Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
J Obstet Gynaecol ; 44(1): 2350761, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38785148

RESUMO

BACKGROUND: Asiaticoside (AS) has been reported to improve the changes induced by high glucose stimulation, and it may have potential therapeutic effects on gestational diabetes mellitus (GDM). This study aims to explore the effect of AS on the cell model of GDM and the action mechanism of the PI3K/AKT pathway. METHODS: The GDM model was established in HTR-8/Svneo cells with a high glucose (HG) medium. After the cytotoxicity assay of AS, cells were divided into the control group, HG group and HG + AS group to conduct control experiment in cells. The cell proliferation and migration were detected by CCK-8 assay and scratch test, respectively. The mRNA levels of PI3K, AKT2, mTORC1, and GLUT4 in PI3K/AKT signalling pathway were measured by RT-PCR, and the protein expressions of these signalling molecules were monitored by western blot. RESULTS: AS showed a promotion effect on the cell proliferation rate of HTR-8/Svneo cells, and 80 µmol/L AS with a treatment time of 48 h had no cytotoxicity. The cell proliferation rate, migration rate, mRNA levels and protein expressions of PI3K, AKT2, mTORC1, and GLUT4 in the HG group were significantly lower than those in the control group, which were significantly increased in the HG + AS group (p < 0.05). CONCLUSIONS: AS can facilitate the cell proliferation and migration in the cell model of GDM, and might play a role in GDM treatment via PI3K/AKT pathway.


Asiaticoside possesses various pharmacological effects and has been reported to show a beneficial effect on the treatment of diabetes mellitus. This research firstly investigated the effect and mechanism of asiaticoside on gestational diabetes mellitus, and found that asiaticoside could facilitate the cell proliferation and migration of HTR-8/Svneo cells treated with high glucose, and affect the signalling molecules of PI3K/AKT pathway. Therefore, asiaticoside may be a novel useful therapeutic drug in the treatment of gestational diabetes mellitus.


Assuntos
Movimento Celular , Proliferação de Células , Diabetes Gestacional , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Triterpenos , Humanos , Diabetes Gestacional/metabolismo , Feminino , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Triterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/efeitos dos fármacos , Linhagem Celular , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Glucose/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
2.
Chemosphere ; 358: 142138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670504

RESUMO

Cadmium (Cd), a well-established developmental toxicant, accumulates in the placentae and disrupts its structure and function. Population study found adverse pregnancy outcomes caused by environmental Cd exposure associated with cell senescence. However, the role of autophagy activation in Cd-induced placental cell senescence and its reciprocal mechanisms are unknown. In this study, we employed animal experiments, cell culture, and case-control study to investigate the above mentioned. We have demonstrated that exposure to Cd during gestation induces placental senescence and activates autophagy. Pharmacological and genetic interventions further exacerbated placental senescence induced by Cd through the suppression of autophagy. Conversely, activation of autophagy ameliorated Cd-induced placental senescence. Knockdown of NBR1 exacerbated senescence in human placental trophoblast cells. Further investigations revealed that NBR1 facilitated the degradation of p21 via LC3B. Our case-control study has demonstrated a positive correlation between placental senescence and autophagy activation in all-cause fetal growth restriction (FGR). These findings offer a novel perspective for mitigating placental aging and placental-origin developmental diseases induced by environmental toxicants.


Assuntos
Autofagia , Cádmio , Senescência Celular , Placenta , Trofoblastos , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Feminino , Gravidez , Humanos , Senescência Celular/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Placenta/efeitos dos fármacos , Placenta/citologia , Animais , Poluentes Ambientais/toxicidade , Estudos de Casos e Controles , Retardo do Crescimento Fetal/induzido quimicamente , Camundongos
3.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579532

RESUMO

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Assuntos
Apoptose , Benzo(a)pireno , Sobrevivência Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Receptores de Hidrocarboneto Arílico , Trofoblastos , Humanos , Benzo(a)pireno/toxicidade , Placenta/efeitos dos fármacos , Placenta/citologia , Linhagem Celular , Feminino , Gravidez , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação/induzido quimicamente , Hipóxia Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
4.
Eur J Pharmacol ; 972: 176569, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593930

RESUMO

In our previous study, we uncovered that ghrelin promotes angiogenesis in human umbilical vein endothelial cells (HUVECs) in vitro by activating the Jagged1/Notch2/VEGF pathway in preeclampsia (PE). However, the regulatory effects of ghrelin on placental dysfunction in PE are unclear. Therefore, we applied Normal pregnant Sprague-Dawley (SD) rats, treated with lipopolysaccharide (LPS), to establish a PE-like rat model. The hematoxylin-eosin (HE) staining method and immunohistochemistry (IHC) technology were used to detect morphological features of the placenta. IHC and Western blot were applied to examine Bax and Bcl-2 expression levels. The concentrations of serum soluble fms-like tyrosine kinase-1 (sFlt1) and placental growth factor (PIGF) were assessed by enzyme-linked immunosorbent assay (ELISA) kit. In addition, the apoptosis rates of JEG-3 and HTR-8/SVneo trophoblast cells were determined by Annexin V-FITC/PI apoptosis detection kit. Cell migratory capacities were assessed by scratch-wound assay, and RNA-sequencing assay was used to determine the mechanism of ghrelin in regulating trophoblast apoptosis. It has been found that ghrelin significantly reduced blood pressure, urinary protein, and urine creatinine in rats with PE, at the meanwhile, ameliorated placental and fetal injuries. Second, ghrelin clearly inhibited placental Bax expression and circulating sFlt-1 as well as elevated placental Bcl-2 expression and circulating PIGF, restored apoptosis and invasion deficiency of trophoblast cells caused by LPS in vitro. Finally, transcriptomics indicated that nuclear factor kappa B (NF-κB) was the potential downstream pathway of ghrelin. Our findings illustrated that ghrelin supplementation significantly improved LPS-induced PE-like symptoms and adverse pregnancy outcomes in rats by alleviating placental apoptosis and promoting trophoblast migration.


Assuntos
Apoptose , Modelos Animais de Doenças , Grelina , Lipopolissacarídeos , NF-kappa B , Placenta , Pré-Eclâmpsia , Ratos Sprague-Dawley , Animais , Grelina/farmacologia , Feminino , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Gravidez , Placenta/metabolismo , Placenta/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Apoptose/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/genética , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
BMC Vet Res ; 20(1): 167, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689278

RESUMO

Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through ß-catenin and mTOR pathways.


Assuntos
Arginina , Diferenciação Celular , Proliferação de Células , Serina-Treonina Quinases TOR , Trofoblastos , beta Catenina , Animais , Arginina/farmacologia , Arginina/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Suínos , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular/efeitos dos fármacos , beta Catenina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Linhagem Celular
6.
Environ Toxicol ; 39(6): 3400-3409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450882

RESUMO

Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3ßHSD1, 17ßHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.


Assuntos
Antígenos CD36 , PPAR gama , Trofoblastos , Humanos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Feminino
7.
Cells ; 13(2)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247805

RESUMO

Low-dose aspirin (LDA) is efficacious in preventing preeclampsia, but its mechanism of action is unclear. Conflicting evidence suggests that it may inhibit placental trophoblast release of soluble fms-like tyrosine kinase-1 (sFlt1), a key mediator of preeclampsia. We examined whether, and at what concentrations, aspirin and its principal metabolite, salicylic acid, modulate sFlt1 release and/or expression in trophoblasts. Human trophoblast lines BeWo and HTR-8/SVneo were cultured; BeWo cells were also treated with 1% oxygen vs. normoxia to mimic hypoxia in preeclamptic placentas. Cells were treated with aspirin or salicylic acid vs. vehicle for 24 h at concentrations relevant to LDA and at higher concentrations. Protein concentrations (ELISA) and mRNA expression (RT-PCR) of sFlt1 were determined. Under normoxia, LDA-relevant concentrations of aspirin (10-50 µmol/L) or salicylic acid (20-100 µmol/L) had no significant effect on sFlt1 protein release or mRNA expression in BeWo cells. However, inhibition was observed at higher concentrations (1 mmol/L for aspirin and ≥200 µmol/L for salicylic acid). Hypoxia enhanced sFlt1 protein release and mRNA expression in BeWo cells, but these responses were not significantly affected by either aspirin or salicylic acid at LDA concentrations. Similarly, neither drug altered sFlt1 protein secretion or mRNA expression in normoxic HTR-8/SVneo cells at LDA concentrations. We suggest that direct modulation of trophoblast release or expression of sFlt1 is unlikely to be a mechanism underlying the clinical efficacy of LDA in preeclampsia.


Assuntos
Aspirina , Pré-Eclâmpsia , Trofoblastos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Feminino , Humanos , Gravidez , Aspirina/farmacologia , Hipóxia , Placenta , Pré-Eclâmpsia/tratamento farmacológico , Receptores Proteína Tirosina Quinases , RNA Mensageiro/genética , Ácido Salicílico/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
8.
Reprod Sci ; 31(5): 1268-1277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38110819

RESUMO

Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.


Assuntos
Movimento Celular , Proliferação de Células , Colforsina , AMP Cíclico , Transdução de Sinais , Trofoblastos , Humanos , Movimento Celular/efeitos dos fármacos , Colforsina/farmacologia , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Feminino , Gravidez , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia
9.
Toxicol In Vitro ; 80: 105328, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35150872

RESUMO

Proper migration and invasion of extravillous trophoblast cells into the endometrium in early gestation is essential for successful embryo implantation. The development of nanotechnology has led to the emergence of nickel nanoparticles (Ni NPs), for which attendant health concerns are widespread. Ni NPs are known to affect reproduction and be embryotoxic, but whether they affect the migration and invasion functions of trophoblast cells is unclear. We investigated the effects of Ni NPs on the migration and invasion of HTR-8/SVneo in extravillous trophoblast cells and explored the possible role of the PI3K/AKT/MMP2 signaling pathway in this regard. Results showed that the migration and invasion of cells was significantly inhibited by the exposure of Ni NPs. The protein and mRNA levels of PI3K/AKT/MMP2 signaling pathway were significantly reduced with the increase in Ni NPs concentration. The presence of the PI3K activator 740Y-P partially attenuated the inhibition of cell migration and invasion by Ni NPs, confirming the involvement of this pathway. Thus, Ni NPs inhibit migration and invasion of human trophoblast HTR-8/SVneo cells by downregulating the PI3K/AKT/MMP2 signaling pathway. This study is important for the development of safety evaluation criteria for Ni NPs.


Assuntos
Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Trofoblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/metabolismo
10.
Toxicol In Vitro ; 80: 105327, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134484

RESUMO

Tumor necrosis factor (TNF) regulates trophoblast turnover during the formation of the placental syncytium and can be a potentially relevant target for adverse effects of xenobiotics. We mimicked syncytialization in vitro by stimulating BeWo cells with 50 µM forskolin. Undifferentiated and syncytialized BeWo cells were exposed to TNF (10 pg/mL-10 ng/mL) for 48 h after which cell viability, progesterone release and gene expression of a selected set of markers representative for placental function were assessed. In undifferentiated BeWo cells, high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B to maximally 99 ± 17, 2.2 ± 0.2, and 3.0 ± 0.4 of control values, respectively (p < 0.001). These effects were also found in syncytialized BeWo cells but less pronounced. Additionally, TNF may induce syncytialization in BeWo cells as it upregulated ERVW-1 expression by 1.55 ± 0.14-fold (p < 0.05). On the contrary, TNF levels of 10 and 100 pg/mL did not affect gene expression in both undifferentiated and syncytialized BeWo cells, but did enhance cell viability in syncytialised BeWo cells (p < 0.001). In conclusion, we found that high TNF levels (1-10 ng/mL) increased gene expression of TNF, NF-κB, and TNFRSF1B especially in undifferentiated BeWo cells, while physiological TNF concentrations positively affected cell viability and while there was no effect on any of the investigated functional markers.


Assuntos
Trofoblastos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colforsina/farmacologia , Feminino , Expressão Gênica , Humanos , Gravidez , Progesterona/metabolismo , Trofoblastos/metabolismo
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054855

RESUMO

The placenta supports fetal growth and is vulnerable to exogenous chemical exposures. We have previously demonstrated that exposure to the emerging chemical bisphenol S (BPS) can alter placental endocrine function. Mechanistically, we have demonstrated that BPS interferes with epidermal growth factor receptor (EGFR) signaling, reducing placenta cell fusion. Extravillous trophoblasts (EVTs), a placenta cell type that aids with vascular remodeling, require EGF to invade into the maternal endometrium. We hypothesized that BPS would impair EGF-mediated invasion and proliferation in EVTs. Using human EVTs (HTR-8/SVneo cells), we tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional endpoints of EGFR signaling, including EGF endocytosis, cell invasion and proliferation, and endovascular differentiation. We demonstrated that BPS blocked EGF-induced phosphorylation of EGFR by acting as a competitive antagonist to EGFR. Transwell assay and a three-dimensional microfluidic chip invasion assay revealed that BPS exposure can block EGF-mediated cell invasion. BPS also blocked EGF-mediated proliferation and endovascular differentiation. In conclusion, BPS can prevent EGF-mediated EVT proliferation and invasion through EGFR antagonism. Given the role of EGFR in trophoblast proliferation and differentiation during placental development, our findings suggest that maternal exposure to BPS may contribute to placental dysfunction via EGFR-mediated mechanisms.


Assuntos
Receptores ErbB/metabolismo , Fenóis/toxicidade , Transdução de Sinais , Sulfonas/toxicidade , Trofoblastos/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Endocitose/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Humanos , Laminina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteoglicanas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
12.
Arch Toxicol ; 96(2): 559-570, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048155

RESUMO

Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 µM) significantly inhibited the cell viability and migration ability (5 µM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 µM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Triazóis/toxicidade , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/toxicidade , Técnicas de Silenciamento de Genes , Humanos , Triazóis/administração & dosagem , Trofoblastos/citologia , Regulação para Cima/efeitos dos fármacos
13.
Bioengineered ; 13(1): 1174-1184, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982020

RESUMO

Gestational diabetes mellitus (GDM) is a complication developed during pregnancy and recover after childbirth. The purpose of this study was to investigate the protective role of FOXC1 during GDM and the underlying mechanism. FOXC1 was downregulated in GDM placental tissues and HG-treated HTR-8/SVneo cells. Overexpression of FOXC1 prevented HG-induced inhibition of cell proliferation, migration and invasion. FOXC1 suppressed HG-induced cell apoptosis in HTR-8/SVneo cells. The apoptosis-related proteins: cleaved caspase-3, cleaved caspase-9 and BAX, were also downregulated by FOXC1 overexpression. FOXC1 increased glucose uptake and improved insulin sensitivity. The expression of FOXC1 was positively correlated with FGF19 expression. FOXC1 regulated the expression of FGF19 and phosphorylation of AMPK. Inhibition of FGF19 attenuated the biological functions of FOXC1 through inactivation of AMPK. In conclusion, this study demonstrates that FOXC1 attenuates HG-induced trophoblast cell injury through upregulating FGF19 to activate the AMPK signaling pathway during GDM, suggesting that FOXC1 is a potential therapeutic target for drug discovery in the future.


Assuntos
Adenilato Quinase/metabolismo , Diabetes Gestacional/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/efeitos adversos , Trofoblastos/citologia , Adulto , Estudos de Casos e Controles , Diabetes Gestacional/induzido quimicamente , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Idade Materna , Fosforilação , Gravidez , Transdução de Sinais , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624436

RESUMO

Trophoblasts are specialized epithelial cells of the placenta that are involved in invasion, communication and the exchange of materials between the mother and fetus. Cytoplasmic Ca2+ ([Ca2+]c) plays critical roles in regulating such processes in other cell types, but relatively little is known about the mechanisms that control this second messenger in trophoblasts. In the current study, the presence of RyRs and their accessory proteins in placental tissues and in the BeWo choriocarcinoma, a model trophoblast cell-line, were examined using immunohistochemistry and Western immunoblotting. Contributions of RyRs to Ca2+ signalling and to random migration in BeWo cells were investigated using fura-2 fluorescent and brightfield videomicroscopy. The effect of RyR inhibition on reorganization of the F-actin cytoskeleton elicited by the hormone angiotensin II, was determined using phalloidin-labelling and confocal microscopy. RyR1 and RyR3 proteins were detected in trophoblasts of human first trimester and term placental villi, along with the accessory proteins triadin and calsequestrin. Similarly, RyR1, RyR3, triadin and calsequestrin were detected in BeWo cells. In this cell-line, activation of RyRs with micromolar ryanodine increased [Ca2+]c, whereas pharmacological inhibition of these channels reduced Ca2+ transients elicited by the peptide hormones angiotensin II, arginine vasopressin and endothelin 1. Angiotensin II increased the velocity, total distance and Euclidean distance of random migration by BeWo cells and these effects were significantly reduced by tetracaine and by inhibitory concentrations of ryanodine. RyRs contribute to reorganization of the F-actin cytoskeleton elicited by angiotensin II, since inhibition of these channels restores the parallelness of these structures to control levels. These findings demonstrate that trophoblasts contain a suite of proteins similar to those in other cell types possessing highly developed Ca2+ signal transduction systems, such as skeletal muscle. They also indicate that these channels regulate the migration of trophoblast cells, a process that plays a key role in development of the placenta.


Assuntos
Sinalização do Cálcio , Movimento Celular , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Trofoblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Hormônios Peptídicos/farmacologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/fisiologia
15.
Reprod Sci ; 29(1): 163-172, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382203

RESUMO

Preeclampsia (PE) is a life-threatening pregnancy complication associated with diminished trophoblast migration and invasion. Wnt signalling is one of the most important regulators of placentation. Secreted frizzled-related protein 5 (SFRP5) is an anti-inflammatory adipokine that may inhibit Wnt signalling. In this study, we aimed to investigate the relationship between SFRP5 and PE and its effect on trophoblast function, as well as the underlying signalling pathways. SFRP5 levels in the serum and placental tissues were detected using enzyme-linked immunosorbent assay and immunohistochemistry, respectively. To evaluate the effect of SFRP5 on Wnt signalling, the human trophoblast cell line HTR8/SVneo was treated with recombinant human SFRP5 and Dickkopf-related protein 1 (Dkk-1, canonical Wnt inhibitor) proteins and lithium chloride (LiCl, canonical Wnt agonist). The migration and invasion ability of HTR8/SVneo cells was evaluated using wound-healing and Matrigel Transwell assays. The activities of multiple matrix metalloproteinases (MMP)-2/9 were detected using gelatin zymography. Expression of glycogen synthase kinase-3 beta (GSK3ß) and ß-catenin proteins was investigated using western blotting. The serum SFRP5 levels were elevated in patients with PE, but SFRP5 expression was not detected in the placental tissues. Furthermore, SFRP5 inhibited the migration and invasion of HTR8/SVneo cells in vitro, increased GSK3ß, and decreased ß-catenin expression and MMP-2/9 activity in HTR8/SVneo cells. In conclusion, this study suggests that SFRP5 inhibits trophoblast migration and invasion potentially via the inhibition of Wnt/ß-catenin signalling, which might be involved in the development of PE. However, the primary cause of the increased SFRP5 levels needs to be investigated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Pré-Eclâmpsia/sangue , Trofoblastos/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Trofoblastos/efeitos dos fármacos , beta Catenina/metabolismo
16.
Bioengineered ; 13(1): 395-406, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787071

RESUMO

Gestational diabetes mellitus (GDM) is a situation where glucose intolerance is found in pregnant women without a previous diagnosis of diabetes. The role of Kruppel-like factor 9 (KLF9) has not been investigated in GDM, which constituted the aim of our study. HTR8/SVneo cells were induced by high glucose (HG) and pregnant mice were treated with streptozocin (STZ) to establish GDM model in vitro and in vivo, respectively. The expression level of KLF9 was detected by real-time PCR, immunohistochemical staining, and Western blot. Cell viability, apoptosis, inflammation, and oxidative stress were investigated by cell counting kit-8 (CCK-8), TUNEL, enzyme-linked immunosorbent assay (ELISA) and oxidative stress detection kits, respectively. The interaction of KLF9 with dimethylarginine dimethylaminohydrolase 2 (DDAH2) was predicted by bioinformatic tools and confirmed by luciferase reporter assay and chromatin immunoprecipitation (ChIP). The expression of KLF9 was increased in the placental tissues of GDM patients and HG-induced HTR8/SVneo cells. Silencing of KLF9 increased cell viability, reduced cell apoptosis, and suppressed inflammation and oxidative stress in HG-induced HTR8/SVneo cells. KLF9 could bind to DDAH2 promoter and negatively regulate DDAH2 expression. Inhibition of DDAH2 partly weakened the effects of KLF9 silencing on cell apoptosis, inflammation, and oxidative stress. The suppressive effects of KLF9 silencing on blood glucose and insulin concentration in vivo were also abolished by DDAH2 knockdown. In conclusion, we provided evidence that interference of KLF9 could hinder the development of GDM by alleviating cell apoptosis, inflammation, and oxidative stress through upregulating DDAH2, which might instruct the targeting therapies against GDM.Abbreviations: KLF9: Kruppel-like factor 9; DDAH2: dimethylarginine dimethylaminohydrolase 2 ; GDM: gestational diabetes mellitus; ELISA: enzyme-linked immunosorbent assay; CCK-8: cell counting kit-8; ChIP: chromatin immunoprecipitation; sh: short hairpin; HG: high glucose; PBS: phosphate-buffered saline; DAPI: 4, 6-diamidino-2-phenylindole; IL-6: Interleukin-6; TNF-α: tumor necrosis factor-α; ROS: reactive oxygen species; MDA: malondialdehyde; SOD: superoxide dismutase; wt: wild-type; mut: mutant.


Assuntos
Amidoidrolases/metabolismo , Diabetes Gestacional/genética , Glucose/efeitos adversos , Fatores de Transcrição Kruppel-Like/genética , Estreptozocina/efeitos adversos , Regulação para Cima , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
17.
Bioengineered ; 13(1): 206-216, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964705

RESUMO

Multiple studies have confirmed that adipokines are compactly relevant to insulin resistance and participate in the pathogenesis of gestational diabetes mellitus (GDM). This paper aimed to study the effects of C1q/tumor necrosis factor related protein (CTRP)6 on the phenotypes of trophoblast cells, covering cell proliferation, invasion and migration, and initially explore the mechanism. High glucose was used to induce trophoblast cells to establish an in vitro model. The expression levels of CTRP6 were firstly determined, and then the effects of CTRP6 knockdown on cell viability, apoptosis, migration and invasion were assessed using CCK8, TUNEL, wound healing, Transwell assays. Moreover, the role of peroxisome proliferator-activated receptor gamma (PPARγ), probable target of CTRP6, was evaluated through co-transfection with PPARγ overexpression vector. The results of the present study revealed that CTRP6 and PPARγ were both upregulated in high glucose-induced cells. And CTRP6 knockdown could significantly elevate the abilities of cell viability, migration and invasion, and avoid cell apoptosis. In addition, PPARγ overexpression was found to restrain the protective effects of CTRP6 knockdown on the above aspects, indicating CTRP6 played a role in trophoblast cells via inhibiting PPARγ expression. In conclusion, CTRP6 regulated the viability, migration and invasion of high glucose-induced gestational trophoblast cells through PPARγ signaling.


Assuntos
Colágeno/metabolismo , Glucose/efeitos adversos , PPAR gama/metabolismo , Trofoblastos/citologia , Regulação para Cima , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , PPAR gama/genética , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
18.
Tissue Cell ; 73: 101658, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597888

RESUMO

Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-ß1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.


Assuntos
Espaço Intracelular/metabolismo , Monócitos/patologia , Monócitos/parasitologia , Proteínas/metabolismo , Receptores de Morte Celular/metabolismo , Toxoplasmose/patologia , Trofoblastos/parasitologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Células THP-1 , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptor fas/metabolismo
19.
Placenta ; 115: 97-105, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598084

RESUMO

INTRODUCTION: Excessive activation of maternal systemic inflammation is one of the underlying causes of pathology during the disease course of preeclampsia (PE). The triggering receptor expressed on myeloid cells-1 (TREM-1) participates in the development and persistence of inflammation. We hypothesized that dysregulated TREM-1 may be involved in the pathogenesis of PE by promoting the secretion of trophoblastic pro-inflammatory cytokines that augment inflammation. METHODS: The localization of TREM-1 in placenta and the extravillous trophoblast cell line (TEV-1) was determined by immunohistochemical staining. The expression level of TREM-1 and pro-inflammatory cytokines in placentas were compared between normal pregnancies and PE. We used lipopolysaccharide (LPS) to simulate trophoblastic inflammation. TEV-1 cells were transfected with TREM-1 plasmid and si-TREM-1 respectively, and then were incubated with LPS. The expression levels of pro-inflammatory cytokines and key molecules featured in nuclear transcription factor-kappaB (NF-κB) pathway were detected. Transwell assays were used to detect the effects of TREM-1 on cell migration and invasion. RESULTS: TREM-1 was localized on both villous trophoblasts (VTs) and extravillous trophoblasts (EVTs). TREM-1 and pro-inflammatory cytokines were up-regulated in preeclamptic placenta. Overexpression of TREM-1 promoted the activation of NF-κB pathway and the release of pro-inflammatory factors induced by LPS, and enhanced migration and invasion of TEV-1 cells. Inhibition of TREM-1 significantly attenuated LPS-induced effects and suppressed migration and invasion. DISCUSSION: This study suggested that TREM-1 was up-regulated in PE, and may promote the production of downstream inflammatory factors by activating NF-κB pathway in trophoblastic cells, thus exerting pro-inflammatory effects in the pathogenesis of PE.


Assuntos
Inflamação/fisiopatologia , NF-kappa B/fisiologia , Pré-Eclâmpsia/fisiopatologia , Receptor Gatilho 1 Expresso em Células Mieloides/fisiologia , Trofoblastos/fisiologia , Adulto , Linhagem Celular Transformada , Feminino , Humanos , Interleucinas/genética , Lipopolissacarídeos/farmacologia , Placenta/química , Gravidez , RNA Mensageiro/análise , Transfecção , Receptor Gatilho 1 Expresso em Células Mieloides/análise , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Trofoblastos/química , Trofoblastos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
20.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681889

RESUMO

Irisin is a newly discovered exercise-mediated polypeptide hormone. Irisin levels increase during pregnancy however, women with preeclampsia (PE) have significantly lower levels of Irisin compared to women of healthy pregnancies. Even though many studies suggest a role of Irisin in pregnancy, its function in the human placenta is unclear. In the current study, we aimed to understand key roles of Irisin through its ability to protect against apoptosis is the preeclamptic placenta and in ex vivo and in vitro models of hypoxia/re-oxygenation (H/R) injury. Our studies show that Irisin prevents cell death by reducing pro-apoptotic signaling cascades, reducing cleavage of PARP to induce DNA repair pathways and reducing activity of Caspase 3. Irisin caused an increase in the levels of anti-apoptotic BCL2 to pro-apoptotic BAX and reduced ROS levels in an in vitro model of placental ischemia. Furthermore, we show that Irisin treatment acts through the Akt signaling pathway to prevent apoptosis and enhance cell survival. Our findings provide a novel understanding for the anti-apoptotic and pro-survival properties of Irisin in the human placenta under pathological conditions. This work yields new insights into placental development and disease and points towards intervention strategies for placental insufficiencies, such as PE, by protecting and maintaining placental function through inhibiting hypoxic ischemia-induced apoptosis.


Assuntos
Apoptose , Fibronectinas/administração & dosagem , Estresse Oxidativo , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/prevenção & controle , Substâncias Protetoras/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Feminino , Humanos , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA