Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.225
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732142

RESUMO

The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1ß, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3ß, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.


Assuntos
Cardiotônicos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Transdução de Sinais , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
2.
Artigo em Inglês | MEDLINE | ID: mdl-38684422

RESUMO

PURPOSE: The study aims to assess the effects of dexmedetomidine (Dex) pretreatment on patients during cardiac valve replacement under cardiopulmonary bypass. METHODS: For patients in the Dex group (n = 52), 0.5 µg/kg Dex was given before anesthesia induction, followed by 0.5 µg/kg/h pumping injection before aortic occlusion. For patients in the control group (n = 52), 0.125 ml/kg normal saline was given instead of Dex. RESULTS: The patients in the Dex group had longer time to first dose of rescue propofol than the control group (P = 0.003). The Dex group required less total dosage of propofol than the control group (P = 0.0001). The levels of cardiac troponin I (cTnI), creatine kinase isoenzyme MB (CK-MB), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) were lower in the Dex group than the control group at T4, 8 h after the operation (T5), and 24 h after the operation (T6) (P <0.01). The Dex group required less time for mechanical ventilation than the control group (P = 0.003). CONCLUSION: The study suggests that 0.50 µg/kg Dex pretreatment could reduce propofol use and the duration of mechanical ventilation, and confer myocardial protection without increased adverse events during cardiac valve replacement.


Assuntos
Biomarcadores , Ponte Cardiopulmonar , Dexmedetomidina , Implante de Prótese de Valva Cardíaca , Propofol , Respiração Artificial , Troponina I , Dexmedetomidina/administração & dosagem , Dexmedetomidina/efeitos adversos , Humanos , Ponte Cardiopulmonar/efeitos adversos , Masculino , Implante de Prótese de Valva Cardíaca/efeitos adversos , Feminino , Fatores de Tempo , Pessoa de Meia-Idade , Resultado do Tratamento , Propofol/efeitos adversos , Propofol/administração & dosagem , Biomarcadores/sangue , Troponina I/sangue , Creatina Quinase Forma MB/sangue , Agonistas de Receptores Adrenérgicos alfa 2/efeitos adversos , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Fator de Necrose Tumoral alfa/sangue , Malondialdeído/sangue , Idoso , Adulto , Anestésicos Intravenosos/efeitos adversos , Anestésicos Intravenosos/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia
3.
Cardiovasc Toxicol ; 24(5): 481-498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38647950

RESUMO

The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.


Assuntos
Acetilcisteína , Antioxidantes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ferroptose , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Acetilcisteína/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Antioxidantes/farmacologia , Ferroptose/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/tratamento farmacológico , Fatores de Tempo , Miocárdio/patologia , Miocárdio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
4.
Life Sci ; 347: 122617, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608835

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Assuntos
Plaquetas , Traumatismo por Reperfusão Miocárdica , Fator de Ativação de Plaquetas , Fator de Crescimento Derivado de Plaquetas , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Plaquetas/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/patologia
5.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618716

RESUMO

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Assuntos
Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica , Espécies Reativas de Oxigênio , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Cálcio/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos
6.
Eur J Pediatr ; 183(6): 2783-2789, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568244

RESUMO

Myocardial injury in open-heart surgery is related to several factors including ischemia-reperfusion injury, generation of reactive oxygen species, increased production of inflammatory mediators, and enhancement of apoptosis of cardiomyocytes. The aim of this study was to study the effect of L-carnitine on myocardial injury in children undergoing open-heart surgery. This clinical trial was performed on 60 children with congenital heart disease (CHD) who underwent open-heart surgery. They were randomized into two groups: L-carnitine group who received L-carnitine 50 mg\kg\day once daily for 1 month before cardiac surgery and control group who received placebo for 1 month before cardiac surgery. Left ventricular cardiac function was assessed by conventional echocardiography to measure left ventricular ejection fraction (LVEF) and two-dimensional speckle tracking echocardiography (2D-STE) to determine left ventricular global longitudinal strain (2D-LV GLS). Blood samples were obtained pre-operatively at baseline before the administration of L-carnitine or placebo and 12 h post-operatively to measure the level of malondialdehyde (MDA), superoxide dismutase (SOD), fas, caspase-3, creatinine kinase-MB (CK-MB), and troponin I. L-carnitine group had significantly lower post-operative level of oxidative stress marker (MDA), apoptosis markers (fas and caspase-3), and myocardial injury markers (CK-MB and troponin I), but they had significantly higher SOD post-operative level compared to the control group. In addition, post-operative LVEF and 2D-LVGLS were significantly lower in the control group compared to L-carnitine group.   Conclusion: L-carnitine can reduce myocardial injury, improve post-operative left ventricular cardiac function, and may provide myocardium protection in children with CHD who underwent open-heart surgery.   Trial registration: The clinical trial was registered at www.pactr.org with registration number PACTR202010570607420 at 29/10/2020 before recruiting the patients. What is Known: • Myocardial injury in open-heart surgery is related to several factors including ischemia-reperfusion injury, generation of reactive oxygen species, increased production of inflammatory mediators, and enhancement of apoptosis of cardiomyocytes. • L-carnitine was reported to have myocardial protective effects in rheumatic valvular surgery and coronary artery bypass graft (CABG) in adults; however, there is no evidence on its effectiveness in children undergoing open-heart surgery. What is New: • L-carnitine significantly lowered the post-operative level of oxidative stress marker (MDA), apoptosis markers (fas and caspase-3), and myocardial injury markers (CK-MB and troponin I) in the treatment group. • L-carnitine can reduce myocardial injury, improve post-operative left ventricular cardiac function, and may provide myocardium protection in children with CHD who underwent open-heart surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Carnitina , Ecocardiografia , Cardiopatias Congênitas , Estresse Oxidativo , Humanos , Carnitina/uso terapêutico , Masculino , Feminino , Cardiopatias Congênitas/cirurgia , Pré-Escolar , Estresse Oxidativo/efeitos dos fármacos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Lactente , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Criança , Método Duplo-Cego , Biomarcadores/sangue , Função Ventricular Esquerda/efeitos dos fármacos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/tratamento farmacológico , Resultado do Tratamento
7.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577949

RESUMO

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Berberina , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Berberina/farmacologia , Caspase 3/metabolismo , Dissulfeto de Glutationa/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Ratos
8.
Int Heart J ; 65(2): 279-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556336

RESUMO

Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/ß-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/ß-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/ß-catenin regulatory axis against cardiomyocyte injury induced by H/R.


Assuntos
Neoplasias do Colo , Doença da Artéria Coronariana , MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apoptose/fisiologia , beta Catenina/metabolismo , Neoplasias do Colo/metabolismo , Doença da Artéria Coronariana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 1/genética , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Adv Sci (Weinh) ; 11(18): e2307233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487926

RESUMO

The gut microbiome has emerged as a potential target for the treatment of cardiovascular disease. Ischemia/reperfusion (I/R) after myocardial infarction is a serious complication and whether certain gut bacteria can serve as a treatment option remains unclear. Lactobacillus reuteri (L. reuteri) is a well-studied probiotic that can colonize mammals including humans with known cholesterol-lowering properties and anti-inflammatory effects. Here, the prophylactic cardioprotective effects of L. reuteri or its metabolite γ-aminobutyric acid (GABA) against acute ischemic cardiac injury caused by I/R surgery are demonstrated. The prophylactic gavage of L. reuteri or GABA confers cardioprotection mainly by suppressing cardiac inflammation upon I/R. Mechanistically, GABA gavage results in a decreased number of proinflammatory macrophages in I/R hearts and GABA gavage no longer confers any cardioprotection in I/R hearts upon the clearance of macrophages. In vitro studies with LPS-stimulated bone marrow-derived macrophages (BMDM) further reveal that GABA inhibits the polarization of macrophages toward the proinflammatory M1 phenotype by inhibiting lysosomal leakage and NLRP3 inflammasome activation. Together, this study demonstrates that the prophylactic oral administration of L. reuteri or its metabolite GABA attenuates macrophage-mediated cardiac inflammation and therefore alleviates cardiac dysfunction after I/R, thus providing a new prophylactic strategy to mitigate acute ischemic cardiac injury.


Assuntos
Modelos Animais de Doenças , Limosilactobacillus reuteri , Camundongos Endogâmicos C57BL , Probióticos , Ácido gama-Aminobutírico , Animais , Limosilactobacillus reuteri/metabolismo , Camundongos , Ácido gama-Aminobutírico/metabolismo , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Macrófagos/metabolismo , Microbioma Gastrointestinal , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/prevenção & controle
10.
Acta Cir Bras ; 39: e390224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422326

RESUMO

PURPOSE: To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. METHODS: Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. RESULTS: After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). CONCLUSIONS: For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.


Assuntos
Diabetes Mellitus , Flavonoides , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Glicemia , Volume Sistólico , Função Ventricular Esquerda , Colesterol
11.
Stem Cells ; 42(5): 416-429, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381602

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 31% of all deaths globally. Myocardial ischemia-reperfusion injury (IRI), a common complication of CVDs, is a major cause of mortality and morbidity. Studies have shown efficacious use of mesenchymal stem cells-derived small extracellular vesicles (MSCs-EVs) to mitigate IRI in animals, but few research has been done on human-related models. In this study, human embryonic stem cell-derived chambered cardiac organoid (CCO) was used as a model system to study the effects of MSC-EVs on myocardial IRI. The results revealed that MSC-EVs treatment reduced apoptosis and improved contraction resumption of the CCOs. Metabolomics analysis showed that this effect could be attributed to EVs' ability to prevent the accumulation of unsaturated very long-chain fatty acids (VLCFAs). This was corroborated when inhibition of fatty acid synthase, which was reported to reduce VLCFAs, produced a similar protective effect to EVs. Overall, this study uncovered the mechanistic role of MSC-EVs in mitigating IRI that involves preventing the accumulation of unsaturated VLCFA, decreasing cell death, and improving contraction resumption in CCOs.


Assuntos
Apoptose , Vesículas Extracelulares , Células-Tronco Mesenquimais , Organoides , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Organoides/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ácidos Graxos/metabolismo , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia
12.
Gen Physiol Biophys ; 43(1): 13-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38312031

RESUMO

Myocardial ischemia/reperfusion (I/R) causes serious threats to human life. Naringenin, a polyphenolic compound naturally occurring in citrus fruit, has cardioprotective effects against myocardial I/R injury. Besides, miR-24-3p is also reported to have cardioprotective effects. We intended to explore whether the cardioprotective effects of naringenin relate to miR-24-3p and its underlying mechanism. In this study, we used an in vivo rat myocardial I/R model and an in vitro cardiomyocyte H9c2 hypoxia/reoxygenation (H/R) model. Myocardial injury was detected by hematoxylin-eosin staining and ELISA for creatine kinase (CK), malondialdehyde (MDA), and lactate dehydrogenase (LDH). miR-24-3p and cell death inducing p53 target 1 (Cdip1) mRNA expressions were examined by RT-PCR. We find that naringenin pretreatment significantly relieves myocardial I/R injury, reduces LDH, CD, and MDA levels, and increases miR-24-3p expression. Furthermore, miR-24-3p alleviates myocardial I/R injury partially through regulating Cdip1. Moreover, naringenin protects myocardial I/R injury partially by regulating miR-24-3p to inhibit Cdip1 expression. In conclusion, our data suggest naringenin protects myocardial I/R injury partially through miR-24-3p/Cdip1 axis.


Assuntos
Flavanonas , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Ratos , Humanos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Miócitos Cardíacos , Morte Celular , Apoptose
13.
Biochem Biophys Res Commun ; 700: 149598, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38308910

RESUMO

Myocardial tissue ischemia damages myocardial cells. Although reperfusion is an effective technique to rescue myocardial cell damage, it may also exacerbate myocardial cell damage. Ferroptosis, an iron-dependent cell death, occurs following myocardial ischemia-reperfusion (I/R). Piceatannol (PCT) is a natural stilbene compound with excellent antioxidant properties that protect against I/R injury and exerts protective effects against ferroptosis-induced cardiomyocytes following I/R injury; however, the exact mechanism remains to be elucidated. PURPOSE: This study aims to investigate the protective effect and mechanism of PCT on myocardial ischemia-reperfusion injury. METHODS: An ischemia-reperfusion model was established via ligation of the left anterior descending branch of mice's hearts and hypoxia-reoxygenation (H/R) of cardiomyocytes. RESULTS: During ischemia-reperfusion, Nuclear factor E2-related factor 2 (Nrf-2) expression was downregulated, the left ventricular function was impaired, intracellular iron and lipid peroxidation product levels were elevated, and cardiomyocytes underwent ferroptosis. Furthermore, ferroptosis was enhanced following treatment with an Nrf-2 inhibitor. After PCT treatment, Nrf-2 expression significantly increased, intracellular ferrous ions and lipid peroxidation products significantly reduced, Ferroportin1 (FPN1) expression increased, and transferrin receptor-1 (TfR-1) expression was inhibited. CONCLUSIONS: PCT regulates iron metabolism through Nrf-2 to protect against myocardial cell ferroptosis induced by myocardial I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Estilbenos , Animais , Camundongos , Isquemia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Estilbenos/farmacologia
14.
Basic Res Cardiol ; 119(2): 329-348, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38236300

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 µg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3ß pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.


Assuntos
Lisofosfolipídeos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Cátion TRPV/genética , Peptídeos/metabolismo , Medula Espinal/metabolismo
15.
Aging (Albany NY) ; 16(3): 2181-2193, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277217

RESUMO

AIM: (-)-Epicatechin (EPI) has physiological activities such as antioxidant, anti-inflammatory and immune enhancement. In this study, we elucidated the protective effects of EPI in myocardial ischemia/reperfusion injury (MI/RI) and its mechanisms. METHODS: An in vivo I/R model was constructed by performing left anterior descending coronary artery surgery on rats, and an in vitro I/R model was constructed by subjecting hypoxia/reperfusion treatment on H9C2 cells. The damage of cardiac tissues was detected by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H&E) staining, and expressions of ferroptosis-related proteins were examined by Western blot. Changes in the number of autophagosomes, the levels of oxidative stress and Fe2+ were also examined. RESULTS: EPI reduced abnormal electrocardiogram waveform and infarct size caused by MI/RI in rats. The increasing trend of levels of reactive oxygen species (ROS) and Fe2+ was reversed by EPI, suggesting that EPI can reduce ferroptosis in vivo. Moreover, the levels of lipid ROS and LC3 in H9C2 cells were decreased with EPI treatment, and autophagy and ferroptosis were also alleviated in a dose-dependent manner in vitro. Co-cultivation of USP14 inhibitor IU1 and EPI further revealed that EPI regulates ferroptosis through the USP14-autophagy pathway. CONCLUSIONS: EPI can reduce the level of oxidative stress by promoting USP14 to reduce autophagy, thus inhibiting autophagy dependent ferroptosis and reducing oxidative stress, and has a protective effect on myocardial infarction/myocardial infarction.


Assuntos
Catequina , Ferroptose , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Catequina/farmacologia , Catequina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Autofagia , Infarto do Miocárdio/metabolismo
16.
Adv Sci (Weinh) ; 11(9): e2307880, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093654

RESUMO

To rescue ischemic myocardium from progressing to myocardial infarction, timely identification of the infarct size and reperfusion is crucial. However, fast and accurate identification, as well as the targeted protection of injured cardiomyocytes following ischemia/reperfusion (I/R) injury, remain significantly challenging. Here, a near infrared heptamethine dye IR-780 is shown that has the potential to quickly monitor the area at risk following I/R injury by selectively entering the cardiomyocytes of the at-risk heart tissues. Preconditioning with IR-780 or timely IR-780 administration before reperfusion significantly protects the heart from ischemia and oxidative stress-induced cell death, myocardial remodeling, and heart failure in both rat and pig models. Furthermore, IR-780 can directly bind to F0F1-ATP synthase of cardiomyocytes, rapidly decrease the mitochondrial membrane potential, and subsequently slow down the mitochondrial energy metabolism, which induces the mitochondria into a "quiescent state" and results in mitochondrial permeability transition pore inhibition by preventing mitochondrial calcium overload. Collectively, the findings show the feasibility of IR-780-based imaging and protection strategy for I/R injury in a preclinical context and indicate that moderate mitochondrial function depression is a mode of action that can be targeted in the development of cardioprotective reagents.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Suínos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Preparações Farmacêuticas , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1209-1218, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37650890

RESUMO

Aging is known as a main risk factor in the development of cardiovascular diseases. Naringin (NRG) is a flavonoid compound derived from citrus fruits. It possesses a wide spectrum of pharmacological properties, including antioxidant anti-inflammatory, and cardioprotective. This investigation aimed to assess the cardioprotective effect of NRG against the ischemia/reperfusion (I/R) injury in aged rats. In this study, D-galactose (D-GAL) at the dose of 150 mg/kg/day for 8 weeks was used to induce aging in rats. Rats were orally gavaged with NRG (40 or 100 mg/kg/day), in co-treatment with D-GAL, for 8 weeks. The Langendorff isolated heart was used to evaluate the effect of NRG on I/R injury in aged rats. NRG treatment diminished myocardial hypertrophy and maximum contracture level in aged animals. During the pre-ischemic phase, reduced heart rate was normalized by NRG. The effects of D-GAL on the left ventricular end diastolic pressure (LVDP), the rate pressure product (RPP), and the minimum and maximum rate of left ventricular pressure (±dp/dt) improved by NRG treatment in the perfusion period. NRG also enhanced post-ischemic recovery of cardiac functional parameters (± dp/dt, and RPP) in isolated hearts. An increase in serum levels of the lactate dehydrogenase (LDH), the creatine kinase-MB (CK-MB), and the tumor necrosis factor-alpha (TNF-α) were reversed by NRG in aged rats. It also normalized the D-GAL-decreased the superoxide dismutase (SOD) activity in the heart tissue. NRG treatment alleviated cardiac injury in aged hearts under conditions of I/R. NRG may improve aging-induced cardiac dysfunction through anti-oxidative and anti-inflammatory mechanisms.


Assuntos
Flavanonas , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Ratos Sprague-Dawley , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Coração , Superóxido Dismutase-1 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Miocárdio/patologia
18.
Free Radic Biol Med ; 212: 80-93, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151212

RESUMO

Remote Ischemic Preconditioning (RIPC) can reduce myocardial ischemia-reperfusion injury, but its mechanism is not clear. In order to explore the mechanism of RIPC in myocardial protection, we collected myocardial specimens during cardiac surgery in children with tetralogy of Fallot for sequencing. Our study found RIPC reduces the expression of the calcium channel subunit cacna2d3, thereby impacting the function of calcium channels. As a result, calcium overload during ischemia-reperfusion is reduced, and the activation of calpain 1 is inhibited. This ultimately leads to a decrease in calpain 1 cleavage of Bax, consequently inhibiting increased mitochondrial permeability-mediated apoptosis. Notably, in both murine and human models of myocardial ischemia-reperfusion injury, RIPC inhibiting the expression of the calcium channel subunit cacna2d3 and the activation of calpain 1, improving cardiac function and histological outcomes. Overall, our findings put forth a proposed mechanism that elucidates how RIPC reduces myocardial ischemia-reperfusion injury, ultimately providing a solid theoretical foundation for the widespread clinic application of RIPC.


Assuntos
Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Criança , Humanos , Animais , Camundongos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Calpaína/genética , Calpaína/metabolismo , Apoptose , Canais de Cálcio , Traumatismo por Reperfusão/patologia
19.
Eur J Cardiothorac Surg ; 64(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060261

RESUMO

OBJECTIVES: In myocardial infarction, the addition of mineralocorticoid receptor blockers to standard therapies, such as angiotensin-converting enzyme inhibitors or beta-blockers, reportedly reduces mortality and cardiac events. We investigated whether the non-steroidal mineralocorticoid receptor blocker esaxerenone has cardioprotective effects and its protective mechanisms. METHODS: Isolated rat hearts were Langendorff-perfused (constant pressure, 80 mmHg) with oxygenated Krebs-Henseleit bicarbonate buffer and reperfused for 60 min; afterwards, recovery of function (left ventricular pressure, measured with an intraventricular balloon) and myocardial injury were measured. In a preliminary study, we determined the optimal concentration of esaxerenone required for myocardial protection. Next, esaxerenone was administered in the pre- and post-ischaemic phases to determine the optimal timing of administration. In addition, we assessed coronary flow response to acetylcholine with and without esaxerenone. We examined whether esaxerenone-induced cardioprotection was prevented by targeting putative components in the preconditioning manner (the mitochondrial ATP-sensitive potassium [KATP] channel). RESULTS: Myocardial protection by esaxerenone was observed when esaxerenone was administered before ischaemia but not after ischaemia. The coronary flow response to acetylcholine was significantly better in the esaxerenone group than in the control group. The cardioprotective effect of esaxerenone was eliminated by the mitochondrial KATP channel blocker, 5-hydroxy decanoate. CONCLUSIONS: This study confirmed the myocardial protective effect of the pre-ischaemic administration of esaxerenone. Esaxerenone may contribute to coronary endothelial protection and exert pharmacological preconditioning via the mitochondrial KATP channel.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Acetilcolina/uso terapêutico , Receptores de Mineralocorticoides/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Canais KATP
20.
PLoS One ; 18(12): e0295169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051732

RESUMO

The study of exercise preconditioning can develop strategies to prevent cardiovascular diseases and outline the efficient exercise model. However, the exercise type with the most protective effect against ischemia-reperfusion injury is unknown. In this study, we examined the effects of three kinds of exercise preconditioning on myocardial ischemia-reperfusion in adult rats and explored the possible underlying mechanisms. Male Wistar rats subjected to ten weeks of endurance, resistance, and concurrent training underwent ischemia (30 min) and reperfusion (120 min) induction. Then, infarction size, serum levels of the CK-MB, the redox status, and angiogenesis proteins (VEGF, ANGP-1, and ANGP-2) were measured in the cardiac tissue. Results showed that different exercise training modes have the same reduction effects on infarction size, but ischemia-reperfusion-induced CK-MB was lower in response to endurance training and concurrent training. Furthermore, cardiac VEGF levels increased in all three kinds of exercise preconditioning but ischemia-reperfusion-induced ANGP-1 elevated more in endurance training. The cardiac GPX activity was improved significantly through the resistance and concurrent exercise compared to the endurance exercise. In addition, all three exercise preconditioning models decreased MPO levels, and ischemia reperfusion-induced MDA was lower in endurance and resistance training. Overall, these results indicated that cardioprotection of exercise training against ischemia-reperfusion injury depends on the exercise modality. Cardioprotective effects of aerobic, resistance, and concurrent exercises are due to different mechanisms. The preconditioning effects of endurance training are mediated mainly by pervasive angiogenic responses and resistance training through oxidative stress amelioration. The preconditioning effects of concurrent training rely on both angiogenesis and oxidative stress amelioration.


Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Creatina Quinase Forma MB , Isquemia , Infarto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA