Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 37(1): 132-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593019

RESUMO

BACKGROUND/AIM: The ectopic pain associated with inferior alveolar nerve (IAN) injury has been reported to involve macrophage expression in the trigeminal ganglion (TG). However, the effect of age-related changes on this abnormal pain conditions are still unknown. This study sought to clarify the involvement of age-related changes in macrophage expression and phenotypic conversion in the TG and how these changes enhance ectopic mechanical allodynia after IAN transection (IANX). MATERIALS AND METHODS: We used senescence-accelerated mouse (SAM)-prone 8 (SAMP8) and SAM-resistance 1 (SAMR1) mice, which are commonly used to study ageing-related changes. Mechanical stimulation was applied to the whisker pad skin under light anaesthesia; the mechanical head withdrawal threshold (MHWT) was measured for 21 d post-IANX. We subsequently counted the numbers of Iba1 (macrophage marker)-immunoreactive (IR) cells, Iba1/CD11c (M1-like inflammatory macrophage marker)-co-IR cells, and Iba1/CD206 (M2-like anti-inflammatory macrophage marker)-co-IR cells in the TG innervating the whisker pad skin. After continuous intra-TG administration of liposomal clodronate Clophosome®-A (LCCA) to IANX-treated SAMP8-mice, the MHWT values of the whisker pad skin were examined. RESULTS: Five days post-IANX, the MHWT had significantly decreased in SAMP8 mice compared to SAMR1-mice. Iba1-IR and Iba1/CD11c-co-IR cell counts were significantly increased in SAMP8 mice compared to SAMR1 mice 5 d post-IANX. LCCA administration significantly restored MHWT compared to control-LCCA administration. CONCLUSION: Ectopic mechanical allodynia of whisker pad skin after IANX is exacerbated by ageing, which involves increases in M1-like inflammatory macrophages in the TG.


Assuntos
Hiperalgesia , Traumatismos do Nervo Trigêmeo , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Gânglio Trigeminal/metabolismo , Traumatismos do Nervo Trigêmeo/complicações , Traumatismos do Nervo Trigêmeo/metabolismo , Dor Facial/complicações , Dor Facial/metabolismo , Nervo Mandibular/metabolismo , Macrófagos/metabolismo
2.
Eur J Pharmacol ; 931: 175211, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981606

RESUMO

Trigeminal nerve injury is a common complication of various dental and oral procedures, which could induce trigeminal neuropathic pain but lack effective treatments. P2 purinergic receptors have emerged as novel therapeutic targets for such pain. Recent reports implied that the P2Y14 receptor (P2Y14R) was activated and promoted orofacial inflammatory pain and migraine. However, the role and mechanism of P2Y14R in trigeminal neuropathic pain remain unknown. We induced an orofacial neuropathic pain model by chronic constriction injury of the infraorbital nerve (CCI-ION). Von-Frey tests showed that CCI-ION induced orofacial mechanical hypersensitivity. The increased activating transcription factor 3 (ATF3) expression in the trigeminal ganglion (TG) measured by immunofluorescence confirmed trigeminal nerve injury. Immunofluorescence showed that P2Y14R was expressed in trigeminal ganglion neurons (TGNs) and satellite glial cells (SGCs). RT-qPCR and Western blot identified increased expression of P2Y14R in TG after CCI-ION. CCI-ION also upregulated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-α (TNF-α) in TG. Notably, CCI-ION-induced mechanical hypersensitivity and pro-inflammatory cytokines production were decreased by a P2Y14R antagonist (PPTN). Trigeminal administration of P2Y14R agonist (UDP-glucose) evoked orofacial mechanical hypersensitivity and increased pro-inflammatory cytokines above in TG. Furthermore, CCI-ION induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 in TG, which also were reduced by PPTN. The inhibitors of ERK1/2 (U0126) and p38 (SB203580) decreased these upregulated pro-inflammatory cytokines after CCI-ION. Collectively, this study revealed that P2Y14R in TG contributed to trigeminal neuropathic pain via ERK- and p38-dependent neuroinflammation. Thus, P2Y14R may be a potential drug target against trigeminal neuropathic pain.


Assuntos
Neuralgia , Traumatismos do Nervo Trigêmeo , Animais , Dor Facial/metabolismo , Hiperalgesia/metabolismo , Camundongos , Neuralgia/etiologia , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal , Traumatismos do Nervo Trigêmeo/metabolismo
3.
J Neurochem ; 160(3): 376-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757653

RESUMO

Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca2+ ]i and faster increase in responding to blockage of Na+ /Ca2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca2+ ]i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.


Assuntos
Trifosfato de Adenosina/metabolismo , AMP Cíclico/metabolismo , Espaço Extracelular/metabolismo , Hiperalgesia/fisiopatologia , Canais Iônicos/genética , Transdução de Sinais , Traumatismos do Nervo Trigêmeo/fisiopatologia , Animais , Sinalização do Cálcio , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Canais Iônicos/antagonistas & inibidores , Masculino , Síndromes de Compressão Nervosa/metabolismo , Síndromes de Compressão Nervosa/fisiopatologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/efeitos dos fármacos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Traumatismos do Nervo Trigêmeo/metabolismo , Neuralgia do Trigêmeo
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957694

RESUMO

Trigeminal nerve injury causes a distinct time window of glial activation in the trigeminal spinal subnucleus caudalis (Vc), which are involved in the initiation and maintenance phases of orofacial neuropathic pain. Microglia-derived factors enable the activation of astrocytes. The complement component C1q, which promotes the activation of astrocytes, is known to be synthesized in microglia. However, it is unclear whether microglia-astrocyte communication via C1q is involved in orofacial neuropathic pain. Here, we analyzed microglia-astrocyte communication in a rat model with infraorbital nerve injury (IONI). The orofacial mechanical hypersensitivity induced by IONI was significantly attenuated by preemptive treatment with minocycline. Immunohistochemical analyses revealed that minocycline inhibited the increase in c-Fos immune-reactive (IR) cells and the fluorescence intensity of both Iba1 and glial fibrillary acidic protein (GFAP) in the Vc following IONI. Intracisternal administration of C1q caused orofacial mechanical hypersensitivity and an increase in the number of c-Fos-IR cells and fluorescence intensity of GFAP. C1q-induced orofacial mechanical hypersensitivity was completely abrogated by intracisternal administration of fluorocitrate. The present findings suggest that the enhancement in the excitability of Vc nociceptive neurons is produced by astrocytic activation via the signaling of C1q released from activated microglia in the Vc following IONI, resulting in persistent orofacial neuropathic pain.


Assuntos
Astrócitos/metabolismo , Complemento C1q/administração & dosagem , Dor Facial/metabolismo , Microglia/metabolismo , Minociclina/administração & dosagem , Neuralgia/metabolismo , Traumatismos do Nervo Trigêmeo/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Citratos/administração & dosagem , Complemento C1q/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hiperalgesia/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Nociceptores/metabolismo , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861182

RESUMO

Insulin-like growth factor-1 (IGF-1) is upregulated in the injured peripheral nerve bundle and controls nociceptive neuronal excitability associated with peripheral nerve injury. Here, we examined the involvement of IGF-1 signaling in orofacial neuropathic pain following infraorbital nerve injury (IONI) in rats. IONI promoted macrophage accumulation in the injured ION, as well as in the ipsilateral trigeminal ganglion (TG), and induced mechanical allodynia of the whisker pad skin together with the enhancement of neuronal activities in the subnucleus caudalis of the spinal trigeminal nucleus and in the upper cervical spinal cord. The levels of IGF-1 released by infiltrating macrophages into the injured ION and the TG were significantly increased. The IONI-induced the number of transient receptor potential vanilloid (TRPV) subfamily type 4 (TRPV4) upregulation in TRPV subfamily type 2 (TRPV2)-positive small-sized, and medium-sized TG neurons were inhibited by peripheral TRPV2 antagonism. Furthermore, the IONI-induced mechanical allodynia was suppressed by TRPV4 antagonism in the whisker pad skin. These results suggest that IGF-1 released by macrophages accumulating in the injured ION binds to TRPV2, which increases TRPV4 expression in TG neurons innervating the whisker pad skin, ultimately resulting in mechanical allodynia of the whisker pad skin.


Assuntos
Dor Facial/metabolismo , Hiperalgesia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neuralgia/metabolismo , Traumatismos do Nervo Trigêmeo/metabolismo , Animais , Dor Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Macrófagos/metabolismo , Masculino , Neuralgia/fisiopatologia , Neurônios/metabolismo , Limiar da Dor , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal , Traumatismos do Nervo Trigêmeo/fisiopatologia , Vibrissas/inervação , Vibrissas/metabolismo
6.
Physiol Behav ; 194: 497-504, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928887

RESUMO

We explored the molecular and behavioral effects of a perineural Lipopolysaccharide (LPS)-mediated inflammatory priming on the development and maintenance of painful post-traumatic trigeminal neuropathy (PPTTN) following infra-orbital nerve chronic constriction injury (CCI-IoN) in rats. Rats were pretreated with repetitive perineural injections in the vicinity of the IoN of either LPS or vehicle (Vhcl) before being submitted to CCI-IoN. Orofacial pain-like behaviors (response to Von Frey Filament testing and spontaneous isolated face grooming) were measured during the period of LPS injections (three weeks) and following CCI-IoN surgery (two weeks). Local LPS administration induced an early pain-like behavior (i.e. an increase in spontaneous pain [SP] or mechanical static allodynia [MSA]) in both conditions, and following CCI-IoN, MSA and SP developed earlier and more severely in LPS-pretreated rats than in the control group. Ipsilateral increases of key neuropathic pain mRNA markers in the IoN parenchyma, trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) were observed in CCI-IoN injured animals as compared to controls. Although no significant molecular differences could be observed within the IoN parenchyma between LPS and Vhcl-pretreated animals, a significant increase of key inflammatory cytokine Interleukin 1 beta (IL - 1ß) could be found in the TG of LPS-pretreated CCI-injured animals versus controls. Finally, a higher increase of inducible nitric oxide synthase (iNOS) in ipsilateral Sp5C of LPS-pretreated animals was observed as compared to Sp5C of Vhcl-pretreated animals. These results suggest a key role of inflammatory priming in the development and maintenance of PPTTN implicating IL-1ß/iNOS-dependent central sensitization mechanisms.


Assuntos
Inflamação/fisiopatologia , Lipopolissacarídeos/farmacologia , Nervo Maxilar/fisiopatologia , Neuralgia/fisiopatologia , Traumatismos do Nervo Trigêmeo/fisiopatologia , Animais , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/complicações , Interleucina-1beta/metabolismo , Masculino , Nervo Maxilar/metabolismo , Neuralgia/complicações , Neuralgia/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Medição da Dor , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Gânglio Trigeminal/metabolismo , Traumatismos do Nervo Trigêmeo/complicações , Traumatismos do Nervo Trigêmeo/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo
7.
Neuroscience ; 379: 334-349, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29588250

RESUMO

Chemokines are known to have a role in the nervous system, influencing a range of processes including the development of chronic pain. To date there are very few studies describing the functions of the chemokine lymphotactin (XCL1) or its receptor (XCR1) in the nervous system. We investigated the role of the XCL1-XCR1 axis in nociceptive processing, using a combination of immunohistochemical, pharmacological and electrophysiological techniques. Expression of XCR1 in the rat mental nerve was elevated 3 days following chronic constriction injury (CCI), compared with 11 days post-CCI and sham controls. XCR1 co-existed with neuronal marker PGP9.5, leukocyte common antigen CD45 and Schwann cell marker S-100. In the trigeminal root and white matter of the brainstem, XCR1-positive cells co-expressed the oligodendrocyte marker Olig2. In trigeminal subnucleus caudalis (Vc), XCR1 immunoreactivity was present in the outer laminae and was colocalized with vesicular glutamate transporter 2 (VGlut2), but not calcitonin gene-related peptide (CGRP) or isolectin B4 (IB4). Incubation of brainstem slices with XCL1 induced activation of c-Fos, ERK and p38 in the superficial layers of Vc, and enhanced levels of intrinsic excitability. These effects were blocked by the XCR1 antagonist viral CC chemokine macrophage inhibitory protein-II (vMIP-II). This study has identified for the first time a role for XCL1-XCR1 in nociceptive processing, demonstrating upregulation of XCR1 at nerve injury sites and identifying XCL1 as a modulator of central excitability and signaling via XCR1 in Vc, a key area for modulation of orofacial pain, thus indicating XCR1 as a potential target for novel analgesics.


Assuntos
Quimiocinas C/metabolismo , Neurônios/metabolismo , Receptores de Quimiocinas/metabolismo , Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo/metabolismo , Animais , Quimiocinas C/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Dor Facial/metabolismo , Dor Facial/patologia , Feminino , Expressão Gênica , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Técnicas de Cultura de Tecidos , Nervo Trigêmeo/patologia , Traumatismos do Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/patologia , Núcleos do Trigêmeo/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Neurosci Lett ; 671: 114-119, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29428403

RESUMO

Activation of Shh signaling is known to be observed following injury of the peripheral nerves such as the sciatic nerve. However, the precise role of Shh signaling during peripheral nerve regeneration is not fully understood. The inferior alveolar nerve (IAN) is most commonly injured during oral surgery. Unlike the sciatic nerve, the IAN is isolated from other craniofacial tissues, as it resides in a long bony canal within the mandible. The IAN is thus an excellent experimental model for investigating peripheral nerve regeneration. In this study, the role of Shh signaling in peripheral nerve regeneration was investigated using the mouse IAN transection model. During regeneration, Shh signaling was activated within the entire distal region of the IAN and proximal stumps. Inhibition of Shh signaling by cyclopamine application at the transection site led to abnormal axon growth in random directions, a reduced number of macrophages, and an increase in myelin debris within the distal region. Shh signaling is thus involved in peripheral nerve regeneration via the regulation of myelin degradation.


Assuntos
Proteínas Hedgehog/metabolismo , Nervo Mandibular/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Trigêmeo/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Transdução de Sinais
9.
Brain Res ; 1669: 89-96, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465227

RESUMO

There is an urgent clinical need for an effective therapeutic agent to treat neuropathic pain. This study explored whether intrathecal administration of bovine lactoferrin (bLF), in combination with signal transduction pathway inhibition or an inflammatory cytokine production, results in reduced allodynia/hyperalgesia in the whisker pad area following mental nerve transection (MNT) in rats. Rats were intrathecally infused with bLF, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), an antagonist of Toll-like receptor 4 (TLR4), or interleukin (IL)-18 binding protein (BP). bLF attenuated allodynia/hyperalgesia and blocked upregulation of phosphorylated (p)-p38 mitogen-activated protein kinase (MAPK), p-nuclear factor (NF)-κB p65, p-IκB kinase, and IL-18 in the trigeminal subnucleus caudalis (Vc). Microglia expressed p-p38 and astrocytes expressed p-NF-κB p65 in the Vc following MNT. LPS-RS had the same effects as bLF, except for attenuation of p-NF-κB p65. IL-18BP attenuated allodynia/hyperalgesia and IL-18 upregulation in the Vc. These results suggest that bLF suppresses IL-18 production, which is involved in allodynia/hyperalgesia following MNT, by inhibiting TLR4-derived p38 MAPK activation in microglia. Additionally, binding of bLF to tumor necrosis factor receptor-associated factor 6 might result in inhibition of p38 MAPK and NF-κB activation. The findings suggest that bLF could serve as a potent therapeutic agent for neuropathic pain.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Dor Facial/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Lactoferrina/farmacologia , Neuralgia/tratamento farmacológico , Traumatismos do Nervo Trigêmeo/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Bovinos , Modelos Animais de Doenças , Dor Facial/etiologia , Dor Facial/metabolismo , Dor Facial/patologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Interleucina-18/metabolismo , Lipopolissacarídeos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/patologia , Ratos Sprague-Dawley , Rhodobacter sphaeroides , Traumatismos do Nervo Trigêmeo/complicações , Traumatismos do Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/patologia , Vibrissas
10.
Cephalalgia ; 37(14): 1317-1328, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27919018

RESUMO

Background Although the peripheral and central sensitizations of trigeminal nervous system may be one of the important factors of migraine, the precise mechanism is not fully understood. In this study, we examined the influence of the sensitization of the second division of the trigeminal nerve (V2) by chronic constriction injury (CCI) of the infraorbital nerve (ION) on migraine headache, using the capsaicin-induced migraine model. Methods Male Sprague-Dawley rats were assigned to four groups: (a) sham surgery and topical-dural vehicle application (Sham + Vehicle) group, (b) CCI-ION and topical-dural vehicle application (CCI-ION + Vehicle) group, (c) sham surgery and topical-dural capsaicin application (Sham + Capsaicin) group, (d) CCI-ION and topical-dural capsaicin application (CCI-ION + Capsaicin) group. Behavioral testing and immunohistochemical staining were performed. Results In the behavioral test, the Sham + Capsaicin group showed significantly longer duration of immobilization and shorter duration of exploration compared with the Sham + Vehicle group, which is similar to clinical features of migraine patients. Moreover, CCI-ION enhanced these effects in the CCI-ION + Capsaicin group. Immunohistochemical staining for phospho-extracellular signal-related kinase (pERK) in the trigeminal ganglion (TG) containing first and second divisions of the trigeminal nerve and the trigeminocervical complex (TCC) revealed that pERK expression was significantly increased in the CCI-ION + Capsaicin group compared with the other groups. However, comparing between effects of the peripheral and central sensitizations (in the TG and TCC), from our results, peripheral sensitization would play a much less or not significant role. Conclusions These data demonstrate that the sensitization of V2 could influence the activation and the sensitization of the first division of the trigeminal nerve in the TCC, subsequently exacerbating pain sensation and pain-related behaviors. We have shown for the first time that the existence of the central sensitization of V2 can be an exacerbating factor for migraine related nociceptive thresholds/activation.


Assuntos
Modelos Animais de Doenças , Hiperalgesia/patologia , Transtornos de Enxaqueca/patologia , Traumatismos do Nervo Trigêmeo/patologia , Nervo Trigêmeo/patologia , Animais , Hiperalgesia/metabolismo , Masculino , Órbita/lesões , Órbita/inervação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/metabolismo , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/patologia
11.
J Craniomaxillofac Surg ; 43(9): 1906-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26421471

RESUMO

OBJECTIVE: The objective of this study was to analyze the changes in the expression of growth associated protein-43 (GAP-43) in trigeminal ganglions (TGs) and in the distal stumps of transected inferior alveolar nerves (IANs), and to clarify the relationship between these changes and functional recovery of the transected IAN without repair using a rat IAN axotomy model. MATERIAL AND METHODS: Following transection, GAP-43 expression was measured at multiple time points. The functional recovery of the transected IAN was evaluated based on the compound muscle action potentials recorded from the digastric muscle. RESULTS: GAP-43 expression in TGs was significantly higher at 2, 7, 14, 28, and 56 days following IAN transection compared to that in samples from sham-operated rats (p < 0.0005, p < 0.0005, p < 0.0005, p = 0.007, and p = 0.023, respectively). GAP-43 expression in the distal stumps of transected IANs was significantly higher at 2, 7, 14, and 28 days following IAN transection compared to that in samples taken from sham rats (p < 0.0005, p < 0.0005, p < 0.0005, and p = 0.009, respectively). GAP-43 expression in the distal stumps of transected IANs returned nearly to sham levels by day 56 following IAN transection. On days 7, 14, 28, and 56 following transection, the amplitude of the compound muscle action potential gradually increased, the latency gradually decreased, and the duration gradually increased. The amplitude, latency, and duration of the compound muscle action potentials nearly returned to sham levels on post-transection day 56. CONCLUSIONS: Time-dependent changes in the expression of GAP-43 in both TGs and distal stumps of transected IANs without repair are synchronously consistent with the regeneration and functional recovery of the transected IAN. The recovery of the amplitude, latency, and duration of the compound muscle action potentials indicates increased myelination and increased axon density of the regenerated nerve fibers.


Assuntos
Proteína GAP-43/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Trigêmeo/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Imuno-Histoquímica , Masculino , Nervo Mandibular/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Gânglio Trigeminal/metabolismo , Traumatismos do Nervo Trigêmeo/metabolismo
12.
Pharmacology ; 93(1-2): 10-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401792

RESUMO

This study was designed to investigate the efficacy of a partial µ-opioid agonist, buprenorphine, against the formalin-induced hyperalgesia in the upper lip in chronically inferior alveolar nerve (IAN)-transected rats. Subcutaneous injection of diluted formalin into the upper lip in the IAN-transected rats showed an increased number of pain-related behavior (PRB; face-rubbing behavior) in every phase up to 45 min (p < 0.01) compared with that in the nontransected sham control rats. The numbers of c-Fos-immunoreactive (IR) cells in the superficial layers of the trigeminal nucleus caudalis (VcI/II) at the rostral (0-0.7 mm caudal to the obex) and middle levels (1.4-2.2 mm caudal to the obex) 2 h after the formalin injection in the IAN-transected rats were significantly increased compared with those in the control rats. The PRB in phases 1 and 2 (0-15 and 15-30 min after formalin injection) in rats with preadministration of morphine (3 mg/kg i.p.) or buprenorphine (100 µg/kg i.p.) was significantly (p < 0.05) smaller than those in the control rats. There was no significant difference in the efficacy between morphine and buprenorphine at these doses. The antinociceptive efficacy in phase 2 of buprenorphine (100 µg/kg) was higher (p < 0.05) than that of morphine (3 mg/kg) in the IAN-transected rats. The number of c-Fos-IR cells in the VcI/II at every level (0-3.6 mm caudal to the obex) after formalin injection was significantly decreased (p < 0.01) with preadministration of morphine (3 mg/kg) or buprenorphine (100 µg/kg) in the control rats. In the IAN-transected rats, the number of c-Fos-IR cells in the caudal VcI/II (2.2-3.6 mm caudal to the obex) after formalin injection was significantly decreased (p < 0.01) with preadministration of buprenorphine (100 µg/kg) but not so much (2.2-2.9 mm caudal to the obex, p < 0.05; 2.9-3.6 mm caudal to the obex, p > 0.05) with preadministration of morphine (3 mg/kg). These results indicate that IAN transection enhanced formalin-induced nocifensive responses in the upper lip, the dermatome of the intact nerve neighboring the IAN. Systemic preadministration of buprenorphine had more antinociceptive effects on the formalin-induced nocifensive behavior in the upper lip compared with morphine in the IAN-transected rats.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Nervo Mandibular , Neuralgia/tratamento farmacológico , Traumatismos do Nervo Trigêmeo/tratamento farmacológico , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Buprenorfina/farmacologia , Formaldeído , Lábio , Masculino , Nervo Mandibular/metabolismo , Nervo Mandibular/fisiopatologia , Morfina/farmacologia , Morfina/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Neuralgia/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Traumatismos do Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/fisiopatologia
13.
Brain Behav Immun ; 26(6): 891-903, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22469908

RESUMO

BACKGROUND: Macrophages are important immune effector cells in both innate and adaptive immune responses. Injury to peripheral nerves triggers activation of resident macrophages and infiltration of haematogenous macrophages, which they play critical roles in Wallerian degeneration and neuropathic pain. As macrophages are able to change their phenotypes in response to environment cues, we attempt to identify distinct phenotypes of macrophages in injured nerves and to understand the potential contribution of each macrophage subpopulation to the genesis of neuropathic pain associated with nerve injury. METHODS: Rat mental nerves (terminal branches of trigeminal nerve) were loosely ligated. Sensitivity to mechanical stimuli at the lower lip area was monitored using calibrated von Frey Hairs. We examined the expression pattern of Iba-1, MAC1 and ED1 which allow us to reveal the immunophenotypes of macrophages at different time points post-injury. Functional status of each macrophage subpopulation was further investigated by colocalization with cytokines/chemokines, myelin basic protein and MHC II antigen, which reflect respectively secretory, phagocytic and antigen presentation properties of activated macrophages. RESULTS: Following nerve injury, a burst of Iba-1(+) macrophages was found in injured mental nerves. Among them, we detected two major immunophenotypes: MAC1(+) cytokines/chemokines secreting macrophages and ED1(+) phagocytic macrophages. Small, round shaped MAC1(+) macrophages were distributed essentially around the lesion site and existed only at early time points. Large, irregular and foamy ED1(+) macrophages were found among damaged nerve fibers and they persisted for at least 3 months post-injury. Although ED1(+) macrophages did not secrete inflammatory mediators, they were able to express neurotransmitter CGRP and MHC II at later time points. In parallel, we observed that mechanical allodynia developed after the nerve ligation was at its lowest level within 1 month. Although slightly increased afterwards, the head escape threshold maintained significantly lower than before injury until 3 months. We suggest that MAC1(+) macrophages contribute to the initiation of neuropathic pain by releasing cytokines/chemokines, and ED1(+) macrophages may contribute in maintaining the hypersensitivity under other mechanisms. CONCLUSION: Our results highlighted the heterogeneity and the plasticity of macrophages in response to the injury and provided further information on their potential involvement in neuropathic pain. Exploring the full spectrum of macrophage phenotypes in injured nerve is necessary. Individual macrophage population may be selectively targeted by cell-specific intervention for an effective treatment of neuropathic pain.


Assuntos
Quimiocinas/biossíntese , Citocinas/biossíntese , Macrófagos/metabolismo , Fagocitose/fisiologia , Traumatismos do Nervo Trigêmeo/imunologia , Animais , Apresentação de Antígeno/imunologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Genes MHC da Classe II/genética , Hiperalgesia/imunologia , Hiperalgesia/patologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Ligadura , Macrófagos/patologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Traumatismos do Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/patologia
14.
Invest Ophthalmol Vis Sci ; 53(2): 867-72, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22232434

RESUMO

PURPOSE: Neurotrophic keratopathy (NK) is a corneal degeneration associated with corneal nerve dysfunction. It can cause corneal epithelial defects, stromal thinning, and perforation. However, it is not clear if and to which extent epithelial stem cells are affected in NK. The purpose of this study was to identify the relationship between corneolimbal epithelial progenitor/stem cells and sensory nerves using a denervated mouse model of NK. METHODS: NK was induced in mice by electrocoagulation of the ophthalmic branch of the trigeminal nerve. The absence of corneal nerves was confirmed with ß-III tubulin immunostaining and blink reflex test after 7 days. ATP-binding cassette subfamily G member 2 (ABCG2), p63, and hairy enhancer of split 1 (Hes1) were chosen as corneolimbal stem/progenitor cell markers and assessed in denervated mice versus controls by immunofluorescent microscopy and real-time PCR. In addition, corneolimbal stem/progenitor cells were detected as side population cells using flow cytometry, and colony-forming efficiency assay was performed to assess their function. RESULTS: ABCG2, p63, and Hes1 immunostaining were significantly decreased in denervated eyes after 7 days. Similarly, the expression levels of ABCG2, p63, K15, Hes1, and N-cadherin transcripts were also significantly decreased in denervated eyes. Stem/progenitor cells measured as side population from NK mice were decreased by approximately 75% compared with normals. In addition, the authors found a significant (P = 0.038) reduction in colony-forming efficiency of stem/progenitor cells harvested from denervated eyes. CONCLUSIONS: Corneolimbal stem/progenitor cells are significantly reduced after depletion of sensory nerves. The data suggest a critical role of innervation in maintaining stem cells and/or the stem cell niche.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córnea/inervação , Doenças da Córnea/patologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Fosfoproteínas/genética , Células-Tronco/patologia , Transativadores/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Biomarcadores/metabolismo , Sobrevivência Celular , Córnea/metabolismo , Córnea/patologia , Doenças da Córnea/etiologia , Doenças da Córnea/genética , Denervação/métodos , Modelos Animais de Doenças , Eletrólise , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Citometria de Fluxo , Genes Supressores de Tumor , Sequências Hélice-Alça-Hélice , Proteínas de Homeodomínio/biossíntese , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Fosfoproteínas/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo , Transativadores/biossíntese , Fatores de Transcrição HES-1 , Traumatismos do Nervo Trigêmeo/complicações , Traumatismos do Nervo Trigêmeo/metabolismo , Traumatismos do Nervo Trigêmeo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA