Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Food Res Int ; 186: 114331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729716

RESUMO

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Assuntos
Antioxidantes , Temperatura Baixa , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Prunus persica , Espécies Reativas de Oxigênio , Transdução de Sinais , Trealose , Trealose/farmacologia , Trealose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulação de Acoplamento Molecular , Malondialdeído/metabolismo
2.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693753

RESUMO

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Assuntos
Antibacterianos , Nanopartículas , Óxido Nítrico , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Animais , Células RAW 264.7 , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Imunoterapia/métodos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Trealose/química , Trealose/farmacologia
3.
Sci Rep ; 14(1): 10243, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702388

RESUMO

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.


Assuntos
Liofilização , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Secretoma/metabolismo , Trealose/metabolismo , Trealose/farmacologia , Citocinas/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/química , Criopreservação/métodos , Temperatura
4.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579922

RESUMO

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Epiteliais , Túbulos Renais , Lisossomos , Swainsonina , Trealose , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/citologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Swainsonina/toxicidade , Trealose/farmacologia
5.
J Ovarian Res ; 17(1): 11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195648

RESUMO

The etiology of polycystic ovary syndrome (PCOS) is complex and variable, and there is no exact cause or good treatment method. Most of the methods of hormones are used to temporarily meet the needs of patients. Experimental evidence has shown that trehalose has, anti-apoptotic, anti-oxidative, glucose-lowering, and insulin resistance effects. However, whether trehalose has a therapeutic effect on PCOS is unknown. It has been reported that the ovarian renin-angiotensin system (OVRAS) is involved in the development of PCOS, but it has not been fully elucidated. This study aims to explore the effect of trehalose on PCOS and elucidate the related OVRAS mechanism. We first observed that body weight, estrous cycle, ovarian follicles at all levels, glucose tolerance, serum hormones, and insulin resistance were improved by trehalose treatment in the PCOS mouse model. Moreover, trehalose treatment also ameliorated ovarian oxidative stress and apoptosis in PCOS mice, as determined by TUNNEL apoptosis staining, total SOD in ovarian homogenate, and WB assay. OVRAS mainly involves two classic pathways, namely the ACE/AngII/AT1R/AT2R, and ACE2 / Ang1-7/ MASR, Which play different functions. In PCOS mouse ovaries, we found that ACE/AngII/AT1R was up-regulated and ACE2/Ang1-7/MASR and AT2R were down-regulated by PCR and WB experiments, However, trehalose treatment changed its direction. In addition, we also found that trehalose ameliorated DHEA-induced oxidative stress and apoptosis in KGN by PCR and WB experiments, mainly by down-regulating ACE/AngII/AT1R. Our study shows that trehalose improves symptoms of PCOS mainly by down-regulating ACE/AngII/AT1R, revealing a potential therapeutic target for PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Síndrome do Ovário Policístico/tratamento farmacológico , Sistema Renina-Angiotensina , Enzima de Conversão de Angiotensina 2 , Trealose/farmacologia , Apoptose , Estresse Oxidativo , Glucose , Hormônios
6.
Biochimie ; 220: 48-57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38128775

RESUMO

The study of the relationship between the activity and stability of enzymes under crowding conditions in the presence of osmolytes is important for understanding the functioning of a living cell. The effect of osmolytes (trehalose and betaine) on the secondary and tertiary structure and activity of muscle glycogen phosphorylase b (Phb) under crowding conditions created by PEG 2000 and PEG 20000 was investigated using dynamic light scattering, differential scanning calorimetry, circular dichroism spectroscopy, fluorimetry and enzymatic activity assay. At 25 °C PEGs increased Phb activity, but PEG 20000 to a greater extent. Wherein, PEG 20000 significantly destabilized its tertiary and secondary structure, in contrast to PEG 2000. Trehalose removed the effects of PEGs on Phb, while betaine significantly reduced the activating effect of PEG 20000 without affecting the action of PEG 2000. Under heat stress at 48 °C, the protective effect of osmolytes under crowding conditions was more pronounced than at room temperature, and the Phb activity in the presence of osmolytes was higher in these conditions than in diluted solutions. These results provide important insights into the complex mechanism, by which osmolytes affect the structure and activity of Phb under crowding conditions.


Assuntos
Glicogênio Fosforilase Muscular , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio Fosforilase Muscular/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Trealose/farmacologia , Trealose/metabolismo , Trealose/química , Betaína/química , Betaína/farmacologia , Animais , Estrutura Secundária de Proteína
7.
Mol Neurobiol ; 60(12): 7253-7273, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542649

RESUMO

Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.


Assuntos
Metformina , Neuroblastoma , Doença de Parkinson , Humanos , Animais , Camundongos , Idoso , Doença de Parkinson/tratamento farmacológico , Trealose/farmacologia , Trealose/uso terapêutico , Camundongos Endogâmicos C57BL , Autofagia , Dopamina , Metformina/farmacologia , Metformina/uso terapêutico
8.
Neurosci Lett ; 813: 137418, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37549864

RESUMO

Aging causes substantial molecular to morphological changes in the brain. The brain cells are more susceptible towards oxidative damage due to impaired antioxidant defense system. Sirtuin1 (SIRT1) is a crucial cellular survival protein, which its gene has been identified as a direct target of microRNA 132 (miR-132). Trehalose contributes to preventing neuronal damage through several mechanisms. However, little is known about the interactive effects of aging and trehalose on the expression pattern of miR-132 and SIRT1 in the hippocampus. Male Wistar rats were divided into four groups. Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution for 30 days. Two other groups of aged and young rats received regular tap water. At the end of treatment, the levels of Sirt1 mRNA and its protein, malondialdehyde, protein carbonyl content, total antioxidant capacity, tumor necrosis factor α (TNF-α), as well as the expression of miR-132 were measured in the hippocampus. We found that trehalose treatment upregulated the expression of SIRT1 and miR-132. Moreover, administration of trehalose enhanced the level of total antioxidant activity whereas reduced the levels of lipid peroxidation, protein carbonyl content, and TNF-α. In conclusion, our data indicated that trehalose restored antioxidant status and alleviated inflammation in the hippocampus which was probably associated with the upregulation of SIRT1 and miR-132.


Assuntos
MicroRNAs , Sirtuína 1 , Ratos , Masculino , Animais , Sirtuína 1/metabolismo , Antioxidantes/farmacologia , MicroRNAs/metabolismo , Trealose/farmacologia , Trealose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carbonilação Proteica , Ratos Wistar , Hipocampo/metabolismo
9.
Curr Protein Pept Sci ; 24(6): 503-517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282635

RESUMO

Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological applications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule 'trehalose aka mycose', and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential.


Assuntos
Estresse Oxidativo , Trealose , Trealose/farmacologia , Trealose/metabolismo , Células-Tronco/metabolismo , Autofagia
10.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373447

RESUMO

The importance of studying the structural stability of proteins is determined by the structure-function relationship. Protein stability is influenced by many factors among which are freeze-thaw and thermal stresses. The effect of trehalose, betaine, sorbitol and 2-hydroxypropyl-ß-cyclodextrin (HPCD) on the stability and aggregation of bovine liver glutamate dehydrogenase (GDH) upon heating at 50 °C or freeze-thawing was studied by dynamic light scattering, differential scanning calorimetry, analytical ultracentrifugation and circular dichroism spectroscopy. A freeze-thaw cycle resulted in the complete loss of the secondary and tertiary structure, and aggregation of GDH. All the cosolutes suppressed freeze-thaw- and heat-induced aggregation of GDH and increased the protein thermal stability. The effective concentrations of the cosolutes during freeze-thawing were lower than during heating. Sorbitol exhibited the highest anti-aggregation activity under freeze-thaw stress, whereas the most effective agents stabilizing the tertiary structure of GDH were HPCD and betaine. HPCD and trehalose were the most effective agents suppressing GDH thermal aggregation. All the chemical chaperones stabilized various soluble oligomeric forms of GDH against both types of stress. The data on GDH were compared with the effects of the same cosolutes on glycogen phosphorylase b during thermal and freeze-thaw-induced aggregation. This research can find further application in biotechnology and pharmaceutics.


Assuntos
Temperatura Alta , Trealose , Animais , Bovinos , Trealose/farmacologia , Betaína/farmacologia , Chaperonas Moleculares , Congelamento
11.
BMC Oral Health ; 23(1): 288, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179287

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of trehalose oral spray to relieve radiation-induced xerostomia on a randomized controlled trial (RCT). METHODS: Prior to RCT, the effect of trehalose (5-20%) on the epithelial growth of fetal mouse salivary gland (SG) explants was evaluated to confirm if 10% trehalose exerted the best epithelial outcomes. Participants who completed radiotherapy for head and neck cancer (HNC) treatment were enrolled in a double-blind RCT, according to inclusion and exclusion criteria as per the CONSORT statement. The experimental group (n = 35) received 10% trehalose spray, while the control group (n = 35) received carboxymethylcellulose (CMC) spray to apply intra-orally 4 times/day for 14 days. Salivary pH and unstimulated salivary flow rate were recorded pre- and post-interventions. The Xerostomia-related Quality of Life scale (XeQoLs) was filled, and scores assessed post-interventions. RESULTS: In the SG explant model, pro-acinar epithelial growth and mitosis was supported by 10% topical trehalose. As for RCT outcomes, salivary pH and unstimulated salivary flow rate were significantly improved after use of 10% trehalose spray when compared to CMC (p < 0.05). Participants reported an improvement of XeQoLs dimension scores after using trehalose or CMC oral sprays in terms of physical, pain/discomfort, and psychological dimensions (p < 0.05), but not social (p > 0.05). When comparing between CMC and trehalose sprays, XeQoLs total scores were not statistically different (p > 0.05). CONCLUSIONS: The 10% trehalose spray improved salivary pH, unstimulated salivary flow rate, and the quality-of-life dimensions linked with physical, pain/discomfort, and psychological signs. The clinical efficacy of 10% trehalose spray was equivalent with CMC-based saliva substitutes for relieving radiation-induced xerostomia; therefore, trehalose may be suggested in alternative to CMC-based oral spray.(Thai Clinical Trials Registry; https://www.thaiclinicaltrials.org/ TCTR20190817004).


Assuntos
Carboximetilcelulose Sódica , Neoplasias de Cabeça e Pescoço , Trealose , Xerostomia , Carboximetilcelulose Sódica/uso terapêutico , Neoplasias de Cabeça e Pescoço/radioterapia , Sprays Orais , Trealose/farmacologia , Trealose/uso terapêutico , Xerostomia/tratamento farmacológico , Xerostomia/etiologia , Humanos
12.
Bioorg Chem ; 133: 106345, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764230

RESUMO

Many studies have investigated the Mincle-mediated agonist activity of α,α'-trehalose-6,6́-glycolipids, however, none have considered how the position, or absence, of the ester moiety influences Mincle-mediated agonist activity. We prepared a variety of 6-C-linked α,α'-trehalose glycolipids containing inverted esters, ketone, carboxy or no carbonyl moieties. Modelling studies indicated that these derivatives bind to the CRD of Mincle in a manner similar to that of the prototypical Mincle agonist, trehalose dibehenate (TDB), with NFAT-GFP reporter cell assays confirming that all compounds, apart from derivatives with short alkyl chains, led to robust Mincle signalling. It was also observed that a carbonyl moiety was needed for good Mincle-mediated signalling. The ability of the compounds to induce mIL-1 ß and mIL-6 production by bone marrow-derived macrophages (BMDMs) further demonstrated the agonist activity of the compounds, with the presence of a carbonyl moiety and longer lipid chains augmenting cytokine production. Notably, a C20 inverted ester led to levels of mIL-1ß that were significantly greater than those induced by TDB. The same C20 inverted ester also led to a significant increase in hIL-1ß and hIL-6 by human monocytes, and exhibited no toxicity, as demonstrated using BMDMs in an in vitro Sytox Green assay. The ability of the inverted ester to enhance antigen-mediated immune responses was then determined. In these studies, the inverted ester was found to augment the OVA-specific Th1/Th7 immune response in vitro, and exhibit adjuvanticity that was better than that of TDB in vivo, as evidenced by a significant increase in IgG antibodies for the inverted ester but not TDB when using OVA as a model antigen.


Assuntos
Glicolipídeos , Trealose , Humanos , Glicolipídeos/farmacologia , Trealose/farmacologia , Trealose/metabolismo , Adjuvantes Imunológicos/farmacologia , Macrófagos/metabolismo , Transdução de Sinais
13.
Cell Mol Neurobiol ; 43(4): 1637-1659, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36121569

RESUMO

Spinal cord injury (SCI) leads to long-term and permanent motor dysfunctions, and nervous system abnormalities. Injury to the spinal cord triggers a signaling cascade that results in activation of the inflammatory cascade, apoptosis, and Zn(II) ion homeostasis. Trehalose (Tre), a nonreducing disaccharide, and L-carnosine (Car), (ß-alanyl-L-histidine), one of the endogenous histidine dipeptides have been recognized to suppress early inflammatory effects, oxidative stress and to possess neuroprotective effects. We report on the effects of the conjugation of Tre with Car (Tre-car) in reducing inflammation in in vitro and in vivo models. The in vitro study was performed using rat pheochromocytoma cells (PC12 cell line). After 24 h, Tre-car, Car, Tre, and Tre + Car mixture treatments, cells were collected and used to investigate Zn2+ homeostasis. The in vivo model of SCI was induced by extradural compression of the spinal cord at the T6-T8 levels. After treatments with Tre, Car and Tre-Car conjugate 1 and 6 h after SCI, spinal cord tissue was collected for analysis. In vitro results demonstrated the ionophore effect and chelating features of L-carnosine and its conjugate. In vivo, the Tre-car conjugate treatment counteracted the activation of the early inflammatory cascade, oxidative stress and apoptosis after SCI. The Tre-car conjugate stimulated neurotrophic factors release, and influenced Zn2+ homeostasis. We demonstrated that Tre-car, Tre and Car treatments improved tissue recovery after SCI. Tre-car decreased proinflammatory, oxidative stress mediators release, upregulated neurotrophic factors and restored Zn2+ homeostasis, suggesting that Tre-car may represent a promising therapeutic agent for counteracting the consequences of SCI.


Assuntos
Carnosina , Traumatismos da Medula Espinal , Ratos , Animais , Carnosina/farmacologia , Carnosina/uso terapêutico , Trealose/farmacologia , Trealose/uso terapêutico , Zinco/farmacologia , Traumatismos da Medula Espinal/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Medula Espinal/metabolismo , Apoptose , Fatores de Crescimento Neural/farmacologia , Homeostase
14.
AAPS J ; 25(1): 8, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471035

RESUMO

With significant advancement and development of extracellular vesicle (EV)-based therapies, there is a growing need to understand how their storage affects their physical and functional characteristics. EVs were isolated from the conditioned medium of a corneal stromal stem cell line (imCSSC) using Total Exosome isolation kit (TEI) and ultracentrifugation (UC) combined protocol. Purified EVs were stored at 4°C, - 80°C, room temperature (RT) after lyophilization with or without trehalose for 4 weeks. EVs stored at - 80°C and RT (lyophilization with trehalose) demonstrated a comparable morphology, while the freeze-dried samples without trehalose showed aggregation and degradation under a transmission electron microscope (TEM). Lyophilized samples without trehalose demonstrated a decreased particle concentration, recovery rate and protein concentration, which was remediated by the addition of trehalose. EVs stored at - 80℃ showed no change in the protein expression of CD9, CD63, and CD81. Regardless of the storage condition, all EV samples investigated reduced inflammation, as well as inhibited expression of fibrotic markers in vitro. Lyophilization of EVs with trehalose was a feasible storage method that retained the physical property and in vitro biological activities of EVs after 4 weeks of storage, while - 80°C offered the best retention of imCSSC-derived EV physical properties. For the first time, this data demonstrated a practical and translatable method for the storage of CSSC-derived EVs for clinical use.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Trealose/farmacologia , Trealose/metabolismo , Estudo de Prova de Conceito , Vesículas Extracelulares/metabolismo , Ultracentrifugação
15.
Clin Transl Med ; 12(8): e1021, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35988262

RESUMO

BACKGROUND: Eosinophilic inflammation is a hallmark of refractory chronic rhinosinusitis (CRS) and considered a major therapeutic target. Autophagy deficiency in myeloid cells plays a causal role in eosinophilic CRS (ECRS) via macrophage IL-1ß overproduction, thereby suggesting autophagy regulation as a potential therapeutic modality. Trehalose is a disaccharide sugar with known pro-autophagy activity and effective in alleviating diverse inflammatory diseases. We sought to investigate the therapeutic potential of autophagy-enhancing agent, trehalose, or related sugar compounds, and the underlying mechanism focusing on macrophage IL-1ß production in ECRS pathogenesis. METHODS: We investigated the therapeutic effects of trehalose and saccharin on macrophage IL-1ß production and eosinophilia in the mouse model of ECRS with myeloid cell-specific autophagy-related gene 7 (Atg7) deletion. The mechanisms underlying their anti-inflammatory effects were assessed using specific inhibitor, genetic knockdown or knockout, and overexpression of cognate receptors. RESULTS: Unexpectedly, trehalose significantly attenuated eosinophilia and disease pathogenesis in ECRS mice caused by autophagy deficiency in myeloid cells. This autophagy-independent effect was associated with reduced macrophage IL-1ß expression. Various sugars recapitulated the anti-inflammatory effect of trehalose, and saccharin was particularly effective amongst other sugars. The mechanistic study revealed an involvement of sweet taste receptor (STR), especially T1R3, in alleviating macrophage IL-1ß production and eosinophilia in CRS, which was supported by genetic depletion of T1R3 or overexpression of T1R2/T1R3 in macrophages and treatment with the T1R3 antagonist gurmarin. CONCLUSION: Our results revealed a previously unappreciated anti-inflammatory effect of STR agonists, particularly trehalose and saccharin, and may provide an alternative strategy to autophagy modulation in the ECRS treatment.


Assuntos
Eosinofilia , Sinusite , Animais , Anti-Inflamatórios , Autofagia , Eosinofilia/complicações , Eosinofilia/tratamento farmacológico , Eosinofilia/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Macrófagos/metabolismo , Camundongos , Sacarina/farmacologia , Sinusite/complicações , Sinusite/metabolismo , Paladar , Trealose/farmacologia
16.
Cell Reprogram ; 24(3): 118-131, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35647904

RESUMO

Bone marrow-derived mesenchymal stem cell (BMSC) transplantation has emerged as a potential treatment for ischemic stroke. Preconditioning with pharmacological agents before cell transplantation has been shown to increase the efficiency of cell therapy. In this study, trehalose (Tre), an autophagy inducer, was used as a pharmacological agent to treat BMSCs, and the neuroprotective effect of BMSCs preconditioned with Tre on cerebral ischemia was assessed. BMSCs were treated in vitro with different concentrations of Tre. Immunofluorescence staining of LC3B was performed to detect autophagy, and Western blotting for LC3, Beclin1, p-AMPK, and p-mTOR was performed. Flow cytometry and Western blotting analysis were performed to measure cell apoptosis in the presence of hydrogen peroxide (H2O2). Enzyme-linked immunosorbent assay was used to test the secretion levels of neurotrophic factors. An in vivo ischemia/reperfusion model was generated by middle cerebral artery occlusion in male Sprague Dawley rats, and Tre-preconditioned BMSCs were administered intralesionally 24 hours after ischemic injury. Histopathological examination and neurological function studies were conducted. In vitro, Tre promotes autophagy of BMSCs through the activation of the AMPK signal pathway. Tre protected BMSCs from H2O2-induced cell viability reduction and apoptosis. Moreover, Tre pretreatment increased the secretion of brain-derived neurotrophic factor, vascular endothelial growth factor, and hepatocyte growth factor. In vivo, preconditioning with Tre could further enhance the survival of BMSCs, reduce infarct size, alleviate cell apoptosis, abate vessel decrease, and ultimately improve functional recovery. Our study indicates that Tre can enhance the survival of BMSCs under oxidative stress and enhance BMSC-based treatment of ischemia/reperfusion injury.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Células da Medula Óssea , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Isquemia/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Trealose/metabolismo , Trealose/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
J Biochem ; 172(3): 177-187, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35748379

RESUMO

Increasing evidence suggests that trehalose, a non-reducing disaccharide, ameliorates disease phenotypes by activating autophagy in animal models of various human diseases, including neurodegenerative diseases. Multiple in vitro studies suggest that activation of transcription factor EB, a master regulator of lysosomal biogenesis and autophagy genes, is a major contributor to trehalose-induced autophagy at later stages of exposure. However, underlying causes of trehalose-induced autophagy possibly occur at the early stage of the exposure period. In this study, we investigated the effects of short-term exposure of HeLa cells to trehalose on several signal transduction pathways to elucidate the initial events involved in its beneficial effects. Phospho-protein array analysis revealed that trehalose decreases levels of phosphorylated c-Jun, a component of the transcription factor activator protein-1, after 6 h. Trehalose also rapidly reduced mRNA expression levels of c-Jun and JunB, a member of the Jun family, within 1 h, resulting in a subsequent decrease in their protein levels. Future studies, exploring the interplay between decreased c-Jun and JunB protein levels and beneficial effects of trehalose, may provide novel insights into the mechanisms of trehalose action.


Assuntos
Proteínas Proto-Oncogênicas c-jun , Fatores de Transcrição , Trealose , Neoplasias do Colo do Útero , Autofagia , Feminino , Células HeLa , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trealose/farmacologia
18.
Biomacromolecules ; 23(7): 2803-2813, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35675906

RESUMO

Tissue engineering involves the transplantation of stem cell-laden hydrogels as synthetic constructs to replace damaged tissues. However, their time-consuming fabrication procedures are hurdles to widespread application in clinics. Fortunately, similar to cell banking, synthetic tissues could be cryopreserved for subsequent central distribution. Here, we report the use of trehalose and gellan gum as biomacromolecules to form a cryopreservable yet directly implantable hydrogel system for adipose-derived stem cell (ADSC) delivery. Through a modified cell encapsulation method and a preincubation step, adequate cryoprotection was afforded at 0.75 M trehalose to the encapsulated ADSCs. At this concentration, trehalose demonstrated lower propensity to induce apoptosis than 10% DMSO, the current gold standard cryoprotectant. Moreover, when cultured along with trehalose after thawing, the encapsulated ADSCs retained their stem cell-like phenotype and osteogenic differentiation capacity. Taken together, this study demonstrates the feasibility of an "off-the-shelf" biomacromolecule-based synthetic tissue to be applied in widespread tissue engineering applications.


Assuntos
Hidrogéis , Osteogênese , Colágeno , Criopreservação , Hidrogéis/farmacologia , Polissacarídeos Bacterianos , Células-Tronco , Açúcares , Trealose/farmacologia
19.
J Agric Food Chem ; 70(18): 5658-5667, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499968

RESUMO

The efficacy of trehalose on the lesion diameter of apples (cv. Golden Delicious) inoculated with Penicillium expansum was evaluated to screen the optimal concentration. The changes in gene expression and activity of the enzyme in starch, sorbitol, and energy metabolism were also investigated in apples after trehalose treatment. The results revealed that trehalose dipping reduced the lesion diameter of apples inoculated with P. expansum. Trehalose suppressed the activities and gene expressions of ß-amylase, NAD-sorbitol dehydrogenase, and NADP-sorbitol dehydrogenase, whereas it decreased the sorbitol 6-phosphate dehydrogenase gene expression and amylose, amylopectin, total starch, and reducing sugar contents. Additionally, trehalose improved the gene expressions and activities of α-amylase, starch-branching enzymes, total amylase, H+-ATPase, and Ca2+-ATPase, as well as soluble sugar, adenosine triphosphate, and adenosine diphosphate contents and energy charge in apples. These findings imply that trehalose could induce tolerance to the blue mold of apple fruit by regulating starch, sorbitol, and energy metabolism.


Assuntos
Anacardiaceae , Malus , Penicillium , Metabolismo Energético , Frutas/metabolismo , L-Iditol 2-Desidrogenase/metabolismo , Malus/metabolismo , Penicillium/metabolismo , Sorbitol , Amido/metabolismo , Açúcares/metabolismo , Trealose/metabolismo , Trealose/farmacologia
20.
Pharmacol Biochem Behav ; 217: 173406, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609863

RESUMO

Alzheimer's disease (AD) is associated with amyloid-ß (Aß) accumulation that might be hindered by autophagy. There are two ways to induce autophagy: through mTOR-dependent and mTOR-independent pathways (here, by means of rapamycin and trehalose, respectively). The aim of this study was to evaluate the contribution of these pathways and their combination to the treatment of experimental AD. Mice were injected bilaterally intracerebroventricularly with an Aß fragment (25-35) to set up an AD model. Treatment with rapamycin (10 mg/kg, every other day), trehalose consumption with drinking water (2 mg/mL, ad libitum), or their combination started 2 days after the surgery and lasted for 2 weeks. Open-field, plus-maze, and passive avoidance tests were used for behavioral phenotyping. Neuronal density, Aß accumulation, and the expression of autophagy marker LC3-II and neuroinflammatory marker IBA1 were measured in the frontal cortex and hippocampus. mRNA levels of autophagy genes (Atg8, Becn1, and Park2) were assessed in the hippocampus. Trehalose but not rapamycin caused pronounced prolonged autophagy induction and transcriptional activation of autophagy genes. Both drugs effectively prevented Aß deposition and microglia activation. Autophagy inhibitor 3-methyladenine significantly attenuated autophagy activation and disturbed the effect of the inducers on Aß load. The inducers substantially reversed behavioral and neuronal deficits in Aß-injected mice. In many cases, the best outcomes were achieved with the combined treatment. Thus, trehalose alone or combined autophagy activation by the two inducers may be a promising treatment approach to AD-like neurodegeneration. Some aspects of interaction between mTOR-dependent and mTOR-independent pathways of autophagy are discussed.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Terapias em Estudo , Trealose/farmacologia , Trealose/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA