorders.


Assuntos
Doença de Huntington/tratamento farmacológico , Tetrabenazina/farmacologia , Inibidores da Captação Adrenérgica/administração & dosagem , Inibidores da Captação Adrenérgica/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Depressão/induzido quimicamente , Dopamina/metabolismo , Interações Medicamentosas/genética , Genótipo , Humanos , Doença de Huntington/metabolismo , Hipercinese/tratamento farmacológico , Pessoa de Meia-Idade , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/metabolismo , Síndrome Maligna Neuroléptica , Doença de Parkinson Secundária/induzido quimicamente , Quinolizinas/farmacologia , Reserpina/administração & dosagem , Reserpina/efeitos adversos , Serotonina/metabolismo , Tetrabenazina/administração & dosagem , Tetrabenazina/efeitos adversos , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA