Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
BMC Plant Biol ; 24(1): 669, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004716

RESUMO

BACKGROUND: Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species. RESULTS: We accordingly identified notable differences in the nutrient and bioactive compounds of each population. The highest content (mg/100 g DW) of ascorbic acid (18.67 ± 0.85‒22.48 ± 0.60) and α-tocopherol (31.61 ± 0.15‒38.78 ± 0.67) were found in the populations of T. filipes and T. coerulescens, respectively. Maximum content of catechin was found in the populations of T. teheranica (52.67 ± 0.05‒63.50 ± 0.72 mg/l). Linoleic acid (> 39.11% ± 0.61%) and linolenic acid (> 48.78 ± 0.39%) were the main polyunsaturated fatty acids, with the majority in the populations of T. stellata (54.81 ± 1.39‒63.46 ± 1.21%). The populations of T. stellata were also rich in trigonelline (4.95 ± 0.03‒7.66 ± 0.16 mg/g DW) and diosgenin (9.06 ± 0.06‒11.03 ± 0.17 mg/g DW). CONCLUSIONS: The obtained data provides baseline information to expand the inventory of wild and cultivated Iranian Trigonella species for further exploitation of rich chemotypes in the new foods and specific applications.


Assuntos
Alcaloides , Antioxidantes , Diosgenina , Ácidos Graxos , Sementes , Trigonella , Antioxidantes/metabolismo , Alcaloides/análise , Irã (Geográfico) , Sementes/química , Ácidos Graxos/análise , Trigonella/química , Minerais/análise , Fenóis/metabolismo , Nutrientes/análise
2.
Sci Rep ; 14(1): 11042, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745058

RESUMO

Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.


Assuntos
Níquel , Trigonella , Ácido gama-Aminobutírico , Níquel/toxicidade , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade
3.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649807

RESUMO

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica , Oxilipinas , Terpenos , Transcriptoma , Trigonella , Trigonella/metabolismo , Trigonella/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Terpenos/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
4.
Int J Biol Macromol ; 261(Pt 2): 129882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309405

RESUMO

This research investigates the application of an innovative bio-nanocomposite, Fenugreek seed mucilage/silicon carbide (FSM/SiC), as an exceptionally effective adsorbent for eliminating cadmium ions from aqueous solutions. Optimization of fenugreek mucilage extraction involved ultrasonic methods, establishing ideal conditions with a solid-to-solvent ratio of 1:55, 50 °C temperature, 37 kHz frequency, 100 % power, and 30 min processing time. Comprehensive characterization through FTIR spectroscopy, XRD, imaging, DLS, and SEM confirmed the preservation of crucial adsorption-related characteristics. Enhanced adsorption efficiency was achieved by systematically adjusting pH, temperature, adsorbent concentration, pollutant concentration, and contact time, identifying optimal conditions at pH 6, 0.03 g adsorbent dosage, 35 min contact time, and 30 mg/L initial cadmium concentration at 30 °C. Adsorption kinetics followed a pseudo-second-order model, while the Langmuir isotherm fit suggested monolayered adsorption. Thermodynamic analysis indicated exothermic and spontaneous Cd2+ ion adsorption onto FSM/SiC. Remarkably, FSM/SiC demonstrated exceptional regeneration potential, positioning it as a promising solution for water decontamination and environmental remediation. This research showcases FSM/SiC's potential with a maximum adsorption capacity of 41.6 mg/g for cadmium ions, highlighting its significance in addressing cadmium contamination.


Assuntos
Nanocompostos , Extratos Vegetais , Trigonella , Poluentes Químicos da Água , Cádmio/química , Termodinâmica , Água/química , Íons , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
5.
J Food Sci ; 89(4): 1835-1864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407443

RESUMO

Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.


Assuntos
Alcaloides , Trigonella , Humanos , Alimento Funcional , Trigonella/química , Extratos Vegetais/química , Alcaloides/análise , Antioxidantes/análise , Suplementos Nutricionais , Sementes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
6.
Phytochem Anal ; 35(4): 690-707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212263

RESUMO

INTRODUCTION: This research explores sustainable applications for waste generated from fenugreek (Trigonella foenum-graecum), a plant with both nutritional and medicinal uses. The study specifically targets waste components as potential sources of nutrients and bioactive compounds. OBJECTIVES: The focus is to conduct detailed metabolic profiling of fenugreek waste, assess its anti-inflammatory properties by studying its cyclooxygenase (COX) inhibitory effect, and correlate this effect to the metabolite fingerprint. MATERIALS AND METHODS: Ethanolic extracts of fenugreek fruit pericarp and a combination of leaves and stems were subjected to untargeted metabolic profiling using liquid chromatography-mass spectrometry integrated with online database searches and molecular networking as an effective dereplication strategy. The study also scrutinized the COX inhibitory capabilities of these extracts and saponin-rich fractions prepared therefrom. Molecular docking was employed to investigate the specific interactions between the identified saponins and COX enzymes. RESULTS: The analysis led to the annotation of 81 metabolites, among which saponins were predominant. The saponin-rich fraction of the fruit pericarp extract displayed the strongest COX-II inhibitory activity in the in vitro inhibition assay (IC50 value of 81.64 ± 3.98 µg/mL). The molecular docking study supported the selectivity of the identified saponins towards COX-II. The two major identified saponins, namely, proto-yamogenin 3-O-[deoxyhexosyl (1 → 2)] [hexosyl (1 → 4)] hexoside 26-O-hexoside and trigofenoside A, were predicted to have the highest affinity to the COX-II receptor site. CONCLUSION: In the present study, we focused on the identification of COX-II inhibitory saponins in fenugreek waste through an integrated approach. The findings offer valuable insights into potential anti-inflammatory and cancer chemoprotective applications of fenugreek waste.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Metabolômica , Simulação de Acoplamento Molecular , Saponinas , Espectrometria de Massas em Tandem , Trigonella , Trigonella/química , Saponinas/química , Saponinas/farmacologia , Saponinas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Metabolômica/métodos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ciclo-Oxigenase 2/metabolismo
7.
Int J Biol Macromol ; 259(Pt 2): 129320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218276

RESUMO

Polysaccharides possess excellent moisturizing effects due to their abundance of hydrophilic groups and film-forming properties. Additionally, they can produce a refreshing aroma during the pyrolysis process. However, there is scarce research on their application in the tobacco field. Herein, we investigated the effects of low molecular weight fenugreek polysaccharide (FP) obtained through ethanol fractionation and DEAE-52 cellulose column chromatography on moisture retention and aroma enhancement in tobacco. The moisture retention test revealed that the addition of FP increased the moisture retention index (MRI) of tobacco by 11.72 %-16.69 %, indicating that the hydrophilic nature of polysaccharides facilitated the migration of free water in tobacco to bound water, resulting in reduced water activity. Moreover, the contact angle between polysaccharide and tobacco was <90°, enabling better infiltration into tobacco and slowing down tobacco shrinkage caused by water loss. Among all the components, EFP-20 and EFP-40 demonstrated superior performance. Furthermore, FP exhibited excellent thermal stability below 200 °C and can decomposed to produce aromatic substances at high temperatures. It also demonstrated the ability to adsorb ethyl heptanoate and thermally decompose to produce a substantial amount of heptanoic acid. Consequently, the incorporation of FP in tobacco demonstrated favorable effects on both moisturization and aroma enhancement.


Assuntos
Produtos do Tabaco , Trigonella , Odorantes/análise , Peso Molecular , Polissacarídeos/farmacologia , Polissacarídeos/química , Água/química
8.
Sci Rep ; 14(1): 87, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167975

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a multi-use annual forage legume crop that is widely used in food products such as syrup, bitter run, curries, stew, and flavoring. In the present study, morphological traits, proximate composition (moisture, crude fibre, protein, fat, carbohydrate, and energy value), total phenol and total flavonoid contents, and antioxidant properties of 31 Iranian agro-ecotypic populations of the plant was investigated. Among the leaf and seed samples studied, the seeds exhibited the high ash (3.94 ± 0.12%), fat (7.94 ± 0.78%), crude fibre (10.3 ± 0.25%), protein (35.41 ± 1.86%), and carbohydrate (50.5 ± 1.90%) content. In general, more energy value (kcal/100 g) was also obtained from the seed (318.88 ± 1.78-350.44 ± 1.27) than leaf samples (45.50 ± 1.32-89.28 ± 0.85). Antioxidant activity and power of leaf samples were ranged from 67.95 ± 0.05‒157.52 ± 0.20 µg/ml and from 45.17 ± 0.01‒361.92 ± 0.78 µmol Fe+2 per g dry weigh, respectively. Positive linear correlations between antioxidant activity and total phenolic compounds were observed. A significant correlation between proximate composition (dependent variable) and some morphological features (independent variable) was observed. Considerable variability in the studied traits among the plant samples can be interestingly used in further food and production systems.


Assuntos
Antioxidantes , Trigonella , Antioxidantes/metabolismo , Trigonella/química , Irã (Geográfico) , Extratos Vegetais/química , Sementes/metabolismo , Carboidratos/análise , Compostos Fitoquímicos/análise
9.
BMC Plant Biol ; 24(1): 33, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183006

RESUMO

The possibility to stimulate the production of some nutraceutical properties of fenugreek (Trigonella foenum-graecum L.) sprouts by non-thermal plasma (NTP) processing of the seeds in different conditions was studied. The non-thermal plasma used in this work was a surface dielectric barrier discharge. Two types of processing were performed: direct NTP treatment and NTP with a cover treatment, to simulate the processing of packaged seeds. For all treatments, the effect of pre-soaking of the seeds was studied as well. The analyses of the seeds after processing indicated an increase of the hydrophilicity of their surface for NTP direct treatment as resulted from the water contact angle measurements, which could be due to the strong etching evidenced by scanning electron microscopy imaging. A significant (p < 0.05) increase of the seedling growth, by up to 50%, was found especially for the pre-soaked seeds. These results were correlated with the increase of chlorophyll pigments concentrations, with higher concentrations in the case of NTP direct treatment than for the NTP with cover treatments. Direct NTP treatment for 30 s of dry seeds led to the highest increase of the flavonoid concentration of about three times compared to that obtained for untreated seeds. For the polyphenols and antioxidant activity, NTP with cover treatments proved to be better, with a significant increase, especially for 90 s treatment of the pre-soaked seeds. All the results indicate the possibility of tuning the nutraceutical properties of fenugreek sprouts by NTP treatment.


Assuntos
Trigonella , Suplementos Nutricionais , Clorofila , Flavonoides , Sementes
10.
J Biomol Struct Dyn ; 42(6): 3286-3293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37232424

RESUMO

Trigonella foenum-graecum (TF-graecum), known as Hulba or Fenugreek, is one of the oldest known medicinal plants. It has been found to have antimicrobial, antifungal, antioxidant, wound-healing, anti-diarrheal, hypoglycemic, anti-diabetic, and anti-inflammatory activities. In our current report, we have collected and screened the active compounds of TF-graecum and their potential targets via different pharmacology platforms. Network construction shows that eight active compounds may act on 223 potential bladder cancer targets. The pathway enrichment analysis for the seven potential targets of the eight compounds selected, based on KEGG pathway analysis, was conducted to clarify the potential pharmacological effects. Finally, molecular docking and molecular dynamics simulation showed the stability of protein-ligand interactions. This study highlights the need for increased research into the potential medical benefits of this plant.Communicated by Ramaswamy H. Sarma.


Assuntos
Trigonella , Neoplasias da Bexiga Urinária , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Extratos Vegetais/farmacologia , Hipoglicemiantes/farmacologia
11.
Tissue Cell ; 86: 102265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948956

RESUMO

Acetamiprid (ACMP) is a second-generation neonicotinoid that has been extensively used in the last few years. The present study examined the toxic effects of ACMP on the pancreas and glucose homeostasis through the evaluation of histological and biochemical changes and the possible ameliorative role of fenugreek seed extract (FG). Fifty adult albino rats were divided into 5 groups: negative control, positive control, FG-treated, ACMP-treated, and ACMP + FG-treated groups by oral gavage for 12 weeks. The ACMP-treated group highlighted significant elevations in plasma glucose, glycosylated haemoglobin levels (HbA1c), serum amylase, and serum lipase, along with a decrease in plasma insulin levels. In addition, significant increases in tumour necrosis factor- alpha (TNF-α) and malondialdehyde (MDA) were associated with reductions in the levels of interleukin 10 (IL-10), glutathione peroxidase, and catalase. Moreover, glucose-6-phosphatase and glycogen phosphorylase were significantly increased, with a significant reduction in hexokinase and liver glycogen stores. These biochemical changes were associated with histological changes in pancreatic sections stained by haematoxylin and eosin, Masson stain, and Orcein stain. ACMP-treated cells showed a marked reduction in ß- cell immune reactivity to insulin, with pronounced p53, and beclin 1 immune expression. The use of FG with ACMP induced partial protection except for hexokinase and glycogen phosphorylase.


Assuntos
Aminopiridinas , Antioxidantes , Hexoquinase , Trigonella , Ratos , Animais , Antioxidantes/metabolismo , Hexoquinase/metabolismo , Ratos Wistar , Estresse Oxidativo , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Insulina/metabolismo , Apoptose , Homeostase , Autofagia , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Glucose/metabolismo
12.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894635

RESUMO

Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have been studied less from this point of view. Therefore, extracts were prepared and processed using membrane technologies, micro- and ultrafiltration, to concentrate the biologically active principles. The polyphenol and flavone contents in the extracts were analyzed. The qualitative analysis of the polyphenolic compounds was performed via HPLC, identifying chlorogenic acid, rosmarinic acid and rutin in A. absinthium; chlorogenic acid, luteolin and rutin in A. vulgaris; and genistin in T. foenum-graecum. The antidiabetic activity of the extracts was analyzed by testing their ability to inhibit α-amylase and α-glucosidase, and the anti-inflammatory activity was analyzed by testing their ability to inhibit hyaluronidase and lipoxygenase. Thus, the concentrated extracts of T. foenum-graecum showed high inhibitory activity on a-amylase-IC50 = 3.22 ± 0.3 µg/mL-(compared with acarbose-IC50 = 3.5 ± 0.18 µg/mL) and high inhibitory activity on LOX-IC50 = 19.69 ± 0.52 µg/mL (compared with all standards used). The concentrated extract of A. vulgaris showed increased α-amylase inhibition activity-IC50 = 8.57 ± 2.31 µg/mL-compared to acarbose IC50 = 3.5 ± 0.18 µg/mL. The concentrated extract of A. absinthium showed pronounced LOX inhibition activity-IC50 = 19.71 ± 0.79 µg/mL-compared to ibuprofen-IC50 = 20.19 ± 1.25 µg/mL.


Assuntos
Artemisia absinthium , Artemisia , Trigonella , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Acarbose , Ácido Clorogênico , Anti-Inflamatórios/farmacologia , alfa-Amilases , Rutina
13.
Plant Physiol Biochem ; 202: 107981, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639982

RESUMO

Nickel (Ni) at a toxic level (80 mg kg-1 of soil) adversely affects the crop performance of fenugreek (Trigonella foenum-graecum L.). Melatonin (MEL), a potent plant growth regulator, is ascribed to offer promising roles in heavy metal stress alleviation. In this study, different doses viz. 0, 25, 50, 75 and 100 µM of MEL were administered to plants through foliage under normal and Ni-stress conditions. The experiment unveiled positive roles of MEL in enhancing root-shoot lengths, fresh-dry weights, seed yield and restoring photosynthetic efficiency assessed in terms of higher Fv/Fm, YII, qP, and lower NPQ values in plants exposed to Ni (80 mg kg-1). MEL supplementation (at 75 µM) effectively restricted Ni accumulation and regulated oxidative stress via modulation of MDA, O2-, H2O2 and NO generation, most prominently. Besides, MEL at 75 µM more conspicuously perked up the activities of antioxidant enzymes like SOD, POX, CAT and APX by 15.7, 20.0, 14.5 and 16.5% higher than the Ni-exposed plants for effective ROS scavenging. Likewise, MEL at 75 µM also efficiently counteracted Ni-generated osmotic stress, through an upscaled accumulation of proline (19.6%) along with the enhancement in the concentration of total phenols (13.6%), total tannins (11.2%), total flavonoids (25.5%) and total alkaloids (19.2%) in plant's leaves. Furthermore, under 80 mg kg-1 Ni stress, MEL at 75 µM improved the seed's trigonelline content by 40.1% higher compared to Ni-disturbed plants, upgrading the pharmacological actions of the plant. Thus, the present study deciphers the envisaged roles of MEL in the alleviation of Ni stress in plants to enhance overall crop productivity.


Assuntos
Alcaloides , Melatonina , Trigonella , Regulação para Cima , Antioxidantes , Melatonina/farmacologia , Níquel/toxicidade , Peróxido de Hidrogênio , Metais , Suplementos Nutricionais
14.
J Ethnopharmacol ; 317: 116730, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37336337

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trigonella foenum graecum (fenugreek) has been in use for a long time as a traditional medicine and natural food additive. The reported gastro-protective property makes it unique among other herbs. Seeds and leaves have been shown to exert significant antiatherogenic, antidiabetic, antianorexic, antioxidant, anticarcinogenic, antihyperlipidemic, galactogogue and anti-inflammatory effects in several animal and human models. But its use as a substitute for ulcerative nonsteroidal anti-inflammatory drugs needs to be confirmed. AIM OF THE STUDY: Nonsteroidal anti-inflammatory drugs (NSAIDs) are in common use in treating inflammation associated with a variety of ailments, fever and pain such as menstrual cramps, back pain, arthritic pain and headaches. Their toxicity profile includes the risk of severe gastro-intestinal adverse events like increased bleeding tendency, ulceration, perforation, etc. Conventional NSAIDs have also been reported to reduce the glomerular filtration rate (GFR) by affecting afferent arterioles in nephrons. Exacerbated potassium levels were noted in patients using NSAIDs concomitantly with antihypertensive drugs belonging to the angiotensin converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) classes. In this context, the need of the hour is to discover and isolate new compounds from the reported medicinal plants for evaluation of antiprostaglandin potential and safety profile in terms of the hepato-renal system. These compounds may be used as substitutes for NSAIDs in the future management of inflammation and pain with therapeutic equivalency and organ safety. In this scenario, the present study aimed to assess the antiprostaglandin potential of alkaloidal and glycosidal fractions from the leaves of Trigonella foenum-graecum L. cv. Desi variety, indigenous to Pakistan, in albino mice along with safety profile. The herb has been used as folk medicine since ancient times for treating inflammation and pain. MATERIAL AND METHODS: Alkaloidal and glycosidal fractions were separated from a methanol extract of leaves of the fenugreek Desi variety. After separation of fractions, their subsiding effects on carrageenan-induced inflammation, air pouch exudate prostaglandin-E2 levels, Brewer's yeast induced pyrexia and acetic acid induced abdominal constrictions were assessed in adult male albino mice. The safety profile of fractions was assessed by measuring their effects on mice sera hepato-renal biomarkers. RESULT: Alkaloidal fraction of T. foenum Desi variety was found to be significantly effective in reducing inflammation, air pouch exudate PGE2 levels, fever (≤37 °C) and pain by inhibiting writhes (up to 96.58%) Gradual inhibition of paw edema was observed 1-6 h post-dose, with maximum reduction percentages of 62.82% and 62.57% for 100 mg and 200 mg, respectively. Both fractions did not disturb the normal physiology of the hepato-renal system by showing normal biomarker values. CONCLUSION: In summary, the results demonstrate the potent antiprostaglandin potential of the alkaloidal fraction of gastroprotective fenugreek "Desi" leaves with hepato-renal system safety and hence justify its use as a substitute for ulcerative nonsteroidal anti-inflammatory drugs.


Assuntos
Alcaloides , Antineoplásicos , Trigonella , Adulto , Humanos , Camundongos , Animais , Paquistão , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Folhas de Planta
15.
Sci Rep ; 13(1): 8039, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198236

RESUMO

Intercropping is one of the most important components of sustainable agriculture. The effects of chemical fertilizer (CF), arbuscular mycorrhizal fungi (AMF) (Glomus sp.) and AMF + nitrogen-fixing bacteria (NFB) including Azospirillum and Azotobacter (AMF + NFB) was studied on essential oil yield and compositions of Moldavian balm (Mb) (Dracocephalum moldavica L.) in sole cropping and intercropping with fenugreek (F) (Trigonella foenum-graecum L.). The experiment was conducted during 2020 and 2021 growing seasons in East Azarbayhan, Iran. The highest dry herbage yield (6132 kg ha-1) was obtained in Mb:F(4:2) and CF treatment. After sole Moldavian balm, the highest essential oil yield (15.28 kg ha-1) was obtained in Mb:F (4:2) and AMF + NFB treatment. Geranial, geranyl acetate, geraniol, neral, and nerol were the main chemical constituents of essential oil. In AMF + NFB treatments the geranial contents in intercropping patterns of Mb:F (1:1), (2:2) and (100:50), increased by 25.1, 15.5 and 34.6% compared with sole Moldavian balm. The highest LERT values were observed in Mb:F (100:50) cropping pattern in 2021 (1.70 and 1.63 for CF and AMF + NFB treatments). Generally, it can be concluded that Mb:F (100:50) intercropping and use of AMF + NFB bio-fertilizer could be recommended to medicinal plant growers in sustainable production systems.


Assuntos
Micorrizas , Óleos Voláteis , Trigonella , Fertilizantes , Bactérias
16.
Environ Res ; 231(Pt 1): 116079, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156353

RESUMO

The tobacco cutworm, Spodoptera litura and cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) are important pests of various agricultural crops that cause sevier economic loses throughout the world. Indiscriminate and frequent use of insecticide may lead to development of resistance in these pests. Nanotechnology has given an alternative to manage and overcome insecticide resistance for pest management strategies. In the present study the iron nanoparticles derived from Trigonella foenum-graecum leaf extract (FeNPs) was investigated for its ecofriendly management of pyrethroid resistance in two lepidopteron pest species at 24 h, 48 h and 72 h post treatment. The result showed high mortality (92.83% and 91.41%) of S. litura and H. armigera at 72 h treatment upon FeNPs and fenvalerate (Fen + FeNPs) teratment. Probit analysis revealed high LC50 upon Fen + FeNPs treatment (130.31 and 89.32 mg/L) with a synergism ratio of 1.38 and 1.36. Antifeedant activity of six dofferent concentration of FeNPs revelaed increased antifeedant activity with respect to increasing concentration of nanoparticles ranging from 10 to 90% and 20-95% againt both insects (p<0.05). Detoxification activity of carboxylesterase was elevated at 630 µmol/mg protein/min (p<0.05) in fenvalerate treatment, whereas decreased activity was found (392umole/mg protein/min) in FeNPs and Fen + FeNPs treatment (P<0.001). GST and P450 activity was also increased in fenvalerate treatment, whereas decreased activity was observed in FeNPs and Fen + FeNPs. Esterase isoenzyme banding pattern revealed four bands in fenvalerate treatment and two bans (E3 and E4) in Fen + FeNPs combination. Hence the present study concludes that T. foenum-graecum synthesized iron nanoparticles could be an effective alternate for ecofriendly management of S. litura and H. armigera.


Assuntos
Inseticidas , Mariposas , Nanopartículas , Trigonella , Animais , Spodoptera , Larva
17.
Plant Sci ; 332: 111703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031743

RESUMO

Nickel (Ni) contamination of farming soil has become currently a recurring global menace to agriculture crop productivity. The purpose of the present study was to investigate the putative contributions of abscisic acid (ABA) to extemporize Ni tolerance in Trigonella foenum-graecum L. (fenugreek) plants. The outcomes of this study exposed that exogenous supplementation of ABA at 10, 20, 40 and 80 µM considerably enhanced the growth and physiological attributes of fenugreek under 80 mg Ni kg-1 soil, however, 40 µM of ABA exhibited the best results under normal and Ni-stressed conditions. ABA-mediated Ni tolerance was marked by reductions in Ni accumulation and consequent lowering of reactive oxygen species (ROS) like hydrogen peroxide and superoxide radicals. Contrarily, NO (nitric oxide) level increased in response to ABA application under Ni stress conditions, accompanied by promoted antioxidant activities through improved levels of secondary metabolites, proline, and perked-up ROS-detoxification enzymes activities. Exogenous ABA at 40 µM concentration applied to Ni-exposed plants (80 mg Ni kg-1 soil) improved the total content of alkaloids, phenolics, flavonoids and tannins by 14.3%, 10.2%, 15.4% and 7.0%, respectively, over Ni-stressed plants alone. Additionally, seed trigonelline content imparting several pharmacological actions to the fenugreek plant exhibited a remarkable escalation upto 3.6 and 2.6 mg g-1 DW under '40 µM ABA' and '40 µM ABA + 80 mg Ni kg-1 soil' treatments, respectively. The findings of the study suggest that ABA plays a key role in enhancing the overall performance of the fenugreek crop under excessive Ni stress.


Assuntos
Metais Pesados , Trigonella , Antioxidantes/metabolismo , Níquel/metabolismo , Ácido Abscísico/metabolismo , Trigonella/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Solo
18.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770623

RESUMO

The aqueous Trigonella foenum-graecum L. leaf extract belonging to variety HM 444 was used as reducing agent for silver nanoparticles (AgNPs) synthesis. UV-Visible spectroscopy, Particle size analyser (PSA), Field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (FESEM-EDX) and High-resolution transmission electron microscopy (HRTEM) were used to characterize AgNPs. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Fourier Transform Infrared Spectroscopy (FTIR) was done to find out the possible phytochemicals responsible for stabilization and capping of the AgNPs. The produced AgNPs had an average particle size of 21 nm, were spherical in shape, and monodispersed. It showed catalytic degradation of Methylene blue (96.57%, 0.1665 ± 0.03 min-1), Methyl orange (71.45%, 0.1054 ± 0.002 min-1), and Rhodamine B (92.72%, 0.2004 ± 0.01 min-1). The produced AgNPs were excellent solid bio-based sensors because they were very sensitive to Hg2+ and Fe3+ metal ions with a detection limit of 11.17 µM and 195.24 µM, respectively. From the results obtained, it was suggested that aqueous leaf extract demonstrated a versatile and cost-effective method and should be utilized in future as green technology for the fabrication of nanoparticles.


Assuntos
Mercúrio , Nanopartículas Metálicas , Trigonella , Corantes/metabolismo , Prata/química , Trigonella/química , Colorimetria , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Mercúrio/metabolismo , Química Verde/métodos , Extratos Vegetais/química , Difração de Raios X
19.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834889

RESUMO

Silver nanoparticles (AgNPs) were fabricated using Trigonella foenum-graceum L. leaf extract, belonging to the variety HM 425, as leaf extracts are a rich source of phytochemicals such as polyphenols, flavonoids, and sugars, which function as reducing, stabilizing, and capping agents in the reduction of silver ions to AgNPs. These phytochemicals were quantitatively determined in leaf extracts, and then, their ability to mediate AgNP biosynthesis was assessed. The optical, structural, and morphological properties of as-synthesized AgNPs were characterized using UV-visible spectroscopy, a particle size analyzer (PSA), FESEM (field emission scanning electron microscopy), HRTEM (high-resolution transmission electron microscopy), and FTIR (Fourier transform infrared spectroscopy). HRTEM analysis demonstrated the formation of spherically shaped AgNPs with a diameter of 4-22 nm. By using the well diffusion method, the antimicrobial potency of AgNPs and leaf extract was evaluated against microbial strains of Staphylococcus aureus, Xanthomonas spp., Macrophomina phaseolina, and Fusarium oxysporum. AgNPs showed significant antioxidant efficacy with IC50 = 426.25 µg/mL in comparison to leaf extract with IC50 = 432.50 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The AgNPs (64.36 mg AAE/g) demonstrated greater total antioxidant capacity using the phosphomolybdneum assay compared to the aqueous leaf extract (55.61 mg AAE/g) at a concentration of 1100 µg/mL. Based on these findings, AgNPs may indeed be useful for biomedical applications and drug delivery systems in the future.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Trigonella , Antioxidantes/química , Antibacterianos/química , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Egypt J Immunol ; 30(1): 57-72, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36592119

RESUMO

The effect of fenugreek oil (FO) on some parasitological, immunological, and biochemical parameters in mice infected with Schistosoma mansoni were investigated. Chromatography mass spectrometry (GC/MS) analysis of FO revealed that linoleic acid, (E,E)-4-decadienal, and isopropyl myristate are the major constituents of FO. The results showed that treatment of S. mansoni-infected mice with 0.15 ml of FO daily for 10 successive days exhibited a significant reduction in the number of S. mansoni male worms, and coupled worms as compared to an infected control group (p < 0.05). Regarding total egg counts and oogram patterns, FO effectively reduced the percentage of hepatic and intestinal egg counts, and elevated immature and dead eggs in ratios closely to praziquantel (PZQ) treated mice. Meanwhile, FO significantly elevated the levels of glutathione and co-enzyme Q-10 (COQ-10) up to 0.33±0.02 ng/ml and 0.28±0.02 ng/ml, respectively. However, when accompanied with PZQ, COQ-10 level was closer to that of the normal control group (0.37 ± 0.021 ng/ml). The result also showed that FO significantly reduced levels of lipid per-oxidation (0.165±0.01 ng/ml) and vascular endothelial growth factor (0.25±0.02 pg/ml) as compared to the PZQ-treated group (0.234±0.02 ng/ml and 0.31±0.008 pg/ml, respectively). Moreover, FO recovered normal values of caspase-7, and when accompanied with PZQ, annexin-V was also significantly reduced. However, treatment of S. mansoni-infected mice with PZQ led to a significant increase in the level of annexin-V as compared to S. mansoni-infected mice group (p < 0.05). It can be concluded that FO may have a potential anti-schistosomal, antioxidant and anti-inflammatory activities. Also, it may have a recovering effect on apoptotic parameters toward the normal values.


Assuntos
Esquistossomose mansoni , Trigonella , Animais , Humanos , Masculino , Camundongos , Anexinas/farmacologia , Fígado , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Schistosoma mansoni , Esquistossomose mansoni/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Óleos de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA