Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neuroinflammation ; 19(1): 179, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820932

RESUMO

BACKGROUND: Peripheral nerve injuries stimulate the regenerative capacity of injured neurons through a neuroimmune phenomenon termed the conditioning lesion (CL) response. This response depends on macrophage accumulation in affected dorsal root ganglia (DRGs) and peripheral nerves. The macrophage chemokine CCL2 is upregulated after injury and is allegedly required for stimulating macrophage recruitment and pro-regenerative signaling through its receptor, CCR2. In these tissues, CCL2 is putatively produced by neurons in the DRG and Schwann cells in the distal nerve. METHODS: Ccl2fl/fl mice were crossed with Advillin-Cre, P0-Cre, or both to create conditional Ccl2 knockouts (CKOs) in sensory neurons, Schwann cells, or both to hypothetically remove CCL2 and macrophages from DRGs, nerves or both. CCL2 was localized using Ccl2-RFPfl/fl mice. CCL2-CCR2 signaling was further examined using global Ccl2 KOs and Ccr2gfp knock-in/knock-outs. Unilateral sciatic nerve transection was used as the injury model, and at various timepoints, chemokine expression, macrophage accumulation and function, and in vivo regeneration were examined using qPCR, immunohistochemistry, and luxol fast blue staining. RESULTS: Surprisingly, in all CKOs, DRG Ccl2 gene expression was decreased, while nerve Ccl2 was not. CCL2-RFP reporter mice revealed CCL2 expression in several cell types beyond the expected neurons and Schwann cells. Furthermore, macrophage accumulation, myelin clearance, and in vivo regeneration were unaffected in all CKOs, suggesting CCL2 may not be necessary for the CL response. Indeed, Ccl2 global knockout mice showed normal macrophage accumulation, myelin clearance, and in vivo regeneration, indicating these responses do not require CCL2. CCR2 ligands, Ccl7 and Ccl12, were upregulated after nerve injury and perhaps could compensate for the absence of Ccl2. Finally, Ccr2gfp knock-in/knock-out animals were used to differentiate resident and recruited macrophages in the injured tissues. Ccr2gfp/gfp KOs showed a 50% decrease in macrophages in the distal nerve compared to controls with a relative increase in resident macrophages. In the DRG there was a small but insignificant decrease in macrophages. CONCLUSIONS: CCL2 is not necessary for macrophage accumulation, myelin clearance, and axon regeneration in the peripheral nervous system. Without CCL2, other CCR2 chemokines, resident macrophage proliferation, and CCR2-independent monocyte recruitment can compensate and allow for normal macrophage accumulation.


Assuntos
Quimiocina CCL2 , Macrófagos , Traumatismos dos Nervos Periféricos , Animais , Axônios/imunologia , Axônios/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia
2.
Life Sci ; 287: 120117, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740577

RESUMO

Denervated skeletal muscular atrophy is primarily characterized by loss of muscle strength and mass and an unideal functional recovery of the muscle after extended denervation. This review emphasizes the interaction between the immune system and the denervated skeletal muscle. Immune cells such as neutrophils, macrophages and T-cells are activated and migrate to denervated muscle, where they release a high concentration of cytokines and chemokines. The migration of these immune cells, the transformation of different functional immune cell subtypes, and the cytokine network in the immune microenvironment may be involved in the regulatory process of muscle atrophy or repair. However, the exact mechanisms of the interaction between these immune cells and immune molecules in skeletal muscles are unclear. In this paper, the immune microenvironment regulation of muscle atrophy induced by peripheral nerve injury is reviewed.


Assuntos
Pesquisa Biomédica/tendências , Microambiente Celular/fisiologia , Imunidade Celular/fisiologia , Músculo Esquelético/imunologia , Atrofia Muscular/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Animais , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Denervação Muscular/métodos , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
3.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645458

RESUMO

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Assuntos
Transplante de Medula Óssea/métodos , Crescimento Celular , Gânglios Sensitivos/patologia , Macrófagos/patologia , Traumatismos dos Nervos Periféricos/patologia , Células Receptoras Sensoriais/patologia , Animais , Gânglios Sensitivos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Células Receptoras Sensoriais/imunologia
4.
Acta Neuropathol Commun ; 9(1): 125, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34274026

RESUMO

Peripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


Assuntos
Quitosana , Regeneração Tecidual Guiada , Interleucina-17/genética , Macrófagos/imunologia , Regeneração Nervosa/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Nervo Isquiático/fisiologia , Animais , Interleucina-17/imunologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Knockout , Regeneração Nervosa/fisiologia , Células RAW 264.7 , Nervo Isquiático/cirurgia , Alicerces Teciduais
5.
Neurosci Lett ; 757: 135977, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34023413

RESUMO

BACKGROUND: Changes in inflammatory cytokine levels contribute to the induction and maintenance of neuropathic pain. We have shown that external low intensity focused ultrasound (liFUS) reduces allodynia in a common peroneal nerve injury (CPNI). Here, we investigate an underlying mechanism of action for this treatment and measure the effect of liFUS on inflammatory markers. METHODS: Male rats were divided into four groups: CPNI/liFUS, CPNI/shamliFUS, shamCPNI/liFUS, and shamCPNI/shamliFUS. Mechanical nociceptive thresholds were measured using Von Frey filaments (VFF) to confirm the absence/presence of allodynia at baseline, after CPNI, and after liFUS. Commercial microarray and ELISA assays were used to assess cytokine expression in the treated L5 dorsal root ganglion (DRG) and dorsal horn (DH) tissue 24 and 72 h after liFUS. RESULTS: VFF thresholds were significantly reduced following CPNI in both groups that received the injury (p < 0.001). After liFUS, only the CPNI/liFUS cohort showed a significant increase in mechanical thresholds (p < 0.001). CPNI significantly increased TNFa, IL6, CNTF, IL1b (p < 0.05 for all) levels in the DRG and DH, compared to baseline, consistent with previous work in sciatic nerve injury. LiFUS in CPNI rats resulted in a decrease in these cytokines in DRG 72 h post-therapy (TNFa, IL6, CNTF and IL1b, p < 0.001). In the DH, IL1b, CNTF, and TNFa (p < 0.05 for all) decreased 72 h after liFUS. CONCLUSION: We have demonstrated that liFUS modifies inflammatory cytokines in both DRG and DH in CPNI rats. These data provide evidence that liFUS, reverses the allodynic phenotype, in part, by altering inflammatory cytokine pathways.


Assuntos
Hiperalgesia/terapia , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/complicações , Terapia por Ultrassom/métodos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/imunologia , Masculino , Neuralgia/diagnóstico , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Nervo Fibular/lesões , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Corno Dorsal da Medula Espinal/imunologia , Corno Dorsal da Medula Espinal/metabolismo , Ondas Ultrassônicas
6.
J Pain ; 22(10): 1146-1179, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33892151

RESUMO

During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Dor Crônica/metabolismo , Hiperalgesia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Transcriptoma/fisiologia , Animais , Dor Crônica/imunologia , Modelos Animais de Doenças , Hiperalgesia/imunologia , Doenças Neuroinflamatórias/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Células do Corno Posterior/imunologia , Ratos , Análise de Sequência de RNA
7.
J Dermatol Sci ; 102(2): 85-93, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33676787

RESUMO

BACKGROUND: The involvement of the nerve in psoriasis development was suggested by sporadic case reports. OBJECTIVES: To provide multiple evidence for the nerve in psoriasis development with a retrospective case review, a literature review and a mouse-based experimental experiment. METHODS: Psoriatic patients who had concomitant nerve injuries and such cases from literatures were reviewed. And, on wild-type mouse level, unilateral denervation surgery was performed on the dorsal skin before and after the induction of psoriasiform dermatitis, respectively. Lesion visual scores were calculated, and biopsies were taken for hematoxylin-eosin (HE) staining, immunofluorescence analysis, and RNA sequencing & bioinformatics analysis before denervation surgery and the 2nd, 4th, 6th, 8th day after the surgery. RESULTS: All clinical cases (20/20) showed that local lesions under the control of injured nerves relieved spontaneously or even cleared/spared, and only about 1/3 experienced partial recurrence. Next, mouse psoriasiform experiments demonstrated that unilateral denervation prior to imiquimod application attenuated the enhancement of inflammatory reactions (e.g. adaptive immune response and Th17 cell differentiation pathway) and the induction of ipsilateral psoriasiform dermatitis. On the other hand, unilateral denervation after psoriasiform dermatitis induction promoted the regression of inflammatory reactions (e.g. T cell activation, TNF signaling, and Th17 cell differentiation pathway) and ipsilateral dermatitis recovery. CONCLUSION: Our study based on both retrospective clinical case review and wild-type mouse experiments provides multiple evidence for the involvement of the nerve in psoriasis development. Regulation of immune events, including TNF signaling and Th17 cell differentiation, may be the mechanisms of the nerve in psoriasis.


Assuntos
Denervação , Neuroimunomodulação , Traumatismos dos Nervos Periféricos/imunologia , Psoríase/cirurgia , Pele/inervação , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Traumatismos dos Nervos Periféricos/complicações , Psoríase/complicações , Psoríase/imunologia , Estudos Retrospectivos , Pele/imunologia , Pele/patologia
8.
Aging (Albany NY) ; 13(5): 6752-6764, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621204

RESUMO

Extracellular vesicles (EVs) are capable of transferring microRNAs (miRNAs or miRs) between two different types of cells and also serve as vehicles for delivery of therapeutic molecules. After peripheral nerve injury, abnormal expression patterns of miRNAs have been observed in dorsal root ganglia (DRG) sensory neurons. We hypothesized that sensory neurons secrete miRs-containing EVs to communicate with macrophages. We demonstrated that miR-23a was upregulated in DRG neurons in spared nerve injury (SNI) mouse models. We also found that miR-23a was enriched in EVs released by cultured DRG neurons following capsaicin treatment. miR-23a-containing EVs were taken up into macrophages in which increased intracellular miR-23a promoted pro-inflammatory phenotype. A20 was verified as a target gene of miR-23a. Moreover, intrathecal delivery of EVs-miR-23a antagomir attenuated neuropathic hypersensitivity and reduced the number of M1 macrophages in injured DRGs by targeting A20. In conclusion, these results demonstrate that sensory neurons transfer EVs-encapsulated miR-23a to activate M1 macrophages and enhance neuropathic pain following the peripheral nerve injury. The study highlighted a new therapeutic approach to alleviate chronic neuropathic pain after nerve trauma by targeting detrimental miRNA in sensory neurons.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Gânglios Espinais/citologia , Camundongos , MicroRNAs/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/imunologia , Células Receptoras Sensoriais/metabolismo , Regulação para Cima
9.
Mol Cell Neurosci ; 111: 103590, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422671

RESUMO

Peripheral nerve injuries remain challenging to treat despite extensive research on reparative processes at the injury site. Recent studies have emphasized the importance of immune cells, particularly macrophages, in recovery from nerve injury. Macrophage plasticity enables numerous functions at the injury site. At early time points, macrophages perform inflammatory functions, but at later time points, they adopt pro-regenerative phenotypes to support nerve regeneration. Research has largely been limited, however, to the injury site. The neuromuscular junction (NMJ), the synapse between the nerve terminal and end target muscle, has received comparatively less attention, despite the importance of NMJ reinnervation for motor recovery. Macrophages are present at the NMJ following nerve injury. Moreover, in denervating diseases, such as amyotrophic lateral sclerosis (ALS), macrophages may also play beneficial roles at the NMJ. Evidence of positive macrophages roles at the injury site after peripheral nerve injury and at the NMJ in denervating pathologies suggest that macrophages may promote NMJ reinnervation. In this review, we discuss the intersection of nerve injury and immunity, with a focus on macrophages.


Assuntos
Macrófagos/imunologia , Doença dos Neurônios Motores/imunologia , Junção Neuromuscular/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Animais , Humanos , Doença dos Neurônios Motores/fisiopatologia , Regeneração Nervosa , Junção Neuromuscular/fisiologia , Junção Neuromuscular/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia
10.
Elife ; 92020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263277

RESUMO

Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages 'eat' apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.


Assuntos
Gânglios Espinais/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/imunologia , Fagocitose , Nervo Isquiático/imunologia , Animais , Apoptose , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Crescimento Neuronal , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Transdução de Sinais
11.
Cells ; 9(9)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967118

RESUMO

Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.


Assuntos
Comunicação Celular/imunologia , Sistema Nervoso Central/imunologia , Macrófagos/imunologia , Microglia/imunologia , Regeneração Nervosa/imunologia , Sistema Nervoso Periférico/imunologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Infarto Encefálico/imunologia , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Intoxicação por Monóxido de Carbono/imunologia , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Glicólise/genética , Glicólise/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação Oxidativa , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
12.
Eur J Pharmacol ; 880: 173171, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437743

RESUMO

Cathepsin S (CatS) is a cysteine protease found in lysosomes of hematopoietic and microglial cells and in secreted form in the extracellular space. While CatS has been shown to contribute significantly to neuropathic pain, the precise mechanisms remain unclear. In this report, we describe JNJ-39641160, a novel non-covalent, potent, selective and orally-available CatS inhibitor that is peripherally restricted (non-CNS penetrant) and may represent an innovative class of immunosuppressive and analgesic compounds and tools useful toward investigating peripheral mechanisms of CatS in neuropathic pain. In C57BL/6 mice, JNJ-39641160 dose-dependently blocked the proteolysis of the invariant chain, and inhibited both T-cell activation and antibody production to a vaccine antigen. In the spared nerve injury (SNI) model of chronic neuropathic pain, in which T-cell activation has previously been demonstrated to be a prerequisite for the development of pain hypersensitivity, JNJ-39641160 fully reversed tactile allodynia in wild-type mice but was completely ineffective in the same model in CatS knockout mice (which exhibited a delayed onset in allodynia). By contrast, in the acute mild thermal injury (MTI) model, JNJ-39641160 only weakly attenuated allodynia at the highest dose tested. These findings support the hypothesis that blockade of peripheral CatS alone is sufficient to fully reverse allodynia following peripheral nerve injury and suggest that the mechanism of action likely involves interruption of T-cell activation and peripheral cytokine release. In addition, they provide important insights toward the development of selective CatS inhibitors for the treatment of neuropathic pain in humans.


Assuntos
Analgésicos/uso terapêutico , Catepsinas/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Imunossupressores/uso terapêutico , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Encéfalo/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Linhagem Celular , Citocinas/imunologia , Temperatura Alta , Humanos , Hiperalgesia/imunologia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunossupressores/farmacocinética , Imunossupressores/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/farmacologia , Nervo Isquiático/lesões , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Toxoide Tetânico/administração & dosagem , Tato
13.
Nat Commun ; 11(1): 264, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937758

RESUMO

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management.


Assuntos
Gânglios Espinais/imunologia , Macrófagos/fisiologia , Neuralgia/imunologia , Animais , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Hiperalgesia/imunologia , Imunossupressores/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microglia/metabolismo , Microglia/fisiologia , Traumatismos dos Nervos Periféricos/imunologia , Gravidez , Células Receptoras Sensoriais/metabolismo , Fatores Sexuais , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
14.
J Pain ; 18(10): 1253-1269, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28652204

RESUMO

Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE: CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.


Assuntos
Degeneração do Disco Intervertebral/líquido cefalorraquidiano , Dor Lombar/líquido cefalorraquidiano , Traumatismos dos Nervos Periféricos/líquido cefalorraquidiano , Proteoma , Adulto , Idoso , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Cistatina C/líquido cefalorraquidiano , Feminino , Hemopexina/líquido cefalorraquidiano , Humanos , Inflamação/líquido cefalorraquidiano , Inflamação/complicações , Degeneração do Disco Intervertebral/complicações , Degeneração do Disco Intervertebral/imunologia , Dor Lombar/complicações , Dor Lombar/imunologia , Masculino , Pessoa de Meia-Idade , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/imunologia , Proteômica , Adulto Jovem
15.
Pain Med ; 18(5): 932-946, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497321

RESUMO

Objective: Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Methods: Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Results: Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Conclusion: Photobiomodulation effectively reduced mechanical hypersensitivity, potentially through modulating macrophage/microglial activation to an anti-inflammatory phenotype.


Assuntos
Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Microglia/imunologia , Neuralgia/imunologia , Neuralgia/terapia , Animais , Masculino , Neuralgia/patologia , Tratamentos com Preservação do Órgão , Medição da Dor , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
16.
Scand J Pain ; 10: 74-81, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-28361776

RESUMO

BACKGROUND: Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. AIM: This topical review aims to highlight the contribution that inflammatory activated glial cell dysfunction may have for the development of persistent pain. METHOD: Relevant literature was searched for in PubMed. RESULTS: Immediately after an injury to a nerve ending in the periphery such as in surgery, the inflammatory cascade is activated and immunocompetent cells migrate to the site of injury. Macrophages infiltrate the injured nerve and cause an inflammatory reaction in the nerve cell. This reaction leads to microglia activation in the central nervous system and the release of pro-inflammatory cytokines that activate and alter astrocyte function. Once the astrocytes and microglia have become activated, they participate in the development, spread, and potentiation of low-grade neuroinflammation. The inflammatory activated glial cells exhibit cellular changes, and their communication to each other and to neurons is altered. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocyte dysfunction can be experimentally restored using the combined actions of a µ-opioid receptor agonist, a µ-opioid receptor antagonist, and an anti-epileptic agent. To find these agents we searched the literature for substances with possible anti-inflammatory properties that are usually used for other purposes in medicine. Inflammatory induced glial cell dysfunction is restorable in vitro by a combination of endomorphine-1, ultralow doses of naloxone and levetiracetam. Restoring inflammatory-activated glial cells, thereby restoring astrocyte-neuron interaction has the potential to affect pain transmission in neurons. CONCLUSION: Surgery causes inflammation at the site of injury. Peripheral nerve injury can cause low-grade inflammation in the CNS known as neuroinflammation. Low-grade neuroinflammation can cause an imbalance in the glial-neuron interaction and communication. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocytic dysfunction can be restored in vitro by a combination of endomorphin-1, ultralow doses of naloxone and levetiracetam. This restoration is essential for the interaction between astrocytes and neurons and hence also for modulation of synaptic pain transmission. IMPLICATIONS: Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.


Assuntos
Astrócitos/patologia , Inflamação , Neuroglia/patologia , Dor Pós-Operatória/fisiopatologia , Traumatismos dos Nervos Periféricos/imunologia , Animais , Citocinas , Humanos , Microglia , Neuralgia , Nervos Periféricos , Ratos Sprague-Dawley
17.
Brain Behav Immun ; 45: 198-210, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25449579

RESUMO

Neuropathic pain resulting from peripheral nerve injury involves many persistent neuroinflammatory processes including inflammatory chemokines that control leukocyte trafficking and activate resident cells. Several studies have shown that CCL2 chemokine, a potent attractant of monocytes, and its cognate receptor, CCR2, play a critical role in regulating nociceptive processes during neuropathic pain. However, the role of CCL2 in peripheral leukocyte infiltration-associated neuropathic pain remains poorly understood. In particular, the contribution of individual CCL2-expressing cell populations (i.e. stromal and leukocytes) to immune cell recruitment into the injured nerve has not been established. Here, in preclinical model of peripheral neuropathic pain (i.e. chronic constriction injury of the sciatic nerve), we have demonstrated that, CCL2 content was increased specifically in nerve fibers. This upregulation of CCL2 correlated with local monocyte/macrophage infiltration and pain processing. Furthermore, sciatic intraneural microinjection of CCL2 in naïve animals triggered long-lasting pain behavior associated with local monocyte/macrophage recruitment. Using a specific CCR2 antagonist and mice with a CCL2 genetic deletion, we have also established that the CCL2/CCR2 axis drives monocyte/macrophage infiltration and pain hypersensitivity in the CCI model. Finally, specific deletion of CCL2 in stromal or immune cells respectively using irradiated bone marrow-chimeric CCI mice demonstrated that stromal cell-derived CCL2 (in contrast to CCL2 immune cell-derived) tightly controls monocyte/macrophage recruitment into the lesion and plays a major role in the development of neuropathic pain. These findings demonstrate that in chronic pain states, CCL2 expressed by sciatic nerve cells predominantly drove local neuro-immune interactions and pain-related behavior through CCR2 signaling.


Assuntos
Quimiocina CCL2/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Neuralgia/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Nervo Isquiático/lesões , Animais , Transplante de Medula Óssea , Constrição Patológica , Hiperalgesia/genética , Hiperalgesia/imunologia , Camundongos , Células Mieloides/imunologia , Ratos , Nervo Isquiático/imunologia , Regulação para Cima
18.
Pain ; 155(7): 1293-1302, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721689

RESUMO

Interleukin-17 (IL-17) is involved in a wide range of inflammatory disorders and in recruitment of inflammatory cells to injury sites. A recent study of IL-17 knock-out mice revealed that IL-17 contributes to neuroinflammation and neuropathic pain after peripheral nerve injury. Surprisingly, little is known of micro-environment modulation by IL-17 in injured sites and in pathologically related neuroinflammation and chronic neuropathic pain. Therefore, we investigated nociceptive sensitization, immune cell infiltration, myeloperoxidase (MPO) activity, and expression of multiple cytokines and opioid peptides in damaged nerves of wild-type (IL-17(+/+)) and IL-17 knock-out (IL-17(-/-)) mice after partial sciatic nerve ligation. Our results demonstrated that the IL-17(-/-) mice had less behavioral hypersensitivity after partial sciatic nerve ligation, and inflammatory cell infiltration and pro-inflammatory cytokine (tumor necrosis factor-α, IL-6, and interferon-γ) levels in damaged nerves were significantly decreased, with the levels of anti-inflammatory cytokines IL-10 and IL-13, and expressions of enkephalin, ß-endorphin, and dynorphin were also decreased compared to those in wild-type control mice. In conclusion, we provided evidence that IL-17 modulates the micro-environment at the level of the peripheral injured nerve site and regulates progression of behavioral hypersensitivity in a murine chronic neuropathic pain model. The attenuated behavioral hypersensitivity in IL-17(-/-) mice could be a result of decreased inflammatory cell infiltration to the injured site, resulting in modulation of the pro- and anti-inflammatory cytokine milieu within the injured nerve. Therefore, IL-17 may be a critical component for neuropathic pain pathogenesis and a novel target for therapeutic intervention for this and other chronic pain states.


Assuntos
Comportamento Animal , Citocinas/imunologia , Hiperalgesia/genética , Interleucina-17/genética , Neuralgia/genética , Nociceptividade , Traumatismos dos Nervos Periféricos/genética , Animais , Sensibilização do Sistema Nervoso Central/genética , Sensibilização do Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Dinorfinas/metabolismo , Encefalinas/metabolismo , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Inflamação/genética , Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-2/imunologia , Interleucina-2/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/imunologia , Neuralgia/metabolismo , Neutrófilos/imunologia , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/metabolismo , Peroxidase/metabolismo , Nervo Isquiático/lesões , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , beta-Endorfina/metabolismo
20.
PLoS One ; 8(7): e66410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935822

RESUMO

Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2) expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages) into the injured nerve and spinal cord by using bone marrow (BM) chimeric mice by crossing wildtype (WT) and TRPM2-knockout (TRPM2-KO) mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+)) BM cells (TRPM2(BM+/Rec+), TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice). Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+) mice was attenuated in TRPM2(BM-/Rec+), TRPM2(BM+/Rec-), and TRPM2(BM-/Rec-) mice. The numbers of GFP(+) BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+) BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+) mice. However, the numbers of GFP(-)/Iba1(+) resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal-resident microglia. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.


Assuntos
Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/genética , Medula Espinal/patologia , Canais de Cátion TRPM/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Quimera , Modelos Animais de Doenças , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA