Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
STAR Protoc ; 2(3): 100757, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34458872

RESUMO

The pore-forming toxin streptolysin-O (SLO) enables intracellular delivery of molecules up to 100 kDa and has been used for short-term delivery of membrane-impermeable substances to assess their effects on cellular activities. A limitation of this technique is the loss of intracellular components and the potential unpredicted alterations of cellular metabolism and signaling. This protocol, optimized for primary mouse T lymphocytes, describes steps for SLO-mediated cell membrane permeabilization and substance supplementation, followed by immunoblotting and immunofluorescent microscopy for assessing cellular effects. For complete details on the use and execution of this protocol, please refer to Xu et al., 2021a, Xu et al., 2021b.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Biologia Molecular/métodos , Estreptolisinas/farmacocinética , Linfócitos T/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/farmacocinética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacocinética , Separação Celular , Imunofluorescência , Immunoblotting , Ativação Linfocitária , Camundongos , Biologia Molecular/instrumentação , Receptores de Antígenos de Linfócitos T/metabolismo , Baço/citologia , Estreptolisinas/química , Linfócitos T/metabolismo
2.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389624

RESUMO

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Assuntos
Dinoprostona/metabolismo , Inflamação/imunologia , Interleucina-6/metabolismo , Mucosa Respiratória/metabolismo , Trifosfato de Adenosina/farmacocinética , Alarminas/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Células Cultivadas , Humanos , Imunomodulação , Interleucina-6/genética , Fatores de Transcrição NFATC/metabolismo , Fosfolipases A2/metabolismo , Receptores Purinérgicos P2X/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais , Nucleotídeos de Uracila/metabolismo
3.
Arch Biochem Biophys ; 695: 108649, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122160

RESUMO

Podocytes and their foot processes interlinked by slit diaphragms, constitute a continuous outermost layer of the glomerular capillary and seem to be crucial for maintaining the integrity of the glomerular filtration barrier. Purinergic signaling is involved in a wide range of physiological processes in the renal system, including regulating glomerular filtration. We evaluated the role of nucleotide receptors in cultured rat podocytes using non-selective P2 receptor agonists and agonists specific for the P2Y1, P2Y2, and P2Y4 receptors. The results showed that extracellular ATP evokes cAMP-dependent pathways through P2 receptors and influences remodeling of the podocyte cytoskeleton and podocyte permeability to albumin via coupling with RhoA signaling. Our findings highlight the relevance of the P2Y4 receptor in protein kinase A-mediated signal transduction to the actin cytoskeleton. We observed increased cAMP concentration and decreased RhoA activity after treatment with a P2Y4 agonist. Moreover, protein kinase A inhibitors reversed P2Y4-induced changes in RhoA activity and intracellular F-actin staining. P2Y4 stimulation resulted in enhanced AMPK phosphorylation and reduced reactive oxygen species generation. Our findings identify P2Y-PKA-RhoA signaling as the regulatory mechanism of the podocyte contractile apparatus and glomerular filtration. We describe a protection mechanism for the glomerular barrier linked to reduced oxidative stress and reestablished energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/farmacocinética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Podócitos/metabolismo , Receptores Purinérgicos P2/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Feminino , Podócitos/citologia , Ratos , Ratos Wistar , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Antimicrob Chemother ; 75(10): 2977-2980, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32607555

RESUMO

BACKGROUND: Remdesivir is a prodrug of the nucleoside analogue GS-441524 and is under evaluation for treatment of SARS-CoV-2-infected patients. OBJECTIVES: To evaluate the pharmacokinetics of remdesivir and GS-441524 in plasma, bronchoalveolar aspirate (BAS) and CSF in two critically ill COVID-19 patients. METHODS: Remdesivir was administered at 200 mg loading dose on the first day followed by 12 days of 100 mg in two critically ill patients. Blood samples were collected immediately after (C0) and at 1 (C1) and 24 h (C24) after intravenous administration on day 3 until day 9. BAS samples were collected on Days 4, 7 and 9 from both patients while one CSF on Day 7 was obtained in one patient. Remdesivir and GS-441524 concentrations were measured in these samples using a validated UHPLC-MS/MS method. RESULTS: We observed higher concentrations of remdesivir at C0 (6- to 7-fold higher than EC50 from in vitro studies) and a notable decay at C1. GS-441524 plasma concentrations reached a peak at C1 and persisted until the next administration. Higher concentrations of GS-441524 were observed in the patient with mild renal dysfunction. Mean BAS/plasma concentration ratios of GS-441524 were 2.3% and 6.4% in Patient 1 and Patient 2, respectively. The CSF concentration found in Patient 2 was 25.7% with respect to plasma. GS-441524 levels in lung and CNS suggest compartmental differences in drug exposure. CONCLUSIONS: We report the first pharmacokinetic evaluation of remdesivir and GS-441524 in recovered COVID-19 patients. Further study of the pharmacokinetic profile of remdesivir, GS-441524 and the intracellular triphosphate form are required.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacocinética , Betacoronavirus , Infecções por Coronavirus/metabolismo , Estado Terminal/terapia , Pneumonia Viral/metabolismo , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/uso terapêutico , Trifosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/uso terapêutico , Idoso , Alanina/farmacocinética , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Feminino , Humanos , Masculino , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , SARS-CoV-2
5.
J Antimicrob Chemother ; 75(7): 1772-1777, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361744

RESUMO

BACKGROUND: Remdesivir has received significant attention for its potential application in the treatment of COVID-19, caused by SARS-CoV-2. Remdesivir has already been tested for Ebola virus disease treatment and found to have activity against SARS and MERS coronaviruses. The remdesivir core contains GS-441524, which interferes with RNA-dependent RNA polymerases alone. In non-human primates, following IV administration, remdesivir is rapidly distributed into PBMCs and converted within 2 h to the active nucleoside triphosphate form, while GS-441524 is detectable in plasma for up to 24 h. Nevertheless, remdesivir pharmacokinetics and pharmacodynamics in humans are still unexplored, highlighting the need for a precise analytical method for remdesivir and GS-441524 quantification. OBJECTIVES: The validation of a reliable UHPLC-MS/MS method for remdesivir and GS-441524 quantification in human plasma. METHODS: Remdesivir and GS-441524 standards and quality controls were prepared in plasma from healthy donors. Sample preparation consisted of protein precipitation, followed by dilution and injection into the QSight 220 UHPLC-MS/MS system. Chromatographic separation was obtained through an Acquity HSS T3 1.8 µm, 2.1 × 50 mm column, with a gradient of water and acetonitrile with 0.05% formic acid. The method was validated using EMA and FDA guidelines. RESULTS: Analyte stability has been evaluated and described in detail. The method successfully fulfilled the validation process and it was demonstrated that, when possible, sample thermal inactivation could be a good choice in order to improve biosafety. CONCLUSIONS: This method represents a useful tool for studying remdesivir and GS-441524 clinical pharmacokinetics, particularly during the current COVID-19 outbreak.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Doença pelo Vírus Ebola/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Monofosfato de Adenosina/análise , Monofosfato de Adenosina/sangue , Monofosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/farmacocinética , Alanina/análise , Alanina/sangue , Alanina/farmacocinética , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Sensibilidade e Especificidade , Tratamento Farmacológico da COVID-19
6.
Biomacromolecules ; 21(1): 152-162, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31502452

RESUMO

Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.


Assuntos
Compostos Organofosforados/química , Polieletrólitos/química , Polieletrólitos/farmacocinética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/farmacocinética , Animais , Linhagem Celular , Diclofenaco/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Fluoresceína/química , Fluoresceína/farmacocinética , Ácido Hialurônico/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia Eletrônica de Varredura , Mioblastos/efeitos dos fármacos , Polieletrólitos/toxicidade , Polímeros/síntese química , Reologia , Testes de Toxicidade , Ultracentrifugação
7.
J Neuroinflammation ; 15(1): 325, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463629

RESUMO

BACKGROUND: The ATP-gated ionotropic P2X7 receptor (P2X7R) has the unusual ability to function as a small cation channel and a trigger for permeabilization of plasmalemmal membranes. In murine microglia, P2X7R-mediated permeabilization is fundamental to microglial activation, proliferation, and IL-1ß release. However, the role of the P2X7R in primary adult human microglia is poorly understood. METHODS: We used patch-clamp electrophysiology to record ATP-gated current in cultured primary human microglia; confocal microscopy to measure membrane blebbing; fluorescence microscopy to demonstrate membrane permeabilization, caspase-1 activation, phosphatidylserine translocation, and phagocytosis; and kit-based assays to measure cytokine levels. RESULTS: We found that ATP-gated inward currents facilitated with repetitive applications of ATP as expected for current through P2X7Rs and that P2X7R antagonists inhibited these currents. P2X7R antagonists also prevented the ATP-induced uptake of large cationic fluorescent dyes whereas drugs that target pannexin-1 channels had no effect. In contrast, ATP did not induce uptake of anionic dyes. The uptake of cationic dyes was blocked by drugs that target Cl- channels. Finally, we found that ATP activates caspase-1 and inhibits phagocytosis, and these effects are blocked by both P2X7R and Cl- channel antagonists. CONCLUSIONS: Our results demonstrate that primary human microglia in culture express functional P2X7Rs that stimulate both ATP-gated cationic currents and uptake of large molecular weight cationic dyes. Importantly, our data demonstrate that hypotheses drawn from work on murine immune cells accurately predict the essential role of P2X7Rs in a number of human innate immune functions such as phagocytosis and caspase-1 activation. Therefore, the P2X7R represents an attractive target for therapeutic intervention in human neuroinflammatory disorders.


Assuntos
Microglia/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/farmacologia , Adulto , Anexina A5/metabolismo , Cálcio/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Interleucina-1beta/metabolismo , Ionóforos/farmacologia , Masculino , Microglia/efeitos dos fármacos , Nigericina/farmacologia , Fagocitose/efeitos dos fármacos , Purinérgicos/farmacologia
8.
J Am Chem Soc ; 140(4): 1447-1454, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29338214

RESUMO

Nucleoside triphosphates play a central role in biology, but efforts to study these roles have proven difficult because the levels of triphosphates are tightly regulated in a cell and because individual triphosphates can be difficult to label or modify. In addition, many synthetic biology efforts are focused on the development of unnatural nucleoside triphosphates that perform specific functions in the cellular environment. In general, both of these efforts would be facilitated by a general means to directly introduce desired triphosphates into cells. Previously, we demonstrated that recombinant expression of a nucleoside triphosphate transporter from Phaeodactylum tricornutum (PtNTT2) in Escherichia coli functions to import triphosphates that are added to the media. Here, to explore the generality and utility of this approach, we report a structure-activity relationship study of PtNTT2. Using a conventional competitive uptake inhibition assay, we characterize the effects of nucleobase, sugar, and triphosphate modification, and then develop an LC-MS/MS assay to directly measure the effects of the modifications on import. Lastly, we use the transporter to import radiolabeled or 2'-fluoro-modified triphosphates and quantify their incorporation into DNA and RNA. The results demonstrate the general utility of the PtNTT2-mediated import of natural or modified nucleoside triphosphates for different molecular or synthetic biology applications.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Produtos Biológicos/metabolismo , Diatomáceas/metabolismo , Nucleotídeos/metabolismo , Polifosfatos/metabolismo , Trifosfato de Adenosina/farmacocinética , Produtos Biológicos/química , Diatomáceas/química , Estrutura Molecular , Nucleotídeos/química , Nucleotídeos/farmacologia , Polifosfatos/química , Polifosfatos/farmacologia
9.
J Proteome Res ; 17(1): 63-75, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29164889

RESUMO

Recent developments in instrumentation and bioinformatics have led to new quantitative mass spectrometry platforms including LC-MS/MS with data-independent acquisition (DIA) and targeted analysis using parallel reaction monitoring mass spectrometry (LC-PRM), which provide alternatives to well-established methods, such as LC-MS/MS with data-dependent acquisition (DDA) and targeted analysis using multiple reaction monitoring mass spectrometry (LC-MRM). These tools have been used to identify signaling perturbations in lung cancers and other malignancies, supporting the development of effective kinase inhibitors and, more recently, providing insights into therapeutic resistance mechanisms and drug repurposing opportunities. However, detection of kinases in biological matrices can be challenging; therefore, activity-based protein profiling enrichment of ATP-utilizing proteins was selected as a test case for exploring the limits of detection of low-abundance analytes in complex biological samples. To examine the impact of different MS acquisition platforms, quantification of kinase ATP uptake following kinase inhibitor treatment was analyzed by four different methods: LC-MS/MS with DDA and DIA, LC-MRM, and LC-PRM. For discovery data sets, DIA increased the number of identified kinases by 21% and reduced missingness when compared with DDA. In this context, MRM and PRM were most effective at identifying global kinome responses to inhibitor treatment, highlighting the value of a priori target identification and manual evaluation of quantitative proteomics data sets. We compare results for a selected set of desthiobiotinylated peptides from PRM, MRM, and DIA and identify considerations for selecting a quantification method and postprocessing steps that should be used for each data acquisition strategy.


Assuntos
Coleta de Dados/métodos , Coleta de Dados/normas , Espectrometria de Massas/métodos , Trifosfato de Adenosina/farmacocinética , Monitoramento de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Fosfotransferases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos
10.
Pain ; 158(5): 822-832, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28059868

RESUMO

Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inflamação/complicações , Osteoartrite/complicações , Osteoartrite/enzimologia , Limiar da Dor/fisiologia , Dor/enzimologia , Dor/etiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacocinética , Animais , Compostos de Bifenilo/uso terapêutico , Doença Crônica , GMP Cíclico/análogos & derivados , GMP Cíclico/uso terapêutico , Modelos Animais de Doenças , Método Duplo-Cego , Inibidores Enzimáticos/uso terapêutico , Adjuvante de Freund/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Modelos Moleculares , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tionucleotídeos/uso terapêutico , Fatores de Tempo
11.
Muscle Nerve ; 54(3): 460-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26833551

RESUMO

INTRODUCTION: In this study we examined the mechanisms of motor dysfunction in type 2 diabetes. METHODS: Contractile force was measured in isolated nerve-muscle preparations of db/db mice using various protocols for electrical stimulation. Sarcoplasmic reticulum Ca(2+) adenosine triphosphatase protein (SERCA) was quantified by comparing Ca(2+) -dependent and non-specific phosphorylation. RESULTS: Compared with controls, the muscle-nerve preparations of db/db mice displayed muscle atrophy, reduced axonal excitability, and force deficit when stimulated via the nerve. Muscle relaxation after contraction was slowed, and SERCA content was reduced. In contrast, the sensitivity of the neuromuscular junction to tubocurarine and muscle fiber excitability were not affected. CONCLUSIONS: The force deficit in db/db muscles was caused by atrophy and failure of neuromuscular signal transmission related to motor nerve axonal dysfunction. The slowed relaxation rate generally observed in diabetic muscles can, to a large extent, be explained by decreased SERCA pump content. Muscle Nerve 54: 460-468, 2016.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Músculo Esquelético/fisiopatologia , Doenças Musculares/etiologia , Doenças Musculares/patologia , Trifosfato de Adenosina/farmacocinética , Análise de Variância , Animais , Peso Corporal/genética , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Mutação/genética , Antagonistas Nicotínicos/farmacologia , Isótopos de Fósforo/farmacocinética , Receptores para Leptina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tubocurarina/farmacologia
12.
Purinergic Signal ; 11(2): 251-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25917594

RESUMO

The pharmacokinetics of adenosine 5'-triphosphate (ATP) was investigated in a clinical trial that included 15 patients with advanced malignancies (solid tumors). ATP was administered by continuous intravenous infusions of 8 h once weekly for 8 weeks. Three values of blood ATP levels were determined. These were total blood (erythrocyte) and blood plasma (extracellular) ATP pools along with the initial rate of release of ATP into the blood plasma. We found that values related to erythrocyte ATP pools showed great variability (diversity) among individuals (standard deviation of about 30-40% of mean at baseline). It was discovered that erythrocyte baseline ATP pool sizes are unique to each individual and that they fall within a narrow range in each individual. At the end of an 8 h continuous intravenous infusion of ATP, intracellular erythrocyte ATP pools were increased in the range of 40-60% and extracellular ATP declined from elevated levels achieved at the beginning and middle of the infusion, to baseline levels. The ability of erythrocytes to sequester exogenously administered ATP to this degree, after its initial conversion to adenosine in the blood plasma is unexpected, considering that some of the adenosine is likely to have been degraded by in vivo catabolic activities or taken up by organs. The data suggest that administration of ATP by short-term intravenous infusions, of up to 4 h, may be a favorable way for elevating extracellular ATP pools. A large fraction of the total exogenously administered ATP is sequestered into the intracellular compartments of the erythrocytes after an 8 h intravenous infusion. Erythrocytes loaded with ATP are known to release their ATP pools by the application of previously established agents or conditions applied locally or globally to circulating erythrocytes. Rapid degradation of intravenously administered ATP to adenosine and subsequent accumulation of ATP inside erythrocytes indicate the existence of very effective mechanisms for uptake of adenosine from blood plasma. These in vivo studies offer an understanding as to how both adenosine and ATP can act as purinergic transmission signals. ATP levels in blood are always accompanied by adenosine formed by catabolism of ATP. The continuous uptake of adenosine enables both to act in transmission of sometimes opposite functions.


Assuntos
Trifosfato de Adenosina/farmacocinética , Adenosina/metabolismo , Eritrócitos/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Adulto , Eritrócitos/metabolismo , Espaço Extracelular/metabolismo , Feminino , Humanos , Infusões Intravenosas/métodos , Pessoa de Meia-Idade , Neoplasias/metabolismo , Purinérgicos/metabolismo , Fatores de Tempo
13.
Cancer Lett ; 351(2): 242-51, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973521

RESUMO

ATP plays central roles in cancer metabolism and the Warburg effect. Intratumoral ATP concentrations are up to 10(4) times higher than those of interstitial ATP in normal tissues. However, extracellular ATP is not known to enter cancer cells. Here we report that human A549 lung cancer cells internalized extracellular ATP by macropinocytosis as demonstrated by colocalization of a nonhydrolyzable fluorescent ATP and a macropinocytosis tracer high-molecular-weight dextran, as well as by a macropinocytosis inhibitor study. Extracellular ATP also induced increase of intracellular ATP levels, without involving transcription and translation at significant levels, and cancer cells' resistance to ATP-competitor anticancer drugs, likely through the mechanism of ATP internalization. These findings, described for the first time, have profound implications in ATP-sharing among cancer cells in tumors and highlight a novel anticancer target.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Neoplasias Pulmonares/metabolismo , Trifosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/farmacologia , Adenilato Quinase/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Espaço Extracelular/metabolismo , Glicólise , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fosforilação Oxidativa , Fosforilação , Pinocitose , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo
14.
Brain ; 137(Pt 7): 2040-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24866055

RESUMO

GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ(2) P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ(2) P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/farmacocinética , Esclerose Lateral Amiotrófica/patologia , Biotinilação , Encéfalo/patologia , Proteína C9orf72 , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Espectrometria de Massas , Neurônios/patologia , Proteínas Nucleares/metabolismo , Isótopos de Fósforo/farmacocinética , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fatores de Transcrição/metabolismo
15.
Purinergic Signal ; 9(4): 585-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23780311

RESUMO

Extracellular adenosine triphosphate (eATP) transduces purinergic signal and plays an important regulatory role in many biological processes, including tumor cell growth and cell death. A large amount of eATP exists in the fast-growing tumor center and inflammatory tumor microenvironment. Tumor cells could acquire anoikis resistance and anchorage independence in tumor microenvironment and further cause metastatic lesion. Whether such a high amount of eATP has any effect on the anchored and non-anchored tumor cells in tumor microenvironment has not been elucidated and is investigated in this study. Our data showed that autophagy helped hepatoma cells to maintain survival under the treatment of no more than 1 mM of eATP. Only when eATP concentration reached a relatively high level (2.5 mM), cell organelle could not be further maintained by autophagy, and apoptosis and cell death occurred. In hepatoma cells under treatment of 2.5 mM of eATP, an AMP-activated protein kinase (AMPK) pathway was dramatically activated while mTOR signaling pathway was suppressed in coordination with apoptosis. Further investigation showed that the AMPK/mTOR axis played a key role in tipping the balance between autophagy-mediated cell survival and apoptosis-induced cell death under the treatment of eATP. This work provides evidence to explain how hepatoma cells escape from eATP-induced cytotoxicity as well as offers an important clue to consider effective manipulation of cancer.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Adesão Celular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Trifosfato de Adenosina/farmacocinética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Microambiente Tumoral/efeitos dos fármacos
16.
Kardiologiia ; 53(2): 91-6, 2013.
Artigo em Russo | MEDLINE | ID: mdl-23548397

RESUMO

This review is devoted to possibilities of single-photon emission computed tomography (SPECT) combined with pharmacological test with adenosine triphosphate (ATP) to detect myocardial ischemia in patients with ischemic heart disease (IHD). It contains consideration of contemporary problems and limitations inherent in use of pharmacological stress tests in radionuclide diagnostics; discussion of mechanisms of vasodilating effects of ATP in the context of modern concepts of purine receptors; detailed description of technique of pharmacological testing with ATP, as well as contraindications and possible side effects. Experience of foreign studies with the use of ATP stress testing for verification of presence of ischemia in patients with IHD is also presented.


Assuntos
Trifosfato de Adenosina , Isquemia Miocárdica , Imagem de Perfusão do Miocárdio/métodos , Receptores Purinérgicos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/farmacocinética , Ensaios Clínicos como Assunto , Humanos , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/metabolismo , Receptores Purinérgicos/classificação , Receptores Purinérgicos/metabolismo , Reprodutibilidade dos Testes , Tecnécio Tc 99m Sestamibi , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética
17.
J Neurosci ; 33(9): 4151-64, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447623

RESUMO

Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment.


Assuntos
Endocitose/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Trifosfato de Adenosina/farmacocinética , Motivos de Aminoácidos/efeitos dos fármacos , Motivos de Aminoácidos/genética , Análise de Variância , Animais , Biofísica , Biotinilação , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Clatrina/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estimulação Elétrica , Embrião de Mamíferos , Endocitose/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Imunoprecipitação , Mutagênese/fisiologia , Mutação/fisiologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Isótopos de Fósforo/farmacocinética , Fosforilação/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Transfecção , Transferrina/metabolismo
18.
J Neurosci ; 32(38): 13177-88, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993434

RESUMO

Remodeling of dendritic spines through regulation of actin dynamics is a key event in activity-dependent structural plasticity. However, the molecular mechanism underlying this process is poorly understood. Here, we show that activity-dependent modulation of Abl interactor 1-Ca(2+)/calmodulin-dependent kinase IIα (Abi1-CaMKIIα) interaction, and thereby their activity, is important for regulation of spine morphology in cultured rat hippocampal neurons. Abi1 interacts with CaMKIIα at resting conditions through Abi1's tSNARE (target membrane-associated SNARE), which harbors striking homology with CaMKIIα regulatory domain. The interaction of the two proteins, Abi1 and CaMKIIα, results in their simultaneous inhibition, inhibition of CaMKIIα activity, and also inhibition of Abi1-dependent Rac activation. Their functional impediment is released when they dissociate from each other by calmodulin binding through glutamate receptor activation. Before dissociation, Abi1 is phosphorylated by CaMKIIα at serine 88, which may involve in regulation of Rac activation and spine maturation. Our results suggest that modulation of the interaction between Abi1 and CaMKIIα, through the glutamate receptor pathway, may be a molecular mechanism underlying activity-regulated structural plasticity in rat hippocamapal neurons.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Trifosfato de Adenosina/farmacocinética , Animais , Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Ionóforos de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Domínio Catalítico/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Imunoprecipitação , Isótopos de Iodo/farmacocinética , Ionomicina/farmacologia , N-Metilaspartato/farmacologia , Neurônios/ultraestrutura , Fosforilação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Qa-SNARE/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo , Serina/metabolismo , Sinapses/metabolismo , Transfecção , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
19.
Invest Ophthalmol Vis Sci ; 53(11): 7142-8, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22997289

RESUMO

PURPOSE: To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. METHODS: Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-ß-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. RESULTS: PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. CONCLUSIONS: These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma.


Assuntos
Adenosina/biossíntese , Humor Aquoso/fisiologia , Glaucoma/metabolismo , Pressão Intraocular/fisiologia , Malha Trabecular/metabolismo , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Monofosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/farmacocinética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Células Cultivadas , AMP Cíclico/farmacocinética , Espaço Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glaucoma/fisiopatologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Estresse Mecânico , Suínos , Malha Trabecular/citologia
20.
J Neurochem ; 122(5): 1081-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22765017

RESUMO

Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and ß amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sintaxina 1/metabolismo , Trifosfato de Adenosina/farmacocinética , Animais , Encéfalo/metabolismo , Linhagem Celular Transformada , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Proteínas Munc18/deficiência , Proteínas Munc18/genética , Mutação/fisiologia , Isótopos de Fósforo/farmacocinética , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/farmacologia , Treonina/metabolismo , Transfecção , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA