Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Sci Total Environ ; 931: 172782, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679099

RESUMO

Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.


Assuntos
Neoplasias da Mama , Carbanilidas , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Triclosan , Carbanilidas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Triclosan/toxicidade , Humanos , Feminino , Neoplasias da Mama/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Animais , Movimento Celular/efeitos dos fármacos
2.
Environ Res ; 250: 118532, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401681

RESUMO

Triclosan (TCS) is widely used in a number of industrial and personal care products. This molecule can induce reactive oxygen species (ROS) production in various cell types, which results in diverse types of cell responses. Therefore, the aim of the present study was to summarize the current state of knowledge of TCS-dependent ROS production and the influence of TCS on antioxidant enzymes and pathways. To date, the TCS mechanism of action has been widely investigated in non-mammalian organisms that may be exposed to contaminated water and soil, but there are also in vivo and in vitro studies on plants, algae, mammalians, and humans. This literature review has revealed that mammalian organisms are more resistant to TCS than non-mammalian organisms and, to obtain a toxic effect, the effective TCS dose must be significantly higher. The TCS-dependent increase in the ROS level causes damage to DNA, protein, and lipids, which together with general oxidative stress leads to cell apoptosis or necrosis and, in the case of cancer cells, faster oncogenesis and even initiation of oncogenic transformation in normal human cells. The review presents the direct and indirect TCS action through different receptor pathways.


Assuntos
Espécies Reativas de Oxigênio , Triclosan , Triclosan/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Anti-Infecciosos Locais/toxicidade , Estresse Oxidativo/efeitos dos fármacos
3.
Plant Physiol Biochem ; 207: 108327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271860

RESUMO

Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.


Assuntos
Cosméticos , Triclosan , Avena/metabolismo , Triclosan/metabolismo , Triclosan/toxicidade , Glycine max , Espécies Reativas de Oxigênio/metabolismo , Fitoquelatinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Homeostase , Cosméticos/metabolismo , Cosméticos/farmacologia , Metalotioneína/metabolismo , Transferases/metabolismo
4.
Arch Toxicol ; 98(3): 883-895, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38055018

RESUMO

Triclosan (TCS) is an antimicrobial compound widely used in personal hygiene products such as mouthwash and toothpaste; and has been found in human blood, breast milk, and urine. Interleukin (IL)-6 and IL-1 beta (IL-1ß) are pro-inflammatory cytokines regulating cell growth, tissue repair, and immune function; increased levels of each have been associated with many diseases, including cancer. Previous studies showed that TCS at concentrations between 0.05 and 5 µM consistently increased the secretion of IL-1ß and IL-6 from human immune cells within 24 h of exposure. The current study demonstrates that this increase in secretion was not due simply to release of existing stores but was due to an increase in cellular production/levels (both secreted and intracellular levels) of each of these cytokines. Production of IL-1ß and IL-6 was increased by exposure to one or more concentration of TCS at each length of exposure (10 min, 30 min, 6 h, and 24 h). TCS-induced stimulation of cytokine production was shown to be dependent on the mitogen-activated protein kinase (MAPK) p44/42 (ERK 1/2). It was also shown that these TCS-induced increases in IL-1ß and IL6 production were accompanied by increased mRNA for IL-1ß and IL-6. The ability of TCS to increase production indicates that rather than activating a self-limiting process of depleting cells of already existing stores of IL-1ß or IL-6, TCS can stimulate a process that has the capacity to provide sustained production of these cytokines and thus may lead to chronic inflammation and its pathological consequences.


Assuntos
Interleucina-6 , Triclosan , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Triclosan/toxicidade , Citocinas , Antibacterianos , Células Cultivadas , Interleucina-8/genética
5.
Ecotoxicol Environ Saf ; 269: 115772, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043413

RESUMO

Triclosan (TCS) is a broad-spectrum antibacterial chemical widely presents in people's daily lives. Epidemiological studies have revealed that TCS exposure may affect female puberty development. However, the developmental toxicity after low-dose TCS continuous exposure remains to be confirmed. In our study, 8-week-old ICR female mice were continuously exposed to TCS (30, 300, 3000 µg/kg/day) or vehicle (corn oil) from 2 weeks before mating to postnatal day 21 (PND 21) of F1 female mice, while F1 female mice were treated with TCS intragastric administration from PND 22 until PND 56. Vaginal opening (VO) observation, hypothalamic-pituitary-ovarian (HPO) axis related hormones and genes detection, and ovarian transcriptome analysis were carried out to investigate the effects of TCS exposure on puberty onset. Meanwhile, human granulosa-like tumor cell lines (KGN cells) were exposed to TCS to further explore the biological mechanism of the ovary in vitro. The results showed that long-term exposure to low-dose TCS led to approximately a 3-day earlier puberty onset in F1 female mice. Moreover, TCS up-regulated the secretion of estradiol (E2) and the expression of ovarian steroidogenesis genes. Notably, ovarian transcriptomes analysis as well as bidirectional validation in KGN cells suggested that L-type calcium channels and Pik3cd were involved in TCS-induced up-regulation of ovarian-related hormones and genes. In conclusion, our study demonstrated that TCS interfered with L-type calcium channels and activated Pik3cd to up-regulate the expression of ovarian steroidogenesis and related genes, thereby inducing the earlier puberty onset in F1 female mice.


Assuntos
Puberdade Precoce , Triclosan , Animais , Feminino , Humanos , Camundongos , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Estradiol/metabolismo , Camundongos Endogâmicos ICR , Puberdade , Puberdade Precoce/induzido quimicamente , Triclosan/efeitos adversos , Triclosan/toxicidade , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos
6.
Arch Toxicol ; 98(1): 335-345, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37874342

RESUMO

Triclosan is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifetime exposures to triclosan, yet data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. We evaluated the toxicity/carcinogenicity of triclosan administered dermally to B6C3F1 mice for 104 weeks. Groups of 48 male and 48 female B6C3F1 mice received dermal applications of 0, 1.25, 2.7, 5.8, or 12.5 mg triclosan/kg body weight (bw)/day in 95% ethanol, 7 days/week for 104 weeks. Vehicle control animals received 95% ethanol only; untreated, naïve control mice did not receive any treatment. There were no significant differences in survival among the groups. The highest dose of triclosan significantly decreased the body weight of mice in both sexes, but the decrease was ≤ 9%. Minimal-to-mild epidermal hyperplasia, suppurative inflammation (males only), and ulceration (males only) were observed at the application site in the treated groups, with the highest incidence occurring in the 12.5 mg triclosan/kg bw/day group. No tumors were identified at the application site. Female mice had a positive trend in the incidence of pancreatic islet adenoma. In male mice, there were positive trends in the incidences of hepatocellular carcinoma and hepatocellular adenoma or carcinoma (combined), with the increase of carcinoma being significant in the 5.8 and 12.5 mg/kg/day groups and the increase in hepatocellular adenoma or carcinoma (combined) being significant in the 2.7, 5.8, and 12.5 mg/kg/day groups.


Assuntos
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triclosan , Ratos , Humanos , Camundongos , Masculino , Feminino , Animais , Triclosan/toxicidade , Ratos Endogâmicos F344 , Testes de Carcinogenicidade , Camundongos Endogâmicos , Etanol , Peso Corporal
7.
Chemosphere ; 339: 139708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536533

RESUMO

Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 µM, 20 ± 10 µM and 60 ± 20 µM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.


Assuntos
Triclosan , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis , Quimioprevenção , Mamíferos/metabolismo
8.
Environ Sci Technol ; 57(29): 10542-10553, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431803

RESUMO

Triclosan (TCS), an antimicrobial compound, is known to have potential endocrine-disruptive properties, but the underlying toxic mechanisms at the metabolic level are not well understood. Here, we applied metabolomics and lipidomics combined with mass spectrometry imaging (MSI) to unveil the mechanisms of the enhanced growth of MCF-7 breast cancer cell spheroids (CCS) exposed to TCS. To obtain a wide coverage of metabolites and lipids by using MSI, we used techniques of matrix-assisted laser desorption/ionization (MALDI) and MALDI coupled with laser-postionization. The results showed that TCS and TCS sulfate penetrated into the entire area at 0-3 h and both localized in the inner area at 6 h. After 24 h, a portion of two compounds was released from CCS. Omic data indicated that TCS exposure induced alterations via several pathways, including energy metabolism and biosynthesis of glycerophospholipids and glycerolipids. Further MSI data revealed that the enhancement of energy supply in the peripheral area and the increase of energy storage in the inner area might contribute to the enhanced growth of MCF-7 breast CCS exposed to TCS. This study highlights the importance of integrating metabolite distributions and metabolic profiles to reveal the novel mechanisms of TCS-triggered endocrine disrupting effects.


Assuntos
Neoplasias da Mama , Triclosan , Humanos , Feminino , Triclosan/toxicidade , Lipidômica , Metabolômica/métodos , Metaboloma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
J Biochem Mol Toxicol ; 37(10): e23447, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37368822

RESUMO

Triclosan has been widely used as an antimicrobial agent. However, triclosan was found to cause toxicity, including muscle contraction disturbances, carcinogenesis, and endocrine disorders. In addition, it was found to affect central nervous system function adversely and even have ototoxic effects. Conventional methods for detecting such triclosan can be performed easily. However, the conventional detection methods are inadequate in precisely reflecting the impact of toxic substances on stressed organisms. Therefore, a test model for the toxic environment at the molecular level through the organism is needed. From that point of view, Daphnia magna is being used as a ubiquitous model. D. magna has the advantages of easy cultivation, a short lifespan and high reproductive capacity, and high sensitivity to chemicals. Therefore, the protein expression pattern of D. magna that appear in response to chemicals can be utilized as biomarkers for detecting specific chemicals. In this study, we characterized the proteomic response of D. magna following triclosan exposure via two-dimensional (2D) gel electrophoresis. As a result, we confirmed that triclosan exposure completely suppressed D. magna 2-domain hemoglobin protein and evaluated this protein as a biomarker for triclosan detection. We constructed the HeLa cells in which the GFP gene was controlled by D. magna 2-domain hemoglobin promoter, which under normal conditions, expressed GFP, but upon triclosan exposure, suppressed GFP expression. Consequently, we consider that the HeLa cells containing the pBABE-HBF3-GFP plasmid developed in this study can be used as novel biomarkers for triclosan detection.


Assuntos
Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Daphnia/genética , Daphnia/metabolismo , Células HeLa , Proteômica , Poluentes Químicos da Água/farmacologia , Hemoglobinas/metabolismo , Biomarcadores/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36906249

RESUMO

Triclosan (TCS), a broad-spectrum antimicrobial agent is ubiquitous in aquatic ecosystems; however, the mechanisms regarding TCS-induced reproductive toxicity in the teleost still remains uncertain. In this context, Labeo catla were subjected to sub-lethal doses of TCS for 30 days and variations in expression of genes and hormones comprising the hypothalamic-pituitary-gonadal (HPG) axis along with alterations in sex steroids were evaluated. Moreover, manifestation of oxidative stress, histopathological alterations, in silico docking and the potential to bioaccumulate were also investigated. Exposure to TCS may lead to an inevitable onset of the steroidogenic pathway through its interaction at several loci along the reproductive axis: TCS stimulated synthesis of kisspeptin 2 (Kiss 2) mRNAs which in turn prompts the hypothalamus to secrete gonadotropin-releasing hormone (GnRH), resulting in elevated serum 17ß-estradiol (E2) as a consequence; TCS exposure increased aromatase synthesis by brain, which by converting androgens to oestrogens may raise E2 levels; Moreover, TCS treatment resulted in elevated production of GnRH and gonadotropins by the hypothalamus and pituitary, respectively resulting in the induction of E2. The elevation in serum E2 may be linked to abnormally elevated levels of vitellogenin (Vtg) with harmful consequences evident as hypertrophy of hepatocytes and increment in hepatosomatic indices. Additionally, molecular docking studies revealed potential interactions with multiple targets viz. Vtg and luteinizing hormone (LH). Furthermore, TCS exposure induced oxidative stress and caused extensive damage to tissue architecture. This study elucidated molecular mechanisms underlying TCS-induced reproductive toxicity and the need for regulated use and efficient alternatives which could suffice for TCS.


Assuntos
Carpas , Triclosan , Animais , Triclosan/toxicidade , Carpas/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Hormônio Liberador de Gonadotropina/metabolismo , Estresse Oxidativo
11.
Chemosphere ; 313: 137569, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535497

RESUMO

Endocrine disruptors are chemicals widely used worldwide by industries in a variety of applications. Routinely exposure to these chemicals, even if at low doses, can cause damage effects on human health. In the present study, we evaluated toxic effects of nine chemicals, among which phthalates, using various cell lines to inspect their capability to interfere with cell proliferation and viability. Alongside, we investigated their affinity for phospholipids to assess the possible passage through biomembranes. Experimentally determined logkwIAM.MG values ranged from 1.37 to 3.49 whilst calculated log kwIAM.DD2 spanned from 1.80 to 5.21, supporting the target contaminants to exhibit lipophilicity moderate or very high. The achieved results were related to pharmacokinetic and toxicological properties by ADMET predictor™ and EPI Suite™ software. Triclosan and 4-Nonylphenol were found to be the most toxic against all cell lines screened, showing an IC50 of 30 µM for triclosan on human keratinocytes and of 50 µM for 4-Nonylphenol on human colorectal adenocarcinoma cells. Overall, even if the phthalates showed higher IC50 values (ranging from 170 µM to 280 µM), we can assert that all contaminants herein tested were able to interfere with cell growth and viability.


Assuntos
Disruptores Endócrinos , Triclosan , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/toxicidade , Triclosan/toxicidade , Sobrevivência Celular , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
12.
J Hazard Mater ; 443(Pt B): 130297, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368065

RESUMO

Although triclosan (TCS) is ubiquitously detected in environmental media and organisms, little information is available on its cardiotoxicity and underlying mechanisms. Herein, acute TCS exposure (0.69-1.73 µM) to zebrafish from embryos (6 hpf) to larvae (72 hpf) resulted in cardiac development defects, including increased angle between atrium and ventricle, prolonged SV-BA distance, linearized heart and pericardial cyst in 72-hpf larvae. These malformations resulted from interfered oxidative-stress pathways, reflecting in accumulated ROS and MDA and inhibited SOD and CAT activities. By RT-qPCR, the transcription levels of four cardiac development-related marker genes were significantly up-regulated except for gata4. Besides, miR-144 was identified as a regulatory molecule of TCS-induced cardiac defects by integrating analyses of artificial intervene expression and RNA-Seq data. Interestingly, the target genes of miR-144 were found and interacted with the above marker genes through constructing protein-protein interaction networks. After intervening the expression of miR-144 by microinjecting and activating Wnt pathway by an agonist BML-284, we confirmed that up-regulated miR-144 suppressed the expression of angiogenesis-related genes and negatively regulated Wnt pathway, further triggering angiogenesis disorders and cardiac phenotypic malformation. These findings unravel the underlying molecular mechanisms regarding TCS-induced cardiac development toxicity, and contribute to early warning and risk management of TCS.


Assuntos
MicroRNAs , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Triclosan/metabolismo , Peixe-Zebra/metabolismo , Larva/metabolismo , Cardiotoxicidade , Regulação para Cima , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Biomarcadores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião não Mamífero/metabolismo
13.
Environ Sci Technol ; 57(1): 428-439, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36546883

RESUMO

To gather enough energy to respond to harmful stimuli, most immune cells quickly shift their metabolic profile. This process of immunometabolism plays a critical role in the regulation of immune cell function. Triclosan, a synthetic antibacterial component present in a wide range of consumer items, has been shown to cause immunotoxicity in a number of organisms. However, it is unclear whether and how triclosan impacts immunometabolism. Here, human macrophages were used as model cells to explore the modulatory effect of triclosan on immunometabolism. Untargeted metabolomics using integrated liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed that triclosan changed the global metabolic profile of macrophages. Furthermore, Seahorse energy analysis and 13C isotope-based metabolic flux analysis revealed that triclosan decreased mitochondrial respiratory activity and promoted a metabolic transition from oxidative phosphorylation to glycolysis. Triclosan also polarizes macrophages to the proinflammatory M1 phenotype and activates the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing receptor 3 (NLRP3) inflammasome, which is consistent with triclosan-induced metabolic phenotypic modifications. Collectively, these findings showed that triclosan exposure at micromolar concentrations caused metabolic reprogramming in macrophages, which triggered an inflammatory response. These findings are important for understanding the immunotoxicity caused by triclosan, which is necessary for determining the risk posed by triclosan in the environment.


Assuntos
Inflamassomos , Triclosan , Humanos , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Triclosan/toxicidade , Macrófagos/metabolismo , Antibacterianos/farmacologia , Metabolômica
14.
Sci Total Environ ; 858(Pt 3): 160079, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372182

RESUMO

Triclosan (TCS) and triclocarban (TCC) have become ubiquitous pollutants detected in human body with concentrations up to hundreds of nanomolar levels. Previous studies about the hepatic lipid accumulation induced by TCS and TCC were focused on pollutant itself, which showed weak or no effects. High-fat diet (HFD), as a known environmental factor contributing to lipid metabolism-related disorders, its synergistic action with environmental pollutants deserves concern. The present study aimed to demonstrate the combined effects and potential molecular mechanisms of TCS and TCC with HFD at cellular and animal levels. The in vitro studies showed that TCC and TCS alone had negligible impact on lipid accumulation in HepG2 cells but induced lipid deposition at nanomolar levels when co-exposure with fatty acid. TCC exhibited much higher induction effects than TCS, which was related to their differential regulatory roles in adipogenic-related genes expression. The in vivo studies showed that TCC had little influence on hepatic lipid accumulation in mice fed with normal diet (ND) but could exacerbate the lipid accumulation in mice fed with HFD. Meanwhile, TCC-induced dyslipidemia in mice fed with HFD was more significant than that fed with ND. Therefore, we speculated that TCC might increase the risk of nonalcoholic fatty liver disease (NAFLD) and atherosclerosis in HFD humans. Molecular mechanism studies showed that TCC and TCS could bind to and activate estrogen-related receptor α (ERRα) and ERRγ as well as regulate their expression. TCC had higher activity on ERRα and ERRγ than TCS, which explained partly the differential regulatory roles of two receptors in the lipid accumulation induced by TCC and TCS. This work revealed synergistic effects and molecular mechanisms of TCC and TCS with excessive fatty acid on the hepatic lipid metabolism, which provided a novel insight into the toxic mechanism of pollutants from the perspective of dietary habits.


Assuntos
Dieta Hiperlipídica , Triclosan , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Triclosan/toxicidade , Ácidos Graxos , Estrogênios , Lipídeos
15.
Toxicol In Vitro ; 85: 105477, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122805

RESUMO

Precision-cut tissue slices (PCTS) are frequently used in mammalian research, but its application in the area of aquatic toxicology is still humble. This work proposes the use of PCTS to investigate the effects of the antimicrobial triclosan (TCS) in the mussel Mytilus galloprovincialis. PCTS sectioned from the digestive gland (400 µm) were exposed to 10, 100, and 500 nM TCS for 24 h, and the expression of selected genes, together with the biomarkers, carboxylesterases (CbE) and glutathione S-transferases (GST), and the analysis of lipids in PCTS and culture medium, were used to investigate the molecular initiating events of triclosan in the digestive gland of mussels. Significant dysregulation in the expression of phenylalanine-4-hydroxylase (PAH), glutamate dehydrogenase (GDH), fatty acid synthase (FASN), and 7-dehydrocholesterol reductase (DHCR7), involved in energy, phenylalanine and lipid metabolism, were detected. The analysis of lipids evidenced significant changes in cholesteryl esters (CEs) and membrane lipids in the culture medium of exposed PCTS, suggesting dysregulation of energy and lipid metabolism that can affect lipid dynamics in mussels exposed to triclosan.


Assuntos
Anti-Infecciosos , Mytilus , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/farmacologia , Ésteres do Colesterol/metabolismo , Ésteres do Colesterol/farmacologia , Glutationa/metabolismo , Biomarcadores/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Fenilalanina/farmacologia , Oxigenases de Função Mista/metabolismo , Transferases , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Mamíferos/metabolismo
16.
Environ Res ; 215(Pt 1): 114226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049513

RESUMO

BACKGROUND: Triclosan is a broad-spectrum antimicrobial, and was thought to affect intrauterine development, but the mechanism remains unclear. OBJECTIVE: To explore the association between prenatal triclosan exposure and birth outcomes. METHODS: Based on 726 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS), we used the available (published) data of triclosan in maternal urines, the hormones including thyroid-related hormones, gonadal hormones in cord blood, and adipokines, trimethylamine-N-oxide (TMAO) and its precursors in cord blood to explore possible health effects of triclosan on birth outcomes through assessing different hormones and parameters, using Bayesian mediation analysis. RESULTS: Maternal triclosan exposure was associated with ponderal index (ß = 0.317) and head circumference (ß = -0.172) in generalized linear models. In Bayesian mediation analysis of PI model, estradiol (ß = 0.806) and trimethylamine (TMA, ß = 0.164) showed positive mediation effects, while total thyroxine (TT4, ß = -0.302), leptin (ß = -2.023) and TMAO (ß = -0.110) showed negative mediation effects. As for model of head circumference, positive mediation effects were observed in free thyroxine (FT4, ß = 0.493), TMA (ß = 0.178), and TMAO (ß = 0.683), negative mediation effects were observed in TT4 (ß = -0.231), testosterone (ß = -0.331), estradiol (ß = -1.153), leptin (ß = -2.361), choline (ß = -0.169), betaine (ß = -0.104), acetyl-L-carnitine (ß = -0.773). CONCLUSION: The results indicated triclosan can affect intrauterine growth by interfering thyroid-related hormones, gonadal hormones, adipokines, TMAO and its precursors.


Assuntos
Triclosan , Acetilcarnitina , Teorema de Bayes , Betaína , Colina , Estudos de Coortes , Estradiol , Feminino , Humanos , Leptina , Exposição Materna/efeitos adversos , Metilaminas , Óxidos , Gravidez , Testosterona , Hormônios Tireóideos , Tiroxina , Triclosan/toxicidade
17.
Sci Total Environ ; 850: 158040, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973548

RESUMO

As a ubiquitous environmental estrogen-disrupting chemical, triclosan (TCS) can induce severe osteotoxicity; however, the underlying molecular mechanisms remain uncertain. Herein, we evaluated the toxic effects of TCS on the development of cartilage and osteogenesis in 5-dpf zebrafish. Under TCS exposure from 62.5 to 250 µg/L, several osteodevelopmental malformations were observed, such as defect of craniofacial cartilage, pharyngeal arch cartilage dysplasia, and impairments on skeletal mineralization. Further, the morphology of mature chondrocytes became swollen and deformed, their number decreased, nucleus displacement occurred, and most immature chondrocytes were crowded at both ends of ceratobranchial. SEM observation of larval caudal fin revealed that, the layer of collagen fibers and the mineralized calcium nodules were significantly decreased, with the collagen fibers becoming shorter upon TCS exposure. The activity of bone-derived alkaline phosphatase significantly reduced, and marker functional genes related to cartilage and osteoblast development were abnormally expressed. RNA-seq and bioinformatics analysis indicated, that changes in marker genes intimately related to the negative regulation of miR-30c-5p overexpression targeted by TCS, and the up-regulation of miR-30c induced bone developmental defects by inhibiting the bone morphogenetic protein (BMP) signaling pathway. These findings were confirmed by artificially intervening the expression of miR-30c and using BMP pathway agonists in vivo. In sum, TCS induced osteototoxicity by targeting miR-30c up-regulation and interfering in the BMP signaling pathway. These findings enhance mechanistic understanding of TCS-induced spontaneous bone disorders and bone metastatic diseases. Further research is necessary to monitor chronic TCS-exposure levels in surrounding environments and develop relevant safety precautions based on TCS environmental risk.


Assuntos
MicroRNAs , Triclosan , Fosfatase Alcalina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Colágeno/metabolismo , Estrogênios/metabolismo , MicroRNAs/genética , Triclosan/metabolismo , Triclosan/toxicidade , Peixe-Zebra/metabolismo
18.
Chemosphere ; 307(Pt 3): 135964, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35970220

RESUMO

Triclosan (TCS) is an antibacterial compound used mainly in personal care products. Its widespread use for decades has made it one of the most widely detected compounds in environmental matrices and in biological fluids. Although it has been shown to be an endocrine disruptor in rats and aquatic species, its safe use by humans is unclear. The aim of the present study was to evaluate the effects of exposure to TCS in female rats. To this end, 14 rats were divided into two groups and fed daily as follows: the control group with sesame oil and the TCS group at a dose of 50 mg/kg/day for 28 days. Any signs of toxicity in the rats were observed daily, and the weight and phase of the estrous cycle were recorded. At the end, the rats were decapitated, the serum and ovaries were collected. The levels of testosterone and progesterone in serum were determined by immunoassay and mass spectrometry. Estradiol (in serum) and kisspeptin-10 (in serum and ovary) were measured only by immunoassays. Trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The weight gain study of the rats showed a significant decrease by exposure to TCS, while the estrous cycle was not significantly affected compared to the control. The optimized methods based on mass spectrometry showed a significant decrease in the levels of progesterone and testosterone due to exposure to TCS. In addition, elements determined by ICP-MS in rat serum showed significant changes in calcium, lithium and aluminum due to TCS treatment. Finally, the kisspeptin-10 levels did not show a negative effect due to the treatment by TCS. The results suggest that medium-term exposure to TCS did not significantly alter estrous cyclicity but caused alterations in growth, sex hormone levels and some elements in the rat serum.


Assuntos
Disruptores Endócrinos , Oligoelementos , Triclosan , Alumínio , Animais , Antibacterianos , Cálcio , Disruptores Endócrinos/toxicidade , Estradiol , Feminino , Hormônios Esteroides Gonadais , Humanos , Lítio , Progesterona , Ratos , Óleo de Gergelim , Testosterona , Triclosan/toxicidade
20.
Sci Total Environ ; 842: 156776, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724794

RESUMO

In recent decades there has been a dramatic increase in the incidence and prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disease of the intestinal tissues and a major risk factor of developing colon cancer. While accumulating evidence supports that the rapid increase of IBD is mainly caused by exposure to environmental risk factors, the identities of the risk factors, as well as the mechanisms connecting environmental exposure with IBD, remain largely unknown. Triclosan (TCS) and triclocarban (TCC) are high-volume chemicals that are used as antimicrobial ingredients in consumer and industrial products. They are ubiquitous contaminants in the environment and are frequently detected in human populations. Recent studies showed that exposure to TCS/TCC, at human exposure-relevant doses, increases the severity of colitis and exacerbates colon tumorigenesis in mice, suggesting that they could be risk factors of IBD and associated diseases. The gut toxicities of these compounds require the presence of gut microbiota, since they fail to induce colonic inflammation in mice lacking the microbiota. Regarding the functional roles of the microbiota involved, gut commensal microbes and specific microbial ß-glucuronidase (GUS) enzymes mediate colonic metabolism of TCS, leading to metabolic reactivation of TCS in the colon and contributing to its subsequent gut toxicity. Overall, these results support that these commonly used compounds could be environmental risk factors of IBD and associated diseases through gut microbiota-dependent mechanisms.


Assuntos
Carbanilidas , Colite , Neoplasias do Colo , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Triclosan , Animais , Carbanilidas/toxicidade , Colite/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/epidemiologia , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Camundongos , Fatores de Risco , Triclosan/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA