Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.137
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8695, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622194

RESUMO

AMPylation is a biologically significant yet understudied post-translational modification where an adenosine monophosphate (AMP) group is added to Tyrosine and Threonine residues primarily. While recent work has illuminated the prevalence and functional impacts of AMPylation, experimental identification of AMPylation sites remains challenging. Computational prediction techniques provide a faster alternative approach. The predictive performance of machine learning models is highly dependent on the features used to represent the raw amino acid sequences. In this work, we introduce a novel feature extraction pipeline to encode the key properties relevant to AMPylation site prediction. We utilize a recently published dataset of curated AMPylation sites to develop our feature generation framework. We demonstrate the utility of our extracted features by training various machine learning classifiers, on various numerical representations of the raw sequences extracted with the help of our framework. Tenfold cross-validation is used to evaluate the model's capability to distinguish between AMPylated and non-AMPylated sites. The top-performing set of features extracted achieved MCC score of 0.58, Accuracy of 0.8, AUC-ROC of 0.85 and F1 score of 0.73. Further, we elucidate the behaviour of the model on the set of features consisting of monogram and bigram counts for various representations using SHapley Additive exPlanations.


Assuntos
Processamento de Proteína Pós-Traducional , Tirosina , Tirosina/metabolismo , Sequência de Aminoácidos , Monofosfato de Adenosina/metabolismo , Treonina/metabolismo
2.
Nat Cancer ; 5(7): 1024-1044, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38519786

RESUMO

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.


Assuntos
Glioblastoma , Treonina , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Animais , Camundongos , Treonina/metabolismo , Treonina/genética , Biossíntese de Proteínas , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Códon/genética , RNA de Transferência/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
3.
Chem Biol Interact ; 391: 110900, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325522

RESUMO

Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citocininas , Neoplasias Pulmonares , Melatonina , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Sobrevivência Celular , Metaboloma , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Linhagem Celular Tumoral
4.
mBio ; 15(2): e0304823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193697

RESUMO

Antibodies targeting an envelope dimer epitope (EDE) cross-neutralize Zika virus (ZIKV) and dengue virus (DENV) and have thus inspired an epitope-focused vaccine design. There are two EDE antibody subclasses (EDE1, EDE2) distinguished by their dependence on viral envelope protein N-linked glycosylation at position N153 (DENV) or N154 (ZIKV) for binding. Here, we determined how envelope glycosylation site mutations affect neutralization by EDE and other broadly neutralizing antibodies. Consistent with structural studies, mutations abolishing the N153/N154 glycosylation site increased DENV and ZIKV sensitivity to neutralization by EDE1 antibodies. Surprisingly, despite their location at predicted contact sites, these mutations also increased sensitivity to EDE2 antibodies. Moreover, despite preserving the glycosylation site motif (N-X-S/T), substituting the threonine at ZIKV envelope residue 156 with a serine resulted in loss of glycan occupancy accompanied with increased neutralization sensitivity to EDE antibodies. For DENV, the presence of a serine instead of a threonine at envelope residue 155 retained glycan occupancy, but nonetheless increased sensitivity to EDE antibodies, in some cases to a similar extent as mutation at N153, which abolishes glycosylation. Envelope glycosylation site mutations also increased ZIKV and DENV sensitivity to other non-EDE broadly neutralizing antibodies, but had limited effects on ZIKV- or DENV-specific antibodies. Thus, envelope protein glycosylation is context-dependent and modulates the potency of broadly neutralizing antibodies in a manner not predicted by existing structures. Manipulating envelope protein glycosylation could be a novel strategy for engineering vaccine antigens to elicit antibodies that broadly neutralize ZIKV and DENV.IMPORTANCEAntibodies that potently cross-neutralize Zika (ZIKV) and dengue (DENV) viruses are attractive to induce via vaccination to protect against these co-circulating flaviviruses. Structural studies have shown that viral envelope protein glycosylation is important for binding by one class of these so-called broadly neutralizing antibodies, but less is known about its effect on neutralization. Here, we investigated how envelope protein glycosylation site mutations impact the potency of broadly neutralizing antibodies against ZIKV and DENV. We found that glycan occupancy was not always predicted by an intact N-X-S/T sequence motif. Moreover, envelope protein glycosylation site mutations alter the potency of broadly neutralizing antibodies in a manner unexpected from their predicted binding mechanism as determined by existing structures. We therefore highlight the complex role and determinants of envelope protein glycosylation that should be considered in the design of vaccine antigens to elicit broadly neutralizing antibodies.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Vacinas , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Amplamente Neutralizantes , Glicosilação , Anticorpos Neutralizantes , Vírus da Dengue/genética , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Epitopos/genética , Mutação , Polissacarídeos , Serina/genética , Treonina/genética
5.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166031

RESUMO

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Assuntos
Proteínas Serina-Treonina Quinases , Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Humanos , Camundongos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Treonina/metabolismo
6.
Eur J Med Chem ; 265: 116076, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171150

RESUMO

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulatory factor in the necroptosis signaling pathway, and is considered an attractive therapeutic target for treating multiple inflammatory diseases. Herein, we describe the design, synthesis, and structure-activity relationships of 4-amino-1,6-dihydro-7H-pyrrolo [2,3-d]pyridazin-7-one derivatives as RIPK1 inhibitors. Among them, 13c showed favorable RIPK1 kinase inhibition activity with an IC50 value of 59.8 nM, and high RIPK1 binding affinity compared with other regulatory kinases of necroptosis (RIPK1 Kd = 3.5 nM, RIPK3 Kd = 1700 nM, and MLKL Kd > 30,000 nM). 13c efficiently blocked TNFα-induced necroptosis in both human and murine cells (EC50 = 1.06-4.58 nM), and inhibited TSZ-induced phosphorylation of the RIPK1/RIPK3/MLKL pathway. In liver microsomal assay studies, the clearance rate and half-life of 13c were 18.40 mL/min/g and 75.33 min, respectively. 13c displayed acceptable pharmacokinetic characteristics, with oral bioavailability of 59.55%. In TNFα-induced systemic inflammatory response syndrome, pretreatment with 13c could effectively protect mice from loss of body temperature and death. Overall, these compounds are promising candidates for future optimization studies.


Assuntos
Proteínas Quinases , Fator de Necrose Tumoral alfa , Camundongos , Humanos , Animais , Proteínas Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fosforilação , Treonina/farmacologia , Serina/farmacologia , Apoptose
7.
Biol Psychiatry ; 95(5): 389-402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678540

RESUMO

BACKGROUND: LHPP was recently shown to be a risk gene for major depressive disorder. LHPP has been proven to dephosphorylate the residues of histidine, serine, threonine, and tyrosine. However, much remains unknown about how LHPP contributes to depression. METHODS: In the current study, we addressed this issue by integrating approaches of genetics, molecular biology, behavioral testing, and electrophysiology. RESULTS: We found that levels of LHPP were upregulated in glutamatergic neurons of the ventral hippocampus in mice that displayed stress-induced depression-like behaviors. Knockout of LHPP in glutamatergic neurons of the brain improved the spontaneous activity of LHPPflox/flox·CaMKIIαCre+ (conditional knockout) mice. Adeno-associated virus-mediated LHPP knockdown in the ventral hippocampus enhanced resistance against chronic social defeat stress in mice. Manipulations of LHPP levels impacted the density of dendritic spines and excitability of CA1 pyramidal neurons by mediating the expressions of BDNF (brain-derived neurotrophic factor) and PSD95 via the modulation of the dephosphorylation of CaMKIIα and ERK. Notably, compared with wild-type LHPP, human mutant LHPP (E56K, S57L) significantly increased the activity of the CaMKIIα/ERK-BDNF/PSD95 signaling pathway. Finally, esketamine, not fluoxetine, markedly alleviated the LHPP upregulation-induced depression-like behaviors. CONCLUSIONS: These findings provide evidence that LHPP contributes to the pathogenesis of depression via threonine and serine hydrolases, thereby identifying LHPP as a potential therapeutic target in treating patients with major depressive disorder.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Camundongos Knockout , Hipocampo/metabolismo , Neurônios/metabolismo , Serina/metabolismo , Treonina/metabolismo , Estresse Psicológico/tratamento farmacológico
8.
Nat Chem Biol ; 20(4): 463-472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37945894

RESUMO

Ubiquitination plays essential roles in eukaryotic cellular processes. The effector protein CteC from Chromobacterium violaceum blocks host ubiquitination by mono-ADP-ribosylation of ubiquitin (Ub) at residue T66. However, the structural basis for this modification is unknown. Here we report three crystal structures of CteC in complexes with Ub, NAD+ or ADP-ribosylated Ub, which represent different catalytic states of CteC in the modification. CteC adopts a special 'D-E' catalytic motif for catalysis and binds NAD+ in a half-ligand binding mode. The specific recognition of Ub by CteC is determined by a relatively separate Ub-targeting domain and a long loop L6, not the classic ADP-ribosylating turn-turn loop. Structural analyses with biochemical results reveal that CteC represents a large family of poly (ADP-ribose) polymerase (PARP)-like ADP-ribosyltransferases, which harbors chimeric features from the R-S-E and H-Y-E classes of ADP-ribosyltransferases. The family of CteC-like ADP-ribosyltransferases has a common 'D-E' catalytic consensus and exists extensively in bacteria and eukaryotic microorganisms.


Assuntos
Treonina , Ubiquitina , Ubiquitina/química , Treonina/metabolismo , NAD/metabolismo , ADP-Ribosilação , ADP Ribose Transferases/química , Poli(ADP-Ribose) Polimerases/química , Bactérias/metabolismo , Adenosina Difosfato Ribose
9.
Magn Reson Med ; 91(3): 886-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010083

RESUMO

PURPOSE: Application of highly selective editing RF pulses provides a means of minimizing co-editing of contaminants in J-difference MRS (MEGA), but it causes reduction in editing yield. We examined the flip angles (FAs) of narrow-band editing pulses to maximize the lactate edited signal with minimal co-editing of threonine. METHODS: The effect of editing-pulse FA on the editing performance was examined, with numerical and phantom analyses, for bandwidths of 17.6-300 Hz in MEGA-PRESS editing of lactate at 3T. The FA and envelope of 46 ms Gaussian editing pulses were tailored to maximize the lactate edited signal at 1.3 ppm and minimize co-editing of threonine. The optimized editing-pulse FA MEGA scheme was tested in brain tumor patients. RESULTS: Simulation and phantom data indicated that the optimum FA of MEGA editing pulses is progressively larger than 180° as the editing-pulse bandwidth decreases. For 46 ms long 17.6 Hz bandwidth Gaussian pulses and other given sequence parameters, the lactate edited signal was maximum at the first and second editing-pulse FAs of 241° and 249°, respectively. The edit-on and difference-edited lactate peak areas of the optimized FA MEGA were greater by 43% and 25% compared to the 180°-FA MEGA, respectively. In-vivo data confirmed the simulation and phantom results. The lesions of the brain tumor patients showed elevated lactate and physiological levels of threonine. CONCLUSION: The lactate MEGA editing yield is significantly increased with editing-pulse FA much larger than 180° when the editing-pulse bandwidth is comparable to the lactate quartet frequency width.


Assuntos
Neoplasias Encefálicas , Ácido Láctico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Neoplasias Encefálicas/diagnóstico por imagem , Treonina
10.
Methods Mol Biol ; 2743: 21-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147206

RESUMO

Pseudophosphatases have been solidified as important signaling molecules that regulate signal transduction cascades. However, their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this does not preclude their having other functions, including as integral elements of signaling networks. Thus, understanding their roles may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine-threonine/tyrosine-binding], which has been linked to tumorigenesis, hepatocellular carcinoma, glioblastoma, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase, so the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalian cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). We also provide a bioinformatic approach to investigating MK-STYX and MK-STYX(active mutant). These bioinformatic approaches can stand alone experimentally but also complement and enhance "wet" bench approaches such as binding assays and/or activity assays. A combination of cellular, molecular, biochemical, proteomic, and bioinformatic techniques has been a powerful tool in identifying novel functions of MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the functions of other pseudophosphatases.


Assuntos
Neoplasias Hepáticas , Proteômica , Animais , Humanos , Monoéster Fosfórico Hidrolases , Serina , Treonina , Tirosina , Mamíferos
11.
Methods Mol Biol ; 2743: 135-152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147213

RESUMO

Phosphorylation is a reversible post-translational modification that alters the functions of proteins to govern various cellular events, including cell signaling. Kinases catalyze the transfer of a phosphoryl group onto the hydroxyl residue of serine, threonine, and tyrosine, while phosphatases catalyze the removal. Unregulated kinase and phosphatase activity have been observed in various cancers and neurodegenerative diseases. Despite their importance in cell biology, the role of phosphatases in cellular events has yet to be fully characterized, partly due to the lack of tools to identify phosphatase-substrate pairs in a biological context. The method called kinase-catalyzed biotinylation to identify phosphatase substrates (K-BIPS) was developed to remedy the lack of information surrounding phosphatase biology, particularly focused on substrate identification. In the K-BIPS method, the γ-phosphoryl modified adenosine 5'-triphosphate (ATP) analog, ATP-biotin, is used by kinases to biotin-label phosphoproteins. Because phosphatases must initially remove a phosphoryl group for subsequent biotinylation by ATP-biotin, phosphatase substrates are identified in K-BIPS by comparing biotinylated proteins in the presence and absence of active phosphatases. K-BIPS has been used to discover novel substrates of both serine/threonine and tyrosine phosphatases. This chapter describes the K-BIPS method to enable the identification of substrates to any phosphatases of interest, which will augment studies of phosphatase biology.


Assuntos
Trifosfato de Adenosina , Monoéster Fosfórico Hidrolases , Biotinilação , Biotina , Catálise , Serina , Treonina , Tirosina
12.
Bioorg Chem ; 143: 107053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159497

RESUMO

Threonine tyrosine kinase (TTK) is a critical component of the spindle assembly checkpoint and plays a pivotal role in mitosis. TTK has been identified as a potential therapeutic target for human cancers. Here, we describe our design, synthesis and evaluation of a class of covalent TTK inhibitors, exemplified by 16 (SYL1073). Compound 16 potently inhibits TTK kinase with an IC50 of 0.016 µM and displays improved selectivity in a panel of kinases. Mass spectrometry analysis reveals that 16 covalently binds to the C604 cysteine residue in the hinge region of the TTK kinase domain. Furthermore, 16 achieves strong potency in inhibiting the growth of various human cancer cell lines, outperforming its relative reversible inhibitor, and eliciting robust downstream effects. Taken together, compound 16 provides a valuable lead compound for further optimization toward the development of drug for treatment of human cancers.


Assuntos
Proteínas de Ciclo Celular , Treonina , Humanos , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , /farmacologia
13.
J Med Virol ; 95(12): e29257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054548

RESUMO

Pregnancy being an immune compromised state, coronavirus disease of 2019 (COVID-19) disease poses high risk of premature delivery and threat to fetus. Plasma metabolome regulates immune cellular responses, therefore we aimed to analyze the change in plasma secretome, metabolome, and immune cells with disease severity in COVID-19 positive pregnant females and their cord blood. COVID-19 reverse transcriptase-polymerase chain reaction positive pregnant females (n = 112) with asymptomatic (Asy) (n = 82), mild (n = 21), or moderate (n = 9) disease, healthy pregnant (n = 18), COVID-19 positive nonpregnant females (n = 7) were included. Eighty-two cord blood from COVID-19 positive and seven healthy cord blood were also analyzed. Mother's peripheral blood and cord blood were analyzed for untargeted metabolome profiling and cytokines by using high-resolution mass spectrometry and cytokine bead array. Immune scan was performed only in mothers' blood by flow cytometry. In Asy severe acute respiratory syndrome coronavirus 2 infection, the amino acid metabolic pathways such as glycine, serine, l-lactate, and threonine metabolism were upregulated with downregulation of riboflavin and tyrosine metabolism. However, with mild-to-moderate disease, the pyruvate and nicotinamide adenine dinucleotide (NAD+ ) metabolism were mostly altered. Cord blood mimicked the mother's metabolomic profiles by showing altered valine, leucine, isoleucine, glycine, serine, threonine in Asy and NAD+ , riboflavin metabolism in mild and moderate. Additionally, with disease severity tumor necrosis factor-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-6 cytokine storm, IL-9 was raised in both mothers and neonates. Pyruvate, NAD metabolism and increase in IL-9 and IFN-γ had an impact on nonclassical monocytes, exhausted T and B cells. Our results demonstrated that immune-metabolic interplay in mother and fetus is influenced with increase in IL-9 and IFN-γ regulated pyruvate, lactate tricarboxylic acid, and riboflavin metabolism with context to disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Recém-Nascido , Humanos , Feminino , Gravidez , SARS-CoV-2/metabolismo , Gestantes , Interleucina-9 , NAD , Citocinas , Interleucina-6 , Interferon-alfa , Gravidade do Paciente , Imunidade , Piruvatos , Glicina , Lactatos , Riboflavina , Serina , Treonina
14.
Arch Virol ; 169(1): 1, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063941

RESUMO

Epstein-Barr virus-related malignancies have been linked to variations in the sequences of EBV genes, notably EBNA1. Therefore, the purpose of this study was to examine the DBD/DD domain and USP7 binding domain sequences at the C-terminus of the EBNA1 gene in patients with chronic lymphocytic leukemia (CLL). This study included 40 CLL patients and 21 healthy volunteers. Using commercial kits, total DNA was extracted from buffy coat samples, and each sample was tested for the presence of the EBV genome. The C-terminus of EBNA1 was then amplified from positive samples, using nested PCR. Sanger sequencing was used to identify mutations in the PCR products, and the results were analyzed using MEGA11 software. The mean ages of CLL patients and healthy individuals were 61.07 ± 10.2 and 59.08 ± 10.3, respectively. In the EBNA-1 amplicons from CLL patients and healthy individuals, 38.5% and 16.7%, respectively, harbored mutations in the DBD/DD domain of the C-terminal region of the EBNA1 gene (P = 0.378). The mutation frequency at locus 97,320 was significantly higher in CLL patients than in healthy individuals (P = 0.039). Three EBV subtypes based on residue 487 were detected. The frequency of alanine, threonine, and valine in both groups was 88, 8, and 4 percent, respectively (P = 0.207). Moreover, all of the isolates from healthy donors had alanine at this position. The findings indicated that the presence of threonine or valine at residue 487 as well as a synonymous substitution at residue 553 in the C-terminal region of EBNA1 might be involved in the pathogenesis of EBV in CLL patients.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Leucemia Linfocítica Crônica de Células B , Humanos , Alanina , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Voluntários Saudáveis , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/virologia , Treonina , Peptidase 7 Específica de Ubiquitina , Valina
15.
PLoS One ; 18(12): e0295291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060597

RESUMO

Aflatoxin B1 (AFB1), with the strong toxicity and carcinogenicity, has been reported to great toxicity to the liver and other organs of animals. It cause huge economic losses to breeding industry, including the aquaculture industry. Chinese mitten crabs (Eriocheir sinensis), as one of important species of freshwater aquaculture in China, are deeply disturbed by it. However, the molecular and metabolic mechanisms of hepatopancreas and ovary in crabs underlying coping ability are still unclear. Hence, we conducted targeted injection experiment with or without AFB1, and comprehensively analyzed transcriptome and metabolomics of hepatopancreas and ovary. As a result, 210 and 250 DEGs were identified in the L-C vs. L-30 m and L-C vs. L-60 m comparison, among which 14 common DEGs were related to six major functional categories, including antibacterial and detoxification, ATP energy reaction, redox reaction, nerve reaction, liver injury repair and immune reaction. A total of 228 and 401 DAMs in the ML-C vs. ML-30 m and ML-C vs. ML-60 m comparison both enriched 12 pathways, with clear functions of cutin, suberine and wax biosynthesis, tyrosine metabolism, purine metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, ABC transporters and tryptophan metabolism. Integrated analysis of metabolomics and transcriptome in hepatopancreas discovered three Co-enriched pathways, including steroid biosynthesis, glycine, serine and threonine metabolism, and sphingolipid metabolism. In summary, the expression levels and functions of related genes and metabolites reveal the regulatory mechanism of Chinese mitten crab (Eriocheir sinensis) adaptability to the Aflatoxin B1, and the findings contribute to a new perspective for understanding Aflatoxin B1 and provide some ideas for dealing with it.


Assuntos
Braquiúros , Transcriptoma , Animais , Feminino , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Melhoramento Vegetal , Glicina/metabolismo , Serina/metabolismo , Treonina/metabolismo , Braquiúros/genética , Hepatopâncreas/metabolismo
16.
Molecules ; 28(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067431

RESUMO

The formation of a peptide fragment ion [c + 2H]+ was examined using ultraviolet matrix-assisted laser desorption/ionization in-source decay mass spectrometry (UV/MALDI-ISD MS). Unusually, an ISD experiment with a hydrogen-abstracting oxidative matrix 4-nitro-1-naphthol (4,1-NNL) resulted in a [c + 2H]+ ion when the analyte peptides contained serine (Ser), threonine (Thr), and/or cysteine (Cys) residues, although the ISD with 4,1-NNL merely resulted in [a]+ and [d]+ ions. The [c + 2H]+ ion observed could be rationalized through intramolecular hydrogen atom transfer (HAT), like a Type-II reaction via a seven-membered conformation involving intramolecular hydrogen bonding (HB) between the active hydrogens (-OH and -SH) of the Ser/Thr/Cys residues and the backbone carbonyl oxygen at the adjacent amino (N)-terminal side residue. The ISD of the Cys-containing peptide resulted in the [c + 2H]+ ions, which originated from cleavage at the backbone N-Cα bonds far from the Cys residue, suggesting that the peptide molecule formed 16- and 22-membered transient conformations in the gas phase. The time-dependent density functional theory (TDDFT) calculations of the model structures of the Ser and Cys residues indicated that the Cys residue did not show a constructive bond interaction between the donor thiol (-SH) and carbonyl oxygen (=CO), while the Ser residue formed a distinct intramolecular HB.


Assuntos
Cisteína , Fragmentos de Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cisteína/química , Ligação de Hidrogênio , Serina , Treonina , Peptídeos/química , Íons/química , Hidrogênio/química , Oxigênio
17.
ACS Appl Mater Interfaces ; 15(50): 58092-58102, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060278

RESUMO

We synthesized a series of [(l-Ala)x-co-(l-Thr succinate)y] (PATs), which are analogous to natural antifreezing glycoprotein with the structure of [l-Ala-l-Ala-l-Thr disaccharide]n, by varying the composition and degree of succinylation while fixing their molecular weight (Mn) and Ala/Thr ratio at approximately 10-12 kDa and 2:1, respectively. We investigated their ice recrystallization inhibition (IRI), ice nucleation inhibition (INI), dynamic ice shaping (DIS), thermal hysteresis (TH), and protein cryopreservation activities. Both IRI and INI activities were greater for PATs with higher l-Ala content (PATs-3 and PATs-4) than those with lower l-Ala content (PATs-1 and PATs-2). DIS activity with faceted crystal growth was clearly observed in PATs-2 and PATs-4 with a high degree of succinylation. TH was small with <0.1 °C for all PATs and slightly greater for PATs with a high l-Ala content. Except for PATs-1, the protein (lactate dehydrogenase, LDH) stabilization activity was excellent for all PATs studied, maintaining LDH activity as high as that of fresh LDH even after 15 freeze-thaw cycles. To conclude, the cryo-active biomimetic PATs were synthesized by controlling the l-Ala content and degree of succinylation. Our results showed that PATs with an l-Ala content of 65-70% and degree of succinylation of 12-19% exhibited the cryo-activities of IRI, INI, and DIS, and particularly promising properties for the cryoprotection of LDH protein.


Assuntos
Gelo , Ácido Succínico , Treonina , Biomimética , Crioprotetores/farmacologia , Crioprotetores/química , Succinatos
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(5): 721-729, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37927012

RESUMO

Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Proteína Supressora de Tumor p53 , Fosfoproteínas/metabolismo , Antígeno Ki-67 , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células , Fosfoproteínas Fosfatases/metabolismo , Treonina , Serina
19.
Anal Chim Acta ; 1282: 341925, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923411

RESUMO

The detection and identification of biomolecules are essential in the modern era of medical diagnostics. Several approaches have been established, but they have significant limitations such as laborious and time-consuming sample preparation, analysis, and the need to use external probes which provide adequate but not desired levels of accuracy and sensitivity. Herein, we have explored successfully a non-invasive technique to detect and identifybiomolecules such as amino acids and proteins by utilizing their intrinsic fluorescence. The developed confocal microscopy method revealed high and photostable emission counts of these biomolecules including amino acids (tryptophan, phenylalanine, tyrosine, proline, histidine, cysteine, aspartic acid, asparagine, isoleucine, lysine, glutamic acid, arginine) and proteins (HSA, BSA) when they are excited with a green laser. The fluorescence lifetime of the samples enabled the identification and distinction of known and blind samples of biomolecules from each other. The developed optical technique is straightforward, non-destructive and does not require laborious labeling to identify specific proteins, and may serve as the basis for the development of a device that would quickly and accurately identify proteins at an amino acid level. Therefore, this approach would open an avenue for precise detection in imaging and at the same time increases our understanding of chemical dynamics at the molecular level.


Assuntos
Alanina , Aminoácidos , Aminoácidos/análise , Fluorescência , Metionina , Leucina , Glicina , Cistina , Valina , Serina , Treonina , Proteínas , Tirosina , Arginina
20.
Hum Vaccin Immunother ; 19(3): 2279867, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012091

RESUMO

mAbs play an essential role in the therapeutic arsenal. Our laboratory has patented the Rendomab-B49 mAb targeting the endothelin B receptor (ETB). This G protein-coupled receptor plays a driving role in the progression of numerous cancers. We chimerized our mAb (xiRB49) to evaluate its preclinical therapeutic efficacy in different ETB+ tumor models with an antibody drug conjugate approach. As previously reported, the chimerization process of an antibody can alter its functionality. In this article, we present the chimerization of RB49. xiRB49 purified by Protein A remained perfectly soluble and did not aggregate, but it lost all its ability to recognize ETB. A detailed analysis of its variable region using IMGT tools allowed us to identify an unusual proline at position 125. In silico mAb modeling and in vitro experiments were performed for a better understanding of xiRB49 structure-function relationships. Our results show that the proline in position 125 on the heavy chain alters the xiRB49 CDR3 light chain conformation and its mutation to threonine allows complete functional recovery.


Assuntos
Anticorpos Monoclonais , Treonina , Treonina/genética , Anticorpos Monoclonais/uso terapêutico , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA