Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 957
Filtrar
1.
Environ Sci Technol ; 58(42): 18589-18602, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39376183

RESUMO

Deoxynivalenol (DON) can induce endoplasmic reticulum (ER) stress, mitochondrial ROS burst, and macrophage polarization. Here, we investigated the mechanism linking the above three aspects with the dose range relevant to low-level exposure in children. At 0.5 µg/kg bw/day, we found remarkable liver and gut inflammatory responses after 6-week exposure in mice age comparable to humans 7-12 years old. Through antioxidant intervention, we found that ROS played a driver role in macrophage polarization and inflammatory responses induced by DON in the liver and gut. Further bioinformatics analysis uncovered that ER stress-associated protein MAPK7 (ERK5) may bind with AhR to initiate a mitochondrial ROS burst and macrophage M1 polarization. The downstream cellular events of MAPK7-AhR interaction may be mediated by the AhR/STAT3/p-STAT(Ser727) pathway. This mechanism was further supported by DON toxicity mitigation using cyanidin-3-glucoside (C-3-G), which docks to MAPK7 oligomerization region 200-400 aa and disrupts MAPK7-AhR interaction. Overall, our study provides novel evidence and mechanism for DON-induced inflammatory responses in the liver and gut system. Our findings call attention to the health risks associated with low-level DON exposure in the prepuberty children population.


Assuntos
Macrófagos , Espécies Reativas de Oxigênio , Transdução de Sinais , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Criança , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação , Fator de Transcrição STAT3/metabolismo , Tricotecenos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Toxins (Basel) ; 16(10)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39453208

RESUMO

The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system.


Assuntos
Estresse do Retículo Endoplasmático , Inflamação , Macrófagos , RNA Longo não Codificante , Baço , Tricotecenos , Animais , Baço/efeitos dos fármacos , Baço/patologia , Tricotecenos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Inflamação/induzido quimicamente , Inflamação/genética , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Regulação da Expressão Gênica/efeitos dos fármacos , Feminino
3.
Chin J Nat Med ; 22(9): 854-863, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39326979

RESUMO

Four novel macrocyclic trichothecenes, termed mytoxins D-G (1-4), along with four known analogs (5-8), were isolated from the ethyl acetate extract of fermented rice inoculated with the fungus Myrothecium verrucaria PA57. Each compound features a tricyclic 12,13-epoxytrichothec-9-ene (EPT) core. Notably, mytoxin G (4) represents the first instance of a macrocyclic trichothecene incorporating a glucosyl unit within the trichothecene structure. The structures of the newly identified compounds were elucidated through comprehensive spectroscopic analysis combined with quantum chemical calculations. All isolated compounds demonstrated cytotoxic activity against the CAL27 and HCT116 cell lines, which are models for human oral squamous cell carcinoma and colorectal cancer, respectively. Specifically, mytoxin D (1) and mytoxin F (3) exhibited pronounced cytotoxic effects against both cancer cell lines, with IC50 values ranging from 3 to 6 nmol·L-1. Moreover, compounds 1 and 3 were found to induce apoptosis in HCT116 cells by activating caspase-3.


Assuntos
Apoptose , Hypocreales , Tricotecenos , Tricotecenos/química , Tricotecenos/farmacologia , Tricotecenos/isolamento & purificação , Tricotecenos/toxicidade , Humanos , Hypocreales/química , Estrutura Molecular , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Células HCT116 , Oryza/química , Caspase 3/metabolismo
4.
Front Immunol ; 15: 1454530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315103

RESUMO

Introduction: Plant carbon black (PCB) is a new feed additive for zearalenone adsorption in China. However, information regarding whether PCB can effectively absorb deoxynivalenol (DON) is limited. Methods: To explore this research gap, the present study examined the adsorption effectiveness of DON by PCB using a phosphate buffer, artificial gastric juice, and artificial intestinal juice. In a 21-day in vivo trial, 48 male piglets were randomly assigned to four treatment groups: (1) uncontaminated basal diet (CTR), (2) basal diet supplemented with 1 mg/kg PCB(PCB), (3) 2.3 mg/kg DON-contaminated diet (DON), and (4) 2.3 mg/kg DON-contaminated diet supplemented with 0.1% PCB (DON+PCB). Results: When DON concentration was 1 µg/mL, the adsorption rate of PCB on DON in phosphate buffer systems (pH 2.0 and 6.0) and the artificial gastric and intestinal juices were 100%, 100%, 71.46%, and 77.20%, respectively. In the in vivo trial, the DON group significantly increased the DON+deepoxy-deoxynivalenol (DOM-1) content in serum as well as the inflammation cytokine proteins (interleukin-6, interleukin-8, and tumor necrosis factor-α) and mRNA expression of interleukin-6 and longchain acyl-CoA synthetase 4 in the jejunum and ileum. It decreased the villus height, goblet cells, mucosal thickness, and mRNA expression of Claudin-1 compared to the CTR group. In addition, DON decreased the Shannon and Simpson indices; reduced the relative abundances of Firmicutes, Lactobacillus, Candidatus_Saccharimonas, and Ruminococcus; and increased the relative abundances of Terrisporobacter and Clostridium_sensu_stricto_1 in the cecal content. Discussion: In conclusion, these results suggest that PCB showed high adsorption efficacy on DON in vitro, and exhibit the protective effects against various intestinal toxicity manifestations in DON-challenged piglets.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Fuligem , Tricotecenos , Animais , Tricotecenos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Masculino , Ração Animal , Inflamação , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Citocinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia
5.
Toxins (Basel) ; 16(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39330860

RESUMO

The widespread presence of Fusarium mycotoxins in animal feed is a global issue, not only for the health of livestock but also for ensure the safety of food as an end product. High concentrations of zearalenone (ZEN) and deoxynivalenol (DON) have been detected in the diets of Japanese Black (JB) and Holstein Friesian (HF) breeding herds. Consequently, we monitored serum biochemical parameters over a long time in both herds, focusing on anti-Müllerian hormone (AMH) levels and acute-phase inflammation. Additionally, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and progesterone levels were measured in the HF herd. The JB herd, a ZEN-dominant model with low DON contamination, demonstrated ZEN levels that exceeded the Japanese limit in the purchased total mixed rations (TMR). Conversely, the HF herd, which primary consumes DON-dominant feed with low ZEN contamination, had high DON levels in the dent corn silage. Specifically, the JB herd's TMR contained 1.79 mg/kg ZEN and 0.58 mg/kg DON, whereas the HF herd's silage had 15.3 mg/kg DON (dried sample) and 0.1 mg/kg ZEN. Enzyme-linked immunoassay were used to measure urinary ZEN-DON levels following confirmation through liquid chromatography-tandem mass spectrometry. Urinary ZEN-DON levels measured were significantly correlated (p < 0.05, r > 0.6) in both herds. In the HF herd, AMH levels increased (p = 0.01) and serum amyloid A (SAA) levels decreased (p = 0.02) when contaminated and at the end of the monitoring period. Additionally, urinary ZEN and DON levels were significantly correlated with SAA levels (ZEN: p = 0.00, r = 0.46; DON: p = 0.03, r = 0.33), with an increase in ZEN and DON levels resulting in higher SAA levels. The JB herd showed no significant differences. Additionally, in the HF herd, 8-OHdG/Cre levels increased significantly during major contamination periods (p < 0.05). Clinical data from the HF herd indicated an increase in mastitis cases and treatment rates during periods of major contamination. Abortion rates in the HF herd decreased from 22.9% (before monitoring) to 8.9% (during the high contamination period) and finally to 1% (at the end of the monitoring period), with corresponding increases in progesterone levels. ZEN-DON contamination adversely affects breeding cattle's productivity, reproductive performance, and health. Therefore, monitoring urinary ZEN-DON is valuable for detecting contaminants and ensuring the safety of food products.


Assuntos
Ração Animal , Contaminação de Alimentos , Tricotecenos , Zearalenona , Animais , Zearalenona/urina , Zearalenona/toxicidade , Bovinos , Tricotecenos/urina , Tricotecenos/toxicidade , Ração Animal/análise , Contaminação de Alimentos/análise , Feminino , Inocuidade dos Alimentos , Progesterona/urina , Progesterona/sangue , Monitoramento Biológico , 8-Hidroxi-2'-Desoxiguanosina/urina
6.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119846, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39284549

RESUMO

BACKGROUND: Deregulation of lipid metabolism is one of the most prominent metabolic features in cancer. The activation of sphingolipid metabolic pathways affects the proliferation, invasion, angiogenesis, chemoresistance, and immune escape of tumors, including colorectal cancer (CRC). Dehydrogenase/reductase member 2 (DHRS2), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been reported to participate in the regulation of lipid metabolism and impact on cancer progression. Trichothecin (TCN) is a sesquiterpenoid metabolite originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Studies have shown that TCN exerts a broad-spectrum antitumor activity. METHODS: We evaluated the proliferative ability of CRC cells by CCK8 and colony formation assays. A metabolite profiling using liquid chromatography coupled with mass spectrometry (LC/MS) was adopted to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA stability assay and RNA immunoprecipitation (RIP) experiments were applied to determine the post-transcriptional regulation of SPHK1 expression by DHRS2. We used flow cytometry to detect changes in cell cycle and cell apoptosis of CRC cells in the absence or presence of TCN. RESULTS: We demonstrate that DHRS2 hampers the sphingosine kinases 1 (SPHK1)/sphingosine 1-phosphate (S1P) metabolic pathway to inhibit CRC cell growth. DHRS2 directly binds to SPHK1 mRNA to accelerate its degradation in a post-transcriptionally regulatory manner. Moreover, we illustrate that SPHK1 downregulation induced by DHRS2 contributes to TCN-induced growth inhibition of CRC. CONCLUSIONS: The present study provides a mechanistic connection among metabolic enzymes, metabolites, and the malignant progression of CRC. Moreover, TCN could be developed as a potential pharmacological tool against CRC by the induction of DHRS2 and targeting SPHK1/S1P metabolic pathway.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Regulação Neoplásica da Expressão Gênica , Regulação para Baixo , Linhagem Celular Tumoral , Apoptose , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Tricotecenos
7.
Microbiol Res ; 289: 127892, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39255584

RESUMO

The endoplasmic reticulum-mitochondrial encounter structure (ERMES) complex is known to play crucial roles in various cellular processes. However, its functional significance in filamentous fungi, particularly its impact on deoxynivalenol (DON) biosynthesis in Fusarium graminearum, remains inadequately understood. In this study, we aimed to investigate the regulatory function of the ERMES complex in F. graminearum. Our findings indicate significant changes in mitochondrial morphology of ERMES mutants, accompanied by decreased ATP content and ergosterol production. Notably, the toxisome formation in the ERMES mutant ΔFgMDM10 was defective, resulting in a substantial reduction in DON biosynthesis. This suggests a pivotal role of ERMES in toxisome formation, as evidenced by the pronounced inhibition of toxisome formation when ERMES was disrupted by boscalid. Furthermore, ERMES deficiencies were shown to diminish the virulence of F. graminearum towards host plants significantly. In conclusion, our results suggest ERMES is an important regulator of mitochondrial morphology, DON biosynthesis, and toxisome formation in F. graminearum.


Assuntos
Retículo Endoplasmático , Proteínas Fúngicas , Fusarium , Mitocôndrias , Tricotecenos , Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ergosterol/biossíntese , Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica , Trifosfato de Adenosina/metabolismo , Mutação
8.
Toxicology ; 508: 153923, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39147090

RESUMO

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.


Assuntos
Citocromo P-450 CYP2E1 , Ferroptose , Hepatócitos , Espécies Reativas de Oxigênio , Tricotecenos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferroptose/efeitos dos fármacos , Tricotecenos/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Células Hep G2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
9.
Toxicology ; 508: 153928, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153657

RESUMO

Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.


Assuntos
Depsipeptídeos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Tricotecenos , Proteínas ras , Tricotecenos/toxicidade , Humanos , Células CACO-2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Depsipeptídeos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Espécies Reativas de Oxigênio/metabolismo , Intestinos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
10.
Food Chem Toxicol ; 192: 114916, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128691

RESUMO

Trichothecenes are naturally occurring chemicals, produced by fungi, that can be found in contaminated crops. Trichothecenes have the potential to indirectly damage DNA and exacerbate genotoxic effects of genotoxicants. However, genotoxicity data for most trichothecenes are limited and data gaps remain. Here we use the γH2AX/pH3 assay to evaluate DNA damage in vitro of 13 trichothecenes. Three human cell lines (SH-SY5Y, ACHN, and HepG2) were exposed to each trichothecene (0.001-100 µM) to assess toxicity as models for the brain, kidney, and liver, respectively. Concentration-dependent induction of DNA damage, illustrated by γH2AX induction, was observed for all trichothecenes. In vitro-in vivo extrapolation (IVIVE) modeling was employed to support in vivo equivalent potency ranking and screen for risk potential. Diacetoxyscirpenol, T-2, and HT-2 had the highest genotoxic potency, notably in SH-SY5Y cells. Administered equivalent doses (AEDs) derived from IVIVE were compared against exposure data from French total diet studies to assess risk potential. AEDs derived for T-2 and HT-2 from the SH-SY5Y model were within 100-fold of exposure levels for infants aged one year or less. Overall, the potential for trichothecenes to damage DNA and higher exposures in infants highlights the need to investigate the cumulative effects across the broader trichothecene family.


Assuntos
Dano ao DNA , Tricotecenos , Tricotecenos/toxicidade , Humanos , Medição de Risco , Dano ao DNA/efeitos dos fármacos , Células Hep G2 , Linhagem Celular Tumoral
11.
Mycotoxin Res ; 40(4): 631-639, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39078561

RESUMO

The debranning process, at an industrial scale, was applied to grains of two wheat cultivars to determine its effect on Fusarium mycotoxin content and antioxidant activity. Grain samples from the BRS Marcante and BRS Reponte wheat cultivars, naturally contaminated by Fusarium, were used in the study. The dry wheat samples were processed on the polisher once or twice and evaluated by hardness index, chemical composition (moisture, protein, and ash), deoxynivalenol (DON) and zearalenone (ZON) levels, phenolic content, and antioxidant activity. In the BRS Marcante cultivar, the debranning process only slightly reduced the DON and ZON contents in whole-wheat flours compared with the previous cleaning treatment (no-debranned). In the BRS Reponte cultivar, the DON concentration decreased by 36% at a debranning ratio of 5%, obtained by polishing, compared with prior cleaning treatment (no-debranned). In addition, the polishing reduced the ZON level by 56% compared with the cleaned wheat. The debranning process did not reduce the antioxidant capacity. Therefore, debranning is a suitable technology to obtain safer and healthier food by minimizing the mycotoxin content and retaining antioxidant capacity.


Assuntos
Antioxidantes , Fusarium , Micotoxinas , Fenóis , Triticum , Triticum/química , Antioxidantes/análise , Fenóis/análise , Micotoxinas/análise , Zearalenona/análise , Tricotecenos/análise , Manipulação de Alimentos/métodos , Contaminação de Alimentos/análise , Farinha/análise
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000093

RESUMO

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.


Assuntos
Apoptose , Curcumina , Estresse do Retículo Endoplasmático , Tricotecenos , Tricotecenos/farmacologia , Tricotecenos/toxicidade , Animais , Curcumina/farmacologia , Suínos , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Toxicology ; 506: 153880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960307

RESUMO

Deoxynivalenol (DON) is widely found in food and feed, posing a threat to human and animal health. Lycopene (Lyc) is a natural plant extracts with significant antioxidant properties. This study was conducted to investigate the protective effects of Lyc on IPEC-J2 cells upon DON exposure. The detection of cell viability and trypan blue staining showed that Lyc alleviated cell damage and decreased cell apoptotic rate induced by DON. The analysis of reactive oxygen species (ROS) level and antioxidant parameter measurements showed that Lyc significantly down-regulated the content of ROS and restored antioxidant enzyme activity. Furthermore, mitochondrial membrane potential (ΔΨm) detection, mitochondrial DNA copy number (mtDNAcn) assay and adenosine triphosphate (ATP) concentration detection showed Lyc improved mitochondrial function after DON exposure. The results of transcriptome analysis, ROS detection and CCK8 assay suggested that Lyc may activated the oxidative phosphorylation (OXPHOS) to improve mitochondrial function. Conclusively, our results suggested that Lyc alleviated DON-induced oxidative stress by improving mitochondrial function through OXPHOS signaling pathway.


Assuntos
Sobrevivência Celular , Células Epiteliais , Licopeno , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tricotecenos , Animais , Tricotecenos/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Licopeno/farmacologia , Suínos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
14.
Toxins (Basel) ; 16(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057937

RESUMO

Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Lipopolissacarídeos , Estresse Oxidativo , Tricotecenos , Animais , Tricotecenos/toxicidade , Ração Animal/análise , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , Contaminação de Alimentos , Vitamina E/farmacologia , Vitamina E/administração & dosagem , Dieta/veterinária , Calcifediol
15.
Chem Pharm Bull (Tokyo) ; 72(7): 693-699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39048375

RESUMO

This study evaluated the ability of isolated or semisynthesized trichothecene sesquiterpenes to prevent cancer emergence and proliferation and inhibit signal transducer and activator of transcription-3 (STAT3) phosphorylation through in vitro assays. Trichothecinol A (TTC-A), which bears a hydroxy group at C3, exhibited greater cancer prevention, antiproliferation, and STAT3 phosphorylation inhibition effects than trichothecin (TTC), which lacks a hydroxy group at C3. Furthermore, trichothecinol B (TTC-B), which is a reduced derivative of TTC and has similar cytotoxic effect, showed substantially weaker chemoprotection and STAT3 phosphorylation inhibition effects than TTC. These results clearly indicate that the hydroxy group at C3 and carbonyl group at C8 are crucial for inducing both potent chemoprevention and STAT3 phosphorylation inhibition.


Assuntos
Proliferação de Células , Fator de Transcrição STAT3 , Tricotecenos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Tricotecenos/química , Tricotecenos/farmacologia , Tricotecenos/antagonistas & inibidores , Humanos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Fosforilação/efeitos dos fármacos , Linhagem Celular Tumoral , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química
16.
Phytopathology ; 114(9): 2131-2142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38831556

RESUMO

Fusarium head blight caused by Fusarium graminearum is a significant pathogen affecting wheat crops. During the infection process, effector proteins are secreted to modulate plant immunity and promote infection. The toxin deoxynivalenol is produced in infected wheat grains, posing a threat to human and animal health. Serine carboxypeptidases (SCPs) belong to the α/ß hydrolase family of proteases and are widely distributed in plant and fungal vacuoles, as well as animal lysosomes. Research on SCPs mainly focuses on the isolation, purification, and production of a small number of fungi. The role of SCPs in plant secretion, growth and development, and stress resistance has also been extensively studied. However, their functions in F. graminearum, a fungal pathogen, remain relatively unknown. In this study, the biological functions of the FgSCP gene in F. graminearum were investigated. The study revealed that mutations in FgSCP affected the nutritional growth, sexual reproduction, and stress tolerance of F. graminearum. Furthermore, the deletion of FgSCP resulted in reduced pathogenicity and hindered the biosynthesis of deoxynivalenol. The upregulation of FgSCP expression 3 days after infection indicated its involvement in host invasion, possibly acting as a "smokescreen" to deceive the host and suppress the expression of host defensive genes. Subsequently, we confirmed the secretion ability of FgSCP and its ability to inhibit the cell death induced by INF1 in Nicotiana benthamiana cells, indicating its potential role as an effector protein in suppressing plant immune responses and promoting infection. In summary, we have identified FgSCP as an essential effector protein in F. graminearum, playing critical roles in growth, virulence, secondary metabolism, and host invasion.


Assuntos
Carboxipeptidases , Proteínas Fúngicas , Fusarium , Doenças das Plantas , Imunidade Vegetal , Triticum , Fusarium/patogenicidade , Fusarium/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Virulência , Triticum/microbiologia , Triticum/imunologia , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Tricotecenos/metabolismo
17.
Food Chem ; 456: 139886, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870804

RESUMO

Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group. This yielded novel derivatives of DON, 3-epi-DON-13-glutathione (3-epi-DON-13-GSH) as well as its by-product, 3-keto-DON-13-GSH, for which precise structures were validated via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Both cell viability and DNA synthesis assays demonstrated dramatically decreased cytotoxicity of the double-site modified product 3-epi-DON-13-GSH. These findings provide a promising and urgently needed novel method for addressing the problem of DON contamination in agricultural and industrial settings.


Assuntos
Tricotecenos , Tricotecenos/química , Tricotecenos/metabolismo , Contaminação de Alimentos/análise , Humanos , Fusarium/metabolismo , Fusarium/química , Inativação Metabólica , Micotoxinas/química , Micotoxinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Glutationa/metabolismo , Biodegradação Ambiental , Espectrometria de Massas em Tandem
18.
Toxicology ; 506: 153868, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906241

RESUMO

Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 µM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated ß-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Transdução de Sinais , Tricotecenos , Proteína Supressora de Tumor p53 , Animais , Senescência Celular/efeitos dos fármacos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Supressora de Tumor p53/metabolismo , Tricotecenos/toxicidade , Células RAW 264.7 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Chem Res Toxicol ; 37(7): 1139-1154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875017

RESUMO

Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.


Assuntos
Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tricotecenos , Tricotecenos/toxicidade , Humanos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dinaminas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dinâmica Mitocondrial/efeitos dos fármacos , Linhagem Celular Tumoral
20.
J Hazard Mater ; 474: 134601, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823098

RESUMO

Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.


Assuntos
Histona-Lisina N-Metiltransferase , Necroptose , Tricotecenos , Tricotecenos/toxicidade , Animais , Necroptose/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Suínos , Linhagem Celular , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA