Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 61(6): 815-825, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170960

RESUMO

INTRODUCTION: The immuno-microenvironment of injured nerves adversely affects mesenchymal stem cell (MSC) therapy for neurotmesis. Magnetic resonance imaging (MRI) can be used noninvasively to monitor nerve degeneration and regeneration. The aim of this study was to investigate nerve repair after MSC transplantation combined with microenvironment immunomodulation in neurotmesis by using multiparametric MRI. METHODS: Rats with sciatic nerve transection and surgical coaptation were treated with MSCs combined with immunomodulation or MSCs alone. Serial multiparametric MRI examinations were performed over an 8-week period after surgery. RESULTS: Nerves treated with MSCs combined with immunomodulation showed better functional recovery, rapid recovery of nerve T2, fractional anisotropy and radial diffusivity values, and more rapid restoration of the fiber tracks than nerves treated with MSCs alone. DISCUSSION: Transplantation of MSCs in combination with immunomodulation can exert a synergistic repair effect on neurotmesis, which can be monitored by multiparametric MRI.


Assuntos
Imunomodulação/fisiologia , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Neuropatia Ciática/diagnóstico por imagem , Traumatismos do Sistema Nervoso/diagnóstico por imagem , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/imunologia , Neuropatia Ciática/terapia , Traumatismos do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/terapia
2.
Acta Neuropathol ; 129(5): 653-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25772973

RESUMO

Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complexo de Ataque à Membrana do Sistema Complemento/toxicidade , Hanseníase/patologia , Lipopolissacarídeos/toxicidade , Mycobacterium leprae/patogenicidade , Traumatismos do Sistema Nervoso/microbiologia , Animais , Animais não Endogâmicos , Axônios/efeitos dos fármacos , Axônios/microbiologia , Axônios/patologia , Biópsia , Ativação do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Feminino , Humanos , Hanseníase/metabolismo , Hanseníase/microbiologia , Camundongos , Mycobacterium leprae/química , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/microbiologia , Bainha de Mielina/patologia , Traumatismos do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/patologia
3.
J Neuroinflammation ; 8: 109, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21878125

RESUMO

Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.


Assuntos
Imunidade Inata/imunologia , Nervos Periféricos/imunologia , Nervos Periféricos/patologia , Traumatismos do Sistema Nervoso/imunologia , Degeneração Walleriana/imunologia , Animais , Axônios/imunologia , Axônios/patologia , Axônios/ultraestrutura , Citocinas/imunologia , Galectina 3/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/fisiologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Regeneração Nervosa/imunologia , Fagocitose/fisiologia , Células de Schwann/citologia , Células de Schwann/imunologia , Traumatismos do Sistema Nervoso/patologia , Degeneração Walleriana/patologia
4.
Brain Behav Immun ; 24(4): 569-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20035858

RESUMO

Spinal release of cytokines may play a critical role in the maladapted nociceptive signaling underlying chronic pain states. In order to investigate this biology, we have developed a novel 'high flux' intrathecal microdialysis approach in combination with multiplex bead-based immunoassay technology to concurrently monitor the spinal release of interleukin (IL)-1beta, IL-6 and tumour necrosis factor (TNF)alpha in rats with unilateral sciatic nerve chronic constriction injury (CCI). Intrathecal microdialysis was performed under isoflurane/N(2)O anaesthesia in rats with confirmed mechanical hypersensitivity. In a first study, C-fiber strength electrical stimulation of the operated nerve in neuropathic rats was found to evoke a dramatic increase in IL-1beta efflux ( approximately 15-fold) that was significantly greater than that observed in the sham-operated group. Spinal IL-6 efflux was also responsive to primary afferent stimulation, whereas TNFalpha was not. In a second study, treatment with the glial inhibitor propentofylline for 7days normalized CCI-induced mechanical hypersensitivity. In the same animals, this treatment also significantly reduced intrathecal IL-1beta, IL-6 and TNFalpha and prevented afferent stimulation-evoked cytokine release of both IL-1beta and IL-6. These results provide support for glia as the source of the majority of intrathecal IL-1beta, IL-6 and TNFalpha that accompanies mechanical hypersensitivity in the CCI rat. Moreover, our studies demonstrate the ability of a neurone-glia signaling mechanism to dynamically modulate this release and support a role of spinal IL-1beta in the phasic transmission of abnormal pain signals.


Assuntos
Citocinas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Medula Espinal/imunologia , Traumatismos do Sistema Nervoso/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vias Aferentes , Animais , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Masculino , Microdiálise/métodos , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Xantinas/farmacologia
5.
Hum Mol Genet ; 17(R1): R84-92, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632702

RESUMO

Cellular repair is a promising strategy for treating central nervous system (CNS) disorders. Several strategies have been contemplated including replacement of neurons or glia that have been lost due to injury or disease, use of cellular grafts to modify or augment the functions of remaining neurons and/or use of cellular grafts to protect neural tissue by local delivery of growth or trophic factors. Depending on the specific disease target, there may be one or many cell types that could be considered for therapy. In each case, an additional variable must be considered--the role of the immune system in both the injury process itself and in the response to incoming cells. Cellular transplants can be roughly categorized into autografts, allografts and xenografts. Despite the immunological privilege of the CNS, allografts and xenografts can elicit activation of the innate and adaptive immune system. In this article, we evaluate the various effects that immune cells and signals may have on the survival, proliferation, differentiation and migration/integration of transplanted cells in therapeutic approaches to CNS injury and disease.


Assuntos
Transplante de Células , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/terapia , Encéfalo/imunologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Inflamação , Células-Tronco/imunologia , Traumatismos do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/terapia
6.
Neurosci Lett ; 361(1-3): 76-8, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15135897

RESUMO

Any lesion in the nervous system, be it infectious, immunopathological, ischemic or traumatic, is followed by an inflammatory process that induces rapid activation of glial cells and additional recruitment of granulocytes, T-cells and monocytes/macrophages from the blood stream. Neuroinflammation is a double-sided sword. It can cause neuronal damage and participate in neuropathic pain, but it also has neuroprotective and neurotrophic effects at some stages. Cytokines are the main molecular actors of this 'network of inflammation'. Among them, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pro-inflammatory hematopoietic cytokine widely used in haematological disorders to stimulate proliferation and differentiation of neutrophilic, eosinophilic and monocytic lineages. GM-CSF and its receptor are expressed in the brain and the cytokine can cross the blood-brain barrier. It is thus likely to affect various nervous system functions. This review will focus on the role of GM-CSF in nervous system disorders and their experimental models with particular emphasis on its possible beneficial effect on axonal regeneration after PNS and CNS injury.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Inflamação/imunologia , Doenças do Sistema Nervoso/imunologia , Traumatismos do Sistema Nervoso/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Cones de Crescimento/imunologia , Humanos , Inflamação/fisiopatologia , Neovascularização Patológica/imunologia , Regeneração Nervosa/imunologia , Doenças do Sistema Nervoso/fisiopatologia , Fagocitose/imunologia , Traumatismos do Sistema Nervoso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA