Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.058
Filtrar
1.
Sci Rep ; 14(1): 11312, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760496

RESUMO

The syncytiotrophoblast is a multinucleated structure that arises from fusion of mononucleated cytotrophoblasts, to sheath the placental villi and regulate transport across the maternal-fetal interface. Here, we ask whether the dynamic mechanical forces that must arise during villous development might influence fusion, and explore this question using in vitro choriocarcinoma trophoblast models. We demonstrate that mechanical stress patterns arise around sites of localized fusion in cell monolayers, in patterns that match computational predictions of villous morphogenesis. We then externally apply these mechanical stress patterns to cell monolayers and demonstrate that equibiaxial compressive stresses (but not uniaxial or equibiaxial tensile stresses) enhance expression of the syndecan-1 and loss of E-cadherin as markers of fusion. These findings suggest that the mechanical stresses that contribute towards sculpting the placental villi may also impact fusion in the developing tissue. We then extend this concept towards 3D cultures and demonstrate that fusion can be enhanced by applying low isometric compressive stresses to spheroid models, even in the absence of an inducing agent. These results indicate that mechanical stimulation is a potent activator of cellular fusion, suggesting novel avenues to improve experimental reproductive modelling, placental tissue engineering, and understanding disorders of pregnancy development.


Assuntos
Fusão Celular , Estresse Mecânico , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citologia , Trofoblastos/fisiologia , Humanos , Feminino , Gravidez , Fenômenos Biomecânicos , Placenta/metabolismo , Placenta/citologia , Caderinas/metabolismo , Modelos Biológicos
2.
Biol Reprod ; 110(5): 950-970, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330185

RESUMO

Research on the biology of fetal-maternal barriers has been limited by access to physiologically relevant cells, including trophoblast cells. In this study, we describe the development of a human term placenta-derived cytotrophoblast immortalized cell line (hPTCCTB) derived from the basal plate. Human-term placenta-derived cytotrophoblast immortalized cell line cells are comparable to their primary cells of origin in terms of morphology, marker expression, and functional responses. We demonstrate that these can transform into syncytiotrophoblast and extravillous trophoblasts. We also compared the hPTCCTB cells to immortalized chorionic trophoblasts (hFM-CTC), trophoblasts of the chorionic plate, and BeWo cells, choriocarcinoma cell lines of conventional use. Human-term placenta-derived cytotrophoblast immortalized cell line and hFM-CTCs displayed more similarity to each other than to BeWos, but these differ in syncytialization ability. Overall, this study (1) demonstrates that the immortalized hPTCCTB generated are cells of higher physiological relevance and (2) provides a look into the distinction between the spatially distinct placental and fetal barrier trophoblasts cells, hPTCCTB and hFM-CTC, respectively.


Assuntos
Placenta , Trofoblastos , Humanos , Trofoblastos/citologia , Trofoblastos/fisiologia , Feminino , Gravidez , Placenta/citologia , Placenta/fisiologia , Linhagem Celular
3.
J Immunol ; 212(2): 346-354, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054905

RESUMO

TNF-α and IFN-γ are two inflammatory cytokines that play critical roles in immune responses, but they can also negatively affect cell proliferation and viability. In particular, the combination of the two cytokines (TNF-α/IFN-γ) synergistically causes cytotoxicity in many cell types. We recently reported that mouse embryonic stem cells (ESCs) isolated from the blastocyst stage embryo do not respond to TNF-α and have limited response to IFN-γ, thereby avoiding TNF-α/IFN-γ cytotoxicity. The current study expanded our investigation to mouse trophoblast stem cells (TSCs) and their differentiated trophoblasts (TSC-TBs), the precursors and the differentiated cells of the placenta, respectively. In this study, we report that the combination of TNF-α/IFN-γ does not show the cytotoxicity to TSCs and TSC-TBs that otherwise effectively kills fibroblasts, similar to ESCs. Although ESCs, TSCs, and TSC-TBs are dramatically different in their growth rate, morphology, and physiological functions, they nevertheless share a similarity in being able to avoid TNF-α/IFN-γ cytotoxicity. We propose that this unique immune property may serve as a protective mechanism that limits cytokine cytotoxicity in the blastocyst. With molecular and cellular approaches and genome-wide transcriptomic analysis, we have demonstrated that the attenuated NF-κB and STAT1 transcription activation is a limiting factor that restricts the effect of TNF-α/IFN-γ on TSCs and TSC-TBs.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Animais , Feminino , Camundongos , Gravidez , Citocinas/metabolismo , Interferon gama , NF-kappa B/metabolismo , Trofoblastos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
J Perinat Med ; 52(1): 41-49, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37694534

RESUMO

OBJECTIVES: Preeclampsia (PE) is a disease specific to pregnancy that causes 9-10 % of maternal deaths. Early-onset PE (<34 weeks' gestation) is the most dangerous category of PE. Wnt7a and GPR124 (G protein-coupled receptor 124) are widely expressed in the human reproductive process. Especially during embryogenesis and tumorigenesis, Wnt7a plays a crucial role. However, few studies have examined the association between Wnt7a-GPR124 and early-onset PE. The aim of this study was to examine the significance of Wnt7a and GPR124 in early-onset PE as well as Wnt7a's role in trophoblast cells. METHODS: Immunohistochemistry (IHC), real-time PCR, and western blotting (WB) were used to investigate Wnt7a and GPR124 expression in normal and early-onset PE placentas. Additionally, FACS, Transwell, and CCK-8 assays were used to diagnose Wnt7a involvement in migration, invasion, and proliferation. RESULTS: In the early-onset PE group, Wnt7a and GPR124 expression was significantly lower than in the normal group, especially in the area of syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). A negative correlation was found between Wnt7a RNA and GPR124 expression (r=-0.42, p<0.01). However, the Wnt7a RNA expression level was positive correlated with PE severity. In further cellular functional experiments, knockdown of Wnt7a inhibits HTR8/SVeno cells invasion and migration but has little effect on proliferation and apoptosis. CONCLUSIONS: Through the Wnt pathway, Wnt7a regulates trophoblast cell invasion and migration, and may contribute to early-onset preeclampsia pathogenesis. A molecular level study of Wnt7a will be needed to find downstream proteins and mechanisms of interaction.


Assuntos
Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/genética , Linhagem Celular , Placenta/metabolismo , Trofoblastos/fisiologia , RNA/metabolismo , Proliferação de Células
5.
J Endocrinol ; 260(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37965940

RESUMO

Mononuclear cytotrophoblasts (CTs) differentiate and fuse to form multinuclear syncytiotrophoblasts (STs), which produce human chorionic gonadotropin (hCG) and progesterone to maintain pregnancy. Impaired differentiation and fusion of CTs to form STs are associated with hypertensive disorders of pregnancy and fetal growth restriction. Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional single transmembrane heme-binding protein. We previously demonstrated that downregulation of PGRMC1 promotes endometrial stromal cell differentiation (decidualization). Here, we explored the role of PGRMC1 in trophoblast differentiation and fusion. PGRMC1 expression was lower in STs than in CTs of first-trimester placental tissues. PGRMC1 expression in BeWo cells (a trophoblast-derived choriocarcinoma cell line) decreased upon dibutyryl-cAMP (db-cAMP)-induced differentiation. Both inhibition and knockdown of PGRMC1 stimulated hCG production in the presence of db-cAMP. Furthermore, a quantitative cell fusion assay we developed revealed that inhibition and knockdown of PGRMC1 enhanced db-cAMP-stimulated cell fusion. Peroxisome proliferator-activated receptor γ (PPARγ) agonists decreased PGRMC1 expression and stimulated the cell fusion in BeWo cells. These findings suggest that downregulation of PGRMC1 expression in part through activation of PPARγ during trophoblast differentiation promotes hCG production and cell fusion for formation and maintenance of placental villi during pregnancy.


Assuntos
PPAR gama , Placenta , Humanos , Feminino , Gravidez , Regulação para Baixo , PPAR gama/metabolismo , Placenta/metabolismo , Linhagem Celular , Gonadotropina Coriônica/farmacologia , Trofoblastos/fisiologia , Diferenciação Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
6.
Am J Reprod Immunol ; 89(5): e13682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670490

RESUMO

PROBLEM: Preeclampsia (PE) is an obstetric disease involving multiple systems, which account for maternal and fetal complications and increased mortality. Circular RNAs (circRNAs) were recently deemed to associate with the pathogenesis of PE. This study aims to clarify the correlation between circRNA hsa_circ_0001326 and PE and explore its biological function in PE. METHOD OF STUDY: The expression of hsa_circ_0001326 in PE placentas was detected by real-time quantitative PCR (qRT-PCR). After overexpressing or inhibiting hsa_circ_0001326 in trophoblast cells, the cell growth, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) and transwell assays. Western blot assay was applied to detect the epithelial-mesenchymal transition (EMT) proteins, E-cadherin and Vimentin. Furthermore, a dual-luciferase reporter assay was applied to verify the binding sites of hsa_circ_0001326, miR-145-5p, and transforming growth factor beta 2 (TGFB2). RESULTS: Hsa_circ_0001326 was found to be higher expressed in PE placentas than in normal placentas. Furthermore, hsa_circ_0001326 played a negative regulating role in trophoblast cell viability, migration, and invasion. Overexpression of hsa_circ_0001326 inhibited the viability, migration, and invasion of trophoblast cells, while inhibition of hsa_circ_0001326 showed opposite effects. Mechanistically, hsa_circ_0001326 sponged miR-145-5p to elevate TGFB2 expression in trophoblast cells. CONCLUSION: This study provided evidence that the up-regulated hsa_circ_0001326 in PE restrained trophoblast cells proliferation, migration, and invasion by sponging miR-145-5p to elevate TGFB2 expression. Our results might provide a novel insight into the role of hsa_circ_0001326 in the pathogenesis of PE.


Assuntos
MicroRNAs , RNA Circular , Fator de Crescimento Transformador beta2 , Trofoblastos , Feminino , Humanos , Gravidez , Western Blotting , Movimento Celular , Proliferação de Células , MicroRNAs/genética , Placenta/metabolismo , Placenta/fisiologia , RNA Circular/genética , RNA Circular/fisiologia , Fator de Crescimento Transformador beta2/genética , Trofoblastos/citologia , Trofoblastos/metabolismo , Trofoblastos/fisiologia
7.
Microvasc Res ; 146: 104451, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36368448

RESUMO

Preeclampsia (PE) is a hypertension-associated disease, and resveratrol (RES) is a polyphenol recognized to present beneficial effects in cardiovascular disease including hypertension. Recently, attentions have come to the therapeutic effect of RES in PE, but the underlying molecular mechanisms remain largely unknown. This study sought to delineate the mechanistic basis regarding bioinformatically identified miR-363-3p/PEDF/VEGF axis for RES treatment in PE. PE-like symptoms were induced in vivo in Sprague-Dawley rats by intraperitoneal injection with Ng-nitro-L-arginine methyl ester (L-NAME), and hypoxia was induced in vitro in trophoblasts by CoCl2. Accordingly, RES was found to enhance viability, migration, angiogenesis, and to repress the apoptosis of hypoxic trophoblasts in vitro. Furthermore, in vivo experiments noted that RES alleviated placental injury and promoted angiogenesis in rats with PE-like symptoms in vivo by increasing VEGF via promoting miR-363-3p-mediated PEDF suppression. Collectively, RES ameliorates PE by upregulating VEGF through miR-363-3p-mediated PEDF downregulation, the mechanism of which may be of promising significance to augment RES efficacy in PE treatment.


Assuntos
Hipertensão , MicroRNAs , Pré-Eclâmpsia , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta , MicroRNAs/genética , Resveratrol/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/genética , Ratos Sprague-Dawley , Trofoblastos/fisiologia
8.
Dis Markers ; 2022: 7052176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457544

RESUMO

The process of placental invasion is essential for a successful pregnancy. Leptin is involved in trophoblast invasiveness, and its dysregulation is connected with a series of diseases, including preeclampsia. However, the knowledge of the precise mechanisms in leptin-induced trophoblast invasiveness is still limited. According to the present research, transwell assay suggested that leptin is a dose- and time-dependent regulator in inducing HTR-8/SVneo cell invasion. Western blot analysis and immunofluorescence staining revealed that leptin-induced MMP9 expression is essential in the invasion process of HTR-8/SVneo cells. Mechanistically, we demonstrated that leptin activated ß-catenin via the crosstalk between the MTA1/WNT and PI3K/AKT pathways. Besides, we showed that downregulating the key molecules in the signaling pathways by siRNA can inhibit leptin-induced MMP9 expression and further suppress invasion of HTR-8/SVneo cells. In conclusion, our study revealed a new regulatory mechanism of leptin-induced HTR-8/SVneo cell invasiveness and will provide novel insights into the causes and potential therapeutic targets for diseases related to dysregulation of trophoblast invasion in the future.


Assuntos
Leptina , Placenta , Feminino , Humanos , Gravidez , Leptina/genética , Metaloproteinase 9 da Matriz , Fosfatidilinositol 3-Quinases , Placenta/fisiologia , Proteínas Proto-Oncogênicas c-akt , Proteínas Repressoras , Transativadores , Trofoblastos/fisiologia
9.
Cell Mol Life Sci ; 79(12): 584, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346530

RESUMO

A recent explosion of methods to produce human trophoblast and stem cells (hTSCs) is fuelling a renewed interest in this tissue. The trophoblast is critical to reproduction by facilitating implantation, maternal physiological adaptations to pregnancy and the growth of the fetus through transport of nutrients between the mother and fetus. More broadly, the trophoblast has phenotypic properties that make it of interest to other fields. Its angiogenic and invasive properties are similar to tumours and could identify novel drug targets, and its ability to regulate immunological tolerance of the allogenic fetus could lead to improvements in transplantations. Within this review, we integrate and assess transcriptomic data of cell-based models of hTSC alongside in vivo samples to identify the utility and applicability of these models. We also integrate single-cell RNA sequencing data sets of human blastoids, stem cells and embryos to identify how these models may recapitulate early trophoblast development.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/fisiologia , Placenta/fisiologia , Implantação do Embrião , Células-Tronco , Diferenciação Celular/genética
10.
Birth Defects Res ; 114(16): 1014-1036, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979652

RESUMO

A problem in developmental toxicology is the massive loss of life from fertilization through gastrulation, and the surprising lack of knowledge of causes of miscarriage. Half to two-thirds of embryos are lost, and environmental and genetic causes are nearly equal. Simply put, it can be inferred that this is a difficult period for normal embryos, but that environmental stresses may cause homeostatic responses that move from adaptive to maladaptive with increasing exposures. At the lower 50% estimate, miscarriage causes greater loss-of-life than all cancers combined or of all cardio- and cerebral-vascular accidents combined. Surprisingly, we do not know if miscarriage rates are increasing or decreasing. Overshadowed by the magnitude of miscarriages, are insufficient data on teratogenic or epigenetic imbalances in surviving embryos and their stem cells. Superimposed on the difficult normal trajectory for peri-gastrulation embryos are added malnutrition, hormonal, and environmental stresses. An overarching hypothesis is that high throughput screens (HTS) using cultured viable reporter embryonic and placental stem cells (e.g., embryonic stem cells [ESC] and trophoblast stem cells [TSC] that report status using fluorescent reporters in living cells) from the pre-gastrulation embryo will most rapidly test a range of hormonal, environmental, nutritional, drug, and diet supplement stresses that decrease stem cell proliferation and imbalance stemness/differentiation. A second hypothesis is that TSC respond with greater sensitivity in magnitude to stress that would cause miscarriage, but ESC are stress-resistant to irreversible stemness loss and are best used to predict long-term health defects. DevTox testing needs more ESC and TSC HTS to model environmental stresses leading to miscarriage or teratogenesis and more research on epidemiology of stress and miscarriage. This endeavor also requires a shift in emphasis on pre- and early gastrulation events during the difficult period of maximum loss by miscarriage.


Assuntos
Aborto Espontâneo , Feminino , Humanos , Gravidez , Células-Tronco Embrionárias , Placenta , Trofoblastos/fisiologia
11.
Reprod Biol Endocrinol ; 20(1): 120, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964080

RESUMO

During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.


Assuntos
Implantação do Embrião , Trofoblastos , Blastocisto , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Endométrio , Feminino , Humanos , Gravidez , Trofoblastos/fisiologia
12.
FASEB J ; 36(8): e22450, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35848638

RESUMO

In early pregnancy, as the embryo arrives in the uterus, intensive communication between the embryo and uterus begins. Hundreds of molecules are known to be involved, but despite numerous findings, full understanding of the complexity of the embryo-maternal dialog remains elusive. Recently, extracellular vesicles, nanoparticles able to transfer functionally active cargo between cells, have emerged as important players in cell-cell communication, and as such, they have gained great attention over the past decade also in reproductive biology. Here, we use a domestic animal model (Sus scrofa) with an epitheliochorial, superficial type of placentation because of its advantage in studding uterine luminal fluid extracellular vesicles. We show that during early pregnancy, the uterine lumen is abundant with extracellular vesicles that carry a plethora of miRNAs able to target genes involved in embryonic and organismal development. These extracellular vesicles, upon the delivery to primary trophoblast cells, affect genes governing development as well as cell-to-cell signaling and interactions, consequently having an impact on trophoblast cell proliferation, migration, and invasion. We conclude that the exchange of a unique population of extracellular vesicles and their molecular cargo at the maternal-embryo interface is the key to the success of embryo implantation and pregnancy.


Assuntos
Implantação do Embrião , Vesículas Extracelulares , Animais , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Endométrio/fisiologia , Vesículas Extracelulares/genética , Feminino , Gravidez , Trofoblastos/fisiologia
13.
Front Endocrinol (Lausanne) ; 13: 904744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832424

RESUMO

Natural killer (NK) cells are the predominant maternal uterine immune cell component, and they densely populate uterine mucosa to promote key changes in the post-ovulatory endometrium and in early pregnancy. It is broadly accepted that (a) immature, inactive endometrial NK (eNK) cells in the pre-ovulatory endometrium become activated and transition into decidual NK (dNK) cells in the secretory stage, peri-implantation endometrium, and continue to mature into early pregnancy; and (b) that secretory-stage and early pregnancy dNK cells promote uterine vascular growth and mediate trophoblast invasion, but do not exert their killing function. However, this may be an overly simplistic view. Evidence of specific dNK functional killer roles, as well as opposing effects of dNK cells on the uterine vasculature before and after conception, indicates the presence of a transitory secretory-stage dNK cell (s-dNK) phenotype with a unique angiodevelopmental profile during the peri-implantation period, that is that is functionally distinct from the angiomodulatory dNK cells that promote vessel destabilisation and vascular cell apoptosis to facilitate uterine vascular changes in early pregnancy. It is possible that abnormal activation and differentiation into the proposed transitory s-dNK phenotype may have implications in uterine pathologies ranging from infertility to cancer, as well as downstream effects on dNK cell differentiation in early pregnancy. Further, dysregulated transition into the angiomodulatory dNK phenotype in early pregnancy will likely have potential repercussions for adverse pregnancy outcomes, since impaired dNK function is associated with several obstetric complications. A comprehensive understanding of the uterine NK cell temporal differentiation pathway may therefore have important translational potential due to likely NK phenotypic functional implications in a range of reproductive, obstetric, and gynaecological pathologies.


Assuntos
Decídua , Saúde Reprodutiva , Diferenciação Celular , Decídua/metabolismo , Feminino , Humanos , Células Matadoras Naturais , Gravidez , Trofoblastos/fisiologia
14.
Nat Commun ; 13(1): 1252, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292627

RESUMO

Successful establishment of pregnancy requires adhesion of an embryo to the endometrium and subsequent invasion into the maternal tissue. Abnormalities in this critical process of implantation and placentation lead to many pregnancy complications. Here we present a microenigneered system to model a complex sequence of orchestrated multicellular events that plays an essential role in early pregnancy. Our implantation-on-a-chip is capable of reconstructing the three-dimensional structural organization of the maternal-fetal interface to model the invasion of specialized fetal extravillous trophoblasts into the maternal uterus. Using primary human cells isolated from clinical specimens, we demonstrate in vivo-like directional migration of extravillous trophoblasts towards a microengineered maternal vessel and their interactions with the endothelium necessary for vascular remodeling. Through parametric variation of the cellular microenvironment and proteomic analysis of microengineered tissues, we show the important role of decidualized stromal cells as a regulator of extravillous trophoblast migration. Furthermore, our study reveals previously unknown effects of pre-implantation maternal immune cells on extravillous trophoblast invasion. This work represents a significant advance in our ability to model early human pregnancy, and may enable the development of advanced in vitro platforms for basic and clinical research of human reproduction.


Assuntos
Proteômica , Trofoblastos , Movimento Celular , Implantação do Embrião/fisiologia , Endométrio , Feminino , Humanos , Placentação/fisiologia , Gravidez , Trofoblastos/fisiologia
15.
Reprod Biol Endocrinol ; 20(1): 22, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101033

RESUMO

BACKGROUND: Tightly regulation of extravillous cytotrophoblast (EVT) cell invasion is critical for the placentation and establishment of a successful pregnancy. Insufficient EVT cell invasion leads to the development of preeclampsia (PE) which is a leading cause of maternal and perinatal mortality and morbidity. Transforming growth factor-beta1 (TGF-ß1) and kisspeptin are expressed in the human placenta and have been shown to inhibit EVT cell invasion. Kisspeptin is a downstream target of TGF-ß1 in human breast cancer cells. However, whether kisspeptin is regulated by TGF-ß1 and mediates TGF-ß1-suppressed human EVT cell invasion remains unclear. METHODS: The effect of TGF-ß1 on kisspeptin expression and the underlying mechanisms were explored by a series of in vitro experiments in a human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells. Serum levels of TGF-ß1 and kisspeptin in patients with or without PE were measured by ELISA. RESULTS: TGF-ß1 upregulates kisspeptin expression in HTR-8/SVneo cells and primary cultures of human EVT cells. Using pharmacological inhibitor and siRNA, we demonstrate that the stimulatory effect of TGF-ß1 on kisspeptin expression is mediated via the ALK5 receptor. Treatment with TGF-ß1 activates SMAD2/3 canonical pathways as well as ERK1/2 and PI3K/AKT non-canonical pathways. However, only inhibition of ERK1/2 activation attenuates the stimulatory effect of TGF-ß1 on kisspeptin expression. In addition, siRNA-mediated knockdown of kisspeptin attenuated TGF-ß1-suppressed EVT cell invasion. Moreover, we report that serum levels of TGF-ß1 and kisspeptin are significantly upregulated in patients with PE. CONCLUSIONS: By illustrating the potential physiological role of TGF-ß1 in the regulation of kisspeptin expression, our results may serve to improve current strategies used to treat placental diseases.


Assuntos
Kisspeptinas/genética , Fator de Crescimento Transformador beta1/fisiologia , Trofoblastos/fisiologia , Movimento Celular/genética , Células Cultivadas , Feminino , Humanos , Kisspeptinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Gravidez , Transdução de Sinais/genética , Proteínas Smad/fisiologia
16.
J Reprod Immunol ; 150: 103494, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35176662

RESUMO

Remodeling of the uterine spiral arteries is required for a successful pregnancy. This process requires the co-ordinated activity of a number of different cell types including uterine natural killer cells, decidual macrophages, extravillous trophoblast cells, vascular smooth muscle cells and endothelial cells. We have previously demonstrated that decidual macrophages facilitate breakdown of fibronectin and laminin in a model of spiral artery remodeling. The aim of the current study was to determine which matrix metalloproteinases (MMPs) decidual macrophages express and play roles in extracellular matrix (ECM) breakdown in vascular remodeling. Decidual macrophages were isolated from first trimester decidua and cultured for 24 h to obtain conditioned medium. MMP secretion was assessed by a membrane based array and immunohistochemistry of decidual sections. In addition, the chorionic plate artery (CPA) model was used with decidual macrophage conditioned medium, with and without a MMP3 inhibitor and ECM protein expression assessed using quickscore. The decidual macrophages secreted a wide range of MMPs, with MMP3 being the most predominant. Co-localization of MMP3 to decidual macrophages was confirmed by immunohistochemistry. Decidual macrophage conditioned medium facilitated breakdown of laminin and fibronectin in the CPA model, an effect that was abrogated by the MMP3 inhibitor. These data further support the role of decidual macrophages in tissue remodeling in the first trimester of pregnancy. An alteration in their numbers or phenotype would impact spiral artery remodeling and contribute to the etiology of a number of complications of pregnancy.


Assuntos
Decídua , Fibronectinas , Meios de Cultivo Condicionados/metabolismo , Decídua/metabolismo , Células Endoteliais , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Laminina/farmacologia , Macrófagos/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/fisiologia , Artéria Uterina
17.
Placenta ; 118: 55-65, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032792

RESUMO

INTRODUCTION: Junctional adhesion molecule-C (JAM-C) is an important regulator of many physiological processes, ranging from maintenance of tight junction integrity of epithelia to regulation of cell migration, homing and proliferation. Preeclampsia (PE) is a trophoblast-related syndrome with abnormal placentation and insufficient trophoblast invasion. However, the role of JAM-C in normal pregnancy and PE pathogenesis is unknown. METHODS: The expression and location of JAM-C in placentas were determined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The expression of differentiation and invasion markers were detected by qRT-PCR or western blot. The effects of JAM-C on migration and invasion of trophoblasts were examined using wound-healing and invasion assays. Additionally, a mouse model was established by injection of JAM-C-positive adenovirus to explore the effects of JAM-C in vivo. RESULTS: In normal pregnancy, JAM-C was preferentially expressed on cytotrophoblast (CTB) progenitors and progressively decreased when acquiring invasion properties with gestation advance. However, in PE patients, the expression of JAM-C was upregulated in extravillous trophoblasts (EVTs) and syncytiotrophoblasts (SynTs) of placentas. It was also demonstrated that JAM-C suppressed the differentiation of CTBs into EVTs in vitro. Consistently, JAM-C inhibited the migration and invasion capacities of EVTs through GSK3ß/ß-catenin signaling pathway. Importantly, Ad-JAMC-infected mouse model mimicked the phenotype of human PE. DISCUSSION: JAM-C plays an important role in normal placentation and upregulated JAM-C in placentas contributes to PE development.


Assuntos
Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Pré-Eclâmpsia/metabolismo , Trofoblastos/fisiologia , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Movimento Celular , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , beta Catenina/metabolismo
18.
Placenta ; 118: 20-31, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007926

RESUMO

INTRODUCTION: Recurrent miscarriage (RM), refers to two or more consecutive spontaneous miscarriage in a pregnant woman. RM is caused by many factors, and microRNAs play an important role in the development and pathology of RM. In the present study, we investigated the function of miR-187 in the pathogenesis of RM and its effects on human trophoblast cells. METHODS: The localization of miR-187 in the human placenta in early pregnancy was determined by in situ hybridization. QRT-PCR was used to detect the expression of miR-187 in villi of normal early pregnancy induced abortion group and recurrent spontaneous miscarriage group. Then, HTR8/SVneo cells were used to investigated the effect of miR-187 on BCL6 expression and biological activity of trophoblasts. RESULTS: We found that the expression of miR-187 in villi of RM group was higher than that of normal abortion group and miR-187 inhibited the proliferation, migration, and invasion of HTR8 cells. We also found that miR-187 promoted apoptosis, inhibited EMT, and inhibited the PI3K/AKT pathway in HTR8 cells. In addition, we also found that BCL6 is a direct target of miR-187 and is negatively regulated by miR-187. In addition, BCL6 reversed the inhibitory effects of miR-187 on HTR8/SVneo cells. These data demonstrate that miR-187-induced repression of PI3K/AKT signaling is mediated by BCL6 in HTR8 cells. DISSCUSSION: MiR-187 inhibits the proliferation, migration, and invasion of trophoblasts through a mechanism that involves regulation of BCL6.


Assuntos
Aborto Habitual/metabolismo , MicroRNAs/metabolismo , Trofoblastos/fisiologia , Aborto Habitual/etiologia , Adulto , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
19.
Placenta ; 119: 8-16, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066308

RESUMO

INTRODUCTION: Placenta accreta spectrum (PAS) disorder is one of the major complications resulting in maternal death and serious adverse pregnancy outcomes. Uterine damage - principally that associated with cesarean section - is the leading risk factor for the development of PAS. However, the underlying pathogenesis of PAS related to uterine damage remains unclear. METHODS: For this study, we constructed a mouse PAS model using hysterotomy to simulate a cesarean section in humans. Pregnant mice were sacrificed on embryonic days 12.5 (E12.5) and E17.5. Trophoblast invasion and placental vascularization were analyzed using Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC), and the proportions of immune cells at the maternal-fetal interface were analyzed using flow cytometry. We analyzed the expressions of genes in the decidua and placenta using RNA sequencing and subsequent validation by QPCR, and measured serum angiogenic factors by ELISA. RESULTS: Uterine damage led to increased trophoblast invasion and placental vascularization, with extensive changes to the immune-cell profiles at the maternal-fetal interface. The proportions of T and NK cells in the deciduas diminished significantly, with the decidual NK cells and M - 2 macrophages showing the greatest decline. The expression of TNF-α and IL4 was upregulated in the deciduas, while that of IFN-γ and IL10 was downregulated significantly. The expression of Mmp2, Mmp9, Mmp3, and Dock4 was significantly elevated in the placenta, and the serum levels of anti-angiogenic factors were significantly attenuated. DISCUSSION: Uterine damage can cause immune imbalance at the maternal-fetal interface, which may contribute to abnormal trophoblast invasion and enhanced vascularization of the mouse placenta.


Assuntos
Troca Materno-Fetal/imunologia , Neovascularização Fisiológica , Procedimentos Cirúrgicos Obstétricos/efeitos adversos , Placenta Acreta/etiologia , Trofoblastos/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Gravidez , Distribuição Aleatória
20.
Am J Obstet Gynecol ; 226(2S): S886-S894, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33007270

RESUMO

Preeclampsia is a major obstetrical complication with short- and long-term life-threatening consequences for both mother and child. Shallow cytotrophoblast invasion through the uterine decidua into the spiral arteries is implicated in the pathogenesis of preeclampsia, although the cause of deficient arterial invasion remains unknown. Research that is focused on the "soil"-the maternal decidua-highlights the importance of this poorly understood but influential uterine layer. Decidualization of endometrial cells regulates embryo invasion, which is essential for spiral artery remodeling and establishing the maternal-fetal interface. Exploration of the association between impaired decidualization and preeclampsia revealed suboptimal endometrial maturation and uterine natural killer cells present in the decidua before preeclampsia development. Furthermore, decidualization defects in the endometrium of women with severe preeclampsia, characterized by impaired cytotrophoblast invasion, were detected at the time of delivery and persisted 5 years after the affected pregnancy. Recently, a maternal deficiency of annexin A2 expression was found to influence aberrant decidualization and shallow cytotrophoblast invasion, suggesting that decidualization resistance, which is a defective endometrial cell differentiation during the menstrual cycle, could underlie shallow trophoblast invasion and the poor establishment of the maternal-fetal interface. Based on these findings, the transcriptional signature in the endometrium that promotes decidualization deficiency could be detected before (or after) conception. This would serve to identify women at risk of developing severe preeclampsia and aid the development of therapies focused on improving decidualization, perhaps also preventing severe preeclampsia. Here, we discuss decidualization deficiency as a contributor to the pathogenesis of pregnancy disorders with particular attention to severe preeclampsia. We also review current diagnostic strategies and discuss future directions in diagnostic methods based on decidualization.


Assuntos
Decídua/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Anexina A2/genética , Anexina A2/metabolismo , Decídua/metabolismo , Diagnóstico Precoce , Endométrio/patologia , Feminino , Humanos , Placentação/fisiologia , Pré-Eclâmpsia/diagnóstico , Gravidez , Trofoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA