Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Neurointerv Surg ; 16(2): 131-137, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37068937

RESUMO

BACKGROUND: Accumulating evidence indicates that neutrophil activation (NA) contributes to microvascular thromboinflammation in acute ischemic stroke (AIS) due to a large vessel occlusion. Preclinical data have suggested that intravenous thrombolysis (IVT) before endovascular therapy (EVT) could dampen microvascular thromboinflammation. In this study we investigated the association between NA dynamics and stroke outcome, and the impact of IVT on NA in patients with AIS treated with EVT. METHODS: A single-center prospective study was carried out, including patients treated with EVT for whom three blood samples (before, within 1 hour, 24 hours post-EVT) were drawn to measure plasma myeloperoxidase (MPO) concentration as a marker of NA. Unfavorable outcome was defined as a modified Rankin score of 3-6 at 3 months. RESULTS: Between 2016 and 2020, 179 patients were included. The plasma MPO concentration peaked significantly 1 hour post-EVT (median increase 21.0 ng/mL (IQR -2.1-150)) and returned to pre-EVT baseline values 24 hours after EVT (median change from baseline -0.8 ng/mL (IQR -7.6-6.7)). This peak was strongly associated with unfavorable outcomes at 3 months (aOR 0.53 (95% CI 0.34 to 0.84), P=0.007). IVT before EVT abolished this 1 hour post-EVT MPO peak. Changes in plasma MPO concentration (baseline to 1 hour post-EVT) were associated with unfavorable outcomes only in patients not treated with IVT before EVT (aOR 0.54 (95% CI 0.33 to 0.88, P=0.013). However, we found no significant heterogeneity in the associations between changes in plasma MPO concentration and outcomes. CONCLUSIONS: A peak in plasma MPO concentration occurs early after EVT and is associated with unfavorable outcomes. IVT abolished the post-EVT MPO peak and may modulate the association between NA and outcomes.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Terapia Trombolítica/efeitos adversos , Fibrinolíticos , Isquemia Encefálica/terapia , Estudos Prospectivos , AVC Isquêmico/etiologia , Inflamação/tratamento farmacológico , Ativação de Neutrófilo , Tromboinflamação , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Trombose/etiologia , Acidente Vascular Cerebral/terapia , Trombectomia/efeitos adversos
2.
J Trauma Acute Care Surg ; 96(1): 116-122, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733304

RESUMO

BACKGROUND: Activated Protein C (aPC) plays dual roles after injury, driving both trauma-induced coagulopathy (TIC) by cleaving, and thus inactivating, factors Va and VIIIa and depressing fibrinolysis while also mediating an inflammomodulatory milieu via protease activated receptor-1 (PAR-1) cytoprotective signaling. Because of this dual role, it represents and ideal target for study and therapeutics after trauma. A known aPC variant, 3K3A-aPC, has been engineered to preserve cytoprotective activity while retaining minimal anticoagulant activity rendering it potentially ideal as a cytoprotective therapeutic after trauma. We hypothesized that 3K3A-aPC would mitigate the endotheliopathy of trauma by protecting against endothelial permeability. METHODS: We used electric cell-substrate impedance sensing to measure permeability changes in real time in primary endothelial cells. These were cultured, grown to confluence, and treated with a 2 µg/mL solution of 3K3A-aPC at 180 minutes, 120 minutes, 60 minutes, 30 minutes prior to stimulation with ex vivo plasma taken from severely injured trauma patients (Injury Severity Score > 15 and BD < -6) (trauma plasma [TP]). Cells treated with thrombin and untreated cells were included in this study as control groups. Permeability changes were recorded in real time via electric cell-substrate impedance sensing for 30 minutes after treatment with TP. We quantified permeability changes in the control and treatment groups as area under the curve (AUC). Rac1/RhoA activity was also compared between these groups. Statistical significance was determined by one-way ANOVA followed by a post hoc analysis using Tukey's multiple comparison's test. RESULTS: Treatment with aPC mitigated endothelial permeability induced by ex vivo trauma plasma at all pre-treatment time points. The AUC of the 30-minute 3K3A-aPC pretreatment group was higher than TP alone (mean diff. 22.12 95% CI [13.75, 30.49], p < 0.0001) (Figure). Moreover, the AUC of the 60-minute, 120-minute, and 180-minute pretreatment groups was also higher than TP alone (mean diff., 16.30; 95% confidence interval [CI], 7.93-24.67; 19.43; 95% CI, 11.06-27.80, and 18.65; 95% CI, 10.28-27.02;, all p < 0.0001, respectively). Rac1/RhoA activity was higher in the aPC pretreatment group when compared with all other groups ( p < 0.01). CONCLUSION: Pretreatment with 3K3A-aPC, which retains its cytoprotective function but has only ~5% of its anticoagulant function, abrogates the effects of trauma-induced endotheliopathy. This represents a potential therapeutic treatment for dysregulated thromboinflammation for injured patients by minimizing aPC's role in trauma-induced coagulopathy while concurrently amplifying its essential cytoprotective function. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III.


Assuntos
Proteína C , Trombose , Humanos , Proteína C/farmacologia , Proteína C/uso terapêutico , Proteína C/metabolismo , Células Endoteliais/metabolismo , Tromboinflamação , Inflamação/metabolismo , Anticoagulantes/uso terapêutico
3.
Ann Clin Transl Neurol ; 11(1): 30-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902278

RESUMO

OBJECTIVE: Despite amyloid deposition as a hallmark of hereditary transthyretin amyloidosis (ATTRv) with polyneuropathy, this pathology could not completely account for nerve degeneration. ATTRv patients frequently have vasomotor symptoms, but microangiopathy hypothesis in ATTRv was not systemically clarified. METHODS: This study examined the vascular pathology of sural nerves in ATTRv patients with transthyretin (TTR) mutation of p.Ala117Ser (TTR-A97S), focusing on morphometry and patterns of molecular expression in relation to nerve degeneration. We further applied human microvascular endothelial cell (HMEC-1) culture to examine the direct effect of TTR-A97S protein on endothelial cells. RESULTS: In ATTRv nerves, there was characteristic microangiopathy compared to controls: increased vessel wall thickness and decreased luminal area; both were correlated with the reduction of myelinated fiber density. Among the components of vascular wall, the area of collagen IV in ATTRv nerves was larger than that of controls. This finding was validated in a cell model of HMEC-1 culture in which the expression of collagen IV was upregulated after exposure to TTR-A97S. Apoptosis contributed to the endothelial cell degeneration of microvasculatures in ATTRv endoneurium. ATTRv showed prothrombotic status with intravascular fibrin deposition, which was correlated with (1) increased tissue factor and coagulation factor XIIIA and (2) reduced tissue plasminogen activator. This cascade led to intravascular thrombin deposition, which was colocalized with upregulated p-selectin and thrombomodulin, accompanied by complement deposition and macrophages infiltration, indicating thromboinflammation in ATTRv. INTERPRETATION: Microangiopathy with thromboinflammation is characteristic of advanced-stage ATTRv nerves, which provides an add-on mechanism and therapeutic target for nerve degeneration.


Assuntos
Neuropatias Amiloides Familiares , Trombose , Ativador de Plasminogênio Tecidual , Humanos , Tromboinflamação , Células Endoteliais , Inflamação , Degeneração Neural , Colágeno
4.
J Trauma Acute Care Surg ; 96(2): 203-208, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934621

RESUMO

INTRODUCTION: Neutrophil extracellular traps (NETs) contribute to trauma-induced coagulopathy. We aimed to develop a murine multiple-injury model that induces thrombo-inflammatory response, that is, NETosis and accelerated thrombin generation. METHODS: Wild-type male mice (n = 10, aged 8-12 weeks) underwent multiple injuries (gastrocnemius crush, femur fracture, and laparotomy) and were compared with an uninjured control group (n = 10). Mice were euthanized by cardiac puncture performed 3 hours after injury. Whole blood samples were immediately processed to platelet poor plasma for thrombin generation kinetics (calibrated automated thrombogram), myeloperoxidase (MPO), and von Willebrand factor quantification. Immunohistochemistry of lung tissue was performed to assess for citrullinated histone 3 (CitH3) and MPO. A NETosis cluster was defined as 3+ neutrophils staining for CitH3 at 400× magnification (CitH3 cluster). Data were presented either as mean (SD) or median (interquartile range) with p < 0.05 significant. Sham and trauma treated animals were compared by the two-sample Wilcoxon rank-sum test. RESULTS: Animals subjected to multiple injuries had accelerated thrombin generation compared with controls with greater peak height (61.3 [41.2-73.2] vs. 28.4 [19.5-37.5] nM, p = 0.035) and shorter time to peak (3.37 [2.81-3.81] vs. 4.5 [4.08-4.75] minutes, p = 0.046). Markers of neutrophil activation were greater following multiple injuries than in controls (MPO, 961.1 [858.1-1116.8] vs. 481.3 [438.0-648.9] ng/mL; p = 0.004). NETosis, as evidenced by the aforementioned defined number of CitH3 clusters in the lung, was greater in multiple-injury animals than in controls (mean [SD], 3 [2.9] vs. 0.2 [0.7]; p = 0.009). CONCLUSION: This is the first study to demonstrate that NETosis and accelerated thrombin generation can be induced using a murine multiple-injury model, as early as 3 hours following injury.


Assuntos
Traumatismo Múltiplo , Trombose , Masculino , Camundongos , Animais , Tromboinflamação , Inflamação , Trombina , Neutrófilos , Histonas
5.
Blood Adv ; 8(1): 172-182, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38157227

RESUMO

ABSTRACT: Data from a small trial in patients with cancer suggest that isoquercetin (IQ) treatment lowered thrombosis biomarkers and prevented clinical thrombosis, but, to our knowledge, no studies of IQ have been conducted to target thromboinflammation in adults with sickle cell disease (SCD). We conducted a randomized, double-blind, placebo-controlled trial in adults with steady-state SCD (hemoglobin SS [HbSS], HbSß0thal, HbSß+thal, or HbSC). The primary outcome was the change in plasma soluble P-selectin (sP-selectin) after treatment compared with baseline, analyzed in the intention-to-treat population. Between November 2019 and July 2022, 46 patients (aged 40 ± 11 years, 56% female, 75% under hydroxyurea treatment) were randomized to receive IQ (n = 23) or placebo (n = 23). IQ was well tolerated and all the adverse events (AEs; n = 21) or serious AEs (n = 14) recorded were not attributable to the study drug. The mean posttreatment change for sP-selectin showed no significant difference between the treatment groups (IQ, 0.10 ± 6.53 vs placebo, 0.74 ± 4.54; P = .64). In patients treated with IQ, whole-blood coagulation (P = .03) and collagen-induced platelet aggregation (P = .03) were significantly reduced from the baseline. Inducible mononuclear cell tissue factor gene expression and plasma protein disulfide isomerase reductase activity were also significantly inhibited (P = .003 and P = .02, respectively). Short-term fixed-dose IQ in patients with SCD was safe with no off-target bleeding and was associated with changes from the baseline in the appropriate direction for several biomarkers of thromboinflammation. The trial was registered at www.clinicaltrials.gov as #NCT04514510.


Assuntos
Anemia Falciforme , Trombose , Adulto , Feminino , Humanos , Masculino , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Biomarcadores , Inflamação/tratamento farmacológico , Inflamação/etiologia , Selectinas , Tromboinflamação , Trombose/tratamento farmacológico , Trombose/etiologia , Método Duplo-Cego
6.
Life Sci ; 334: 122225, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084675

RESUMO

AIMS: Prostate cancer is among the highest incidence malignancies in men with a prevalence rate increasing in parallel to the rising global trends in metabolic disorders. Whereas a sizeable body of evidence links metabolic impairment to negative prognosis of prostate cancer, the molecular mechanism underlying this connection has not been thoroughly examined. Our previous work showed that localized adipose tissue inflammation occurring in select adipose depots in early metabolic derangement instigated significant molecular, structural, and functional alterations in neighboring tissues underlying the complications observed at this stage. In this context, the periprostatic adipose tissue (PPAT) constitutes an understudied microenvironment with potential influence on the prostatic milieu. MAIN METHODS AND RESULTS: We show that PPAT inflammation occurs in early prediabetes with signs of increased thrombogenic activity including enhanced expression and function of Factor X. This was mirrored by early neoplastic alterations in the prostate with fibrosis, increased epithelial thickness with marked luminal cellular proliferation and enhanced formation of intraepithelial neoplasia. Significantly, interruption of the procoagulant state in PPAT by a 10-day anticoagulant rivaroxaban treatment not only mitigated PPAT inflammation, but also reduced signs of prostatic neoplastic changes. Moreover, rivaroxaban decreased the murine PLum-AD epithelial prostatic cell viability, proliferation, migration, and colony forming capacity, while increasing oxidative stress. A protease-activated receptor-2 agonist reversed some of these effects. SIGNIFICANCE: We provide some evidence of a molecular framework for the crosstalk between PPAT and prostatic tissue leading to early neoplastic changes in metabolic impairment mediated by upregulation of PPAT thromboinflammation.


Assuntos
Neoplasias da Próstata , Trombose , Masculino , Humanos , Animais , Camundongos , Rivaroxabana/farmacologia , Rivaroxabana/metabolismo , Tromboinflamação , Inflamação/patologia , Trombose/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Tecido Adiposo/metabolismo , Microambiente Tumoral
7.
Biomed Microdevices ; 26(1): 2, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085384

RESUMO

Macrophages are innate immune cells that prevent infections and help in wound healing and vascular inflammation. While these cells are natural helper cells, they also contribute to chronic diseases, e.g., by infiltrating the endothelial layer in early atherosclerosis and by promoting vascular inflammation. There is a crosstalk between inflammatory pathways and key players in thrombosis, such as platelets and endothelial cells - a phenomenon known as 'thromboinflammation'. The role of the embedded macrophages in thromboinflammation in the context of vascular disease is incompletely understood. Blood vessels-on-chips, which are microfluidic vascular cell culture models, have been used extensively to study aspects of vascular disease, like permeability, immune cell adhesion and thrombosis. Blood perfusion assays in blood vessel-on-chip models benefit from multiple unique aspects of the models, such as control of microvessel structure and well-defined flow patterns, as well as the ability to perform live imaging. However, due to their simplified nature, blood vessels-on-chip models have not yet been used to capture the complex cellular crosstalk that is important in thromboinflammation. Using induced pluripotent stem cell-derived endothelial cells and polarized THP-1 monocytes, we have developed and systematically set up a 3D blood vessel-on-chip with embedded (lipid-laden) macrophages, which is created using sequential cell seeding in viscous finger patterned collagen hydrogels. We have set up a human whole blood perfusion assay for these 3D blood vessels-on-chip. An increased deposition of fibrin in the blood vessel-on-chip models containing lipid-laden macrophages was observed. We anticipate the future use of this advanced vascular in vitro model in drug development for early atherosclerosis or aspects of other vascular diseases.


Assuntos
Aterosclerose , Trombose , Humanos , Células Endoteliais , Inflamação , Tromboinflamação , Macrófagos , Lipídeos
8.
Blood ; 142(26): 2229-2230, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153773
9.
Front Immunol ; 14: 1230049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795086

RESUMO

Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.


Assuntos
Embolia Aérea , Trombose , Humanos , Embolia Aérea/diagnóstico , Embolia Aérea/etiologia , Embolia Aérea/terapia , Tromboinflamação , Inflamação/terapia , Inflamação/complicações , Trombose/complicações , Doença Iatrogênica
10.
Adv Mater ; 35(45): e2304903, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439390

RESUMO

Immunothrombosis, an inflammation-dependent activation of the coagulation cascade, leads to microthrombi formations in small vessels. It is a dreaded complication of COVID-19 and a major cause of respiratory failure. Due to their size and disseminated nature, microthrombi are currently undetectable. Here, noninvasive detection of a volatile reporter in the exhaled air is introduced for assessment of systemic immunothrombosis. A dendritic nanoprobe, containing high loading of a thrombin-sensitive substrate, is selectively cleaved by thrombin, resulting in release of a synthetic bioorthogonal volatile organic compound (VOC). The VOC is quantitated in the exhaled air biopsies via gas chromatography-mass spectrometry (GC-MS), allowing near real-time assessment of systemic immunothrombosis. The VOC detection can be further improved with more rapid and sensitive MS-based technologies. The amount of the VOC in the exhaled air decreases with resolution of the microvascular inflammation and intravascular fibrin depositions. Through conjugation of the thrombin-sensitive peptide with a rhodol derivative, a novel thrombin-sensitive fluorescent nanoprobe is developed for intravital visualization of thrombin activity in actively growing thrombi. These results establish unprecedented detection of thrombin activity in vivo, addressing this unmet medical need. This novel approach facilitates diagnosis of immunothrombosis in diseases such as diabetic complications, disseminated intravascular coagulation, and COVID-19.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Humanos , Tromboinflamação , Trombina , Compostos Orgânicos Voláteis/análise , Biópsia , COVID-19/diagnóstico
11.
PLoS One ; 18(6): e0288139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37390087

RESUMO

OBJECTIVES: To study the role of biological markers of immunothrombosis and polymorphisms of cytokine genes IL2, IL6, IL10 and their influence on the severity of COVID-19 in a Kazakh population. METHODS: A total of 301 patients of Kazakh nationality with a confirmed diagnosis of COVID-19 participated in the retrospective study, including 142 patients with severe and 159 with a mild course. Single nucleotide polymorphisms IL2R rs1801274, IL6 rs2069840, and IL10 rs1800872 were genotyped by real-time PCR. Activated partial thromboplastin time, normalized ratio, prothrombin index, prothrombin time, fibrinogen prothrombin time, fibrinogen, D-dimer, and C-reactive protein analysis were also conducted. RESULTS: The average age of patients with severe COVID-19 is higher than of patients with mild COVID-19 (p = 0.03). The findings showed that fibrinogen, D-dimer, and C-reactive protein were significantly greater in the group of patients with severe COVID-19 (p = 0.0001). A very strong correlation between the severity of COVID-19 with the D-dimer and C-reactive protein (p = 0.9) (p = 0.02) was found. CONCLUSION: The results of our study confirm that D-dimer, fibrinogen, and CRP are biomarkers of inflammation and hypercoagulation that serve as predictors of immunothrombosis affecting the severity of COVID-19. D-dimer is also associated with IL10 rs1800872 gene polymorphism in the Kazakh population with severe COVID-19.


Assuntos
COVID-19 , Hemostáticos , Humanos , Proteína C-Reativa/genética , Tromboinflamação , Interleucina-10/genética , Interleucina-2 , Interleucina-6/genética , Estudos Retrospectivos , COVID-19/genética , Biomarcadores , Fibrinogênio/genética , Polimorfismo de Nucleotídeo Único
12.
Arterioscler Thromb Vasc Biol ; 43(6): 1041-1053, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128919

RESUMO

BACKGROUND: In reperfused myocardial infarction, VWF (von Willebrand factor)-mediated platelet adhesion contributes to impaired microvascular reflow and possibly also to postmyocardial infarction inflammation. We hypothesized that postischemic thromboinflammatory processes are worsened by elevated LDL (low-density lipoprotein) cholesterol. METHODS: Myocardial ischemia-reperfusion or sham procedure was performed in wild-type mice and hyperlipidemic mice deficient for the LDL receptor and Apobec-1 (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-1; DKO [double knockout]). DKO subgroups were treated with N-acetylcysteine, which inhibits pro-adhesive VWF multimers or with recombinant ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motifs-13), which enzymatically cleaves endothelial surface-associated VWF. Myocardial contrast echocardiography perfusion imaging and molecular imaging for VWF, platelet glycoprotein Ibα, and leukocyte CD18 (cluster of differentiation) were performed 30 minutes post-reperfusion. Histology, infarct sizing, and echocardiography were performed at 1.5 or 72 hours; late echocardiography was performed at day 21. RESULTS: After ischemia-reperfusion, DKO compared with wild-type mice had ≈2-fold higher (P<0.05) risk area signal for microvascular platelet adhesion, VWF, and CD18; greater impairment in microvascular reflow, and 2-fold larger infarct size. Treatment of DKO mice with N-acetylcysteine and ADAMTS13 reduced molecular imaging signal for microvascular platelet adhesion, VWF, and CD18; improved early microvascular reflow; and reduced eventual infarct size. ADAMTS13 suppressed the postmyocardial infarction neutrophil and monocyte infiltration, enhanced the time-dependent recovery of left ventricular systolic function, and prevented late left ventricular remodeling. CONCLUSIONS: In reperfused myocardial infarction, elevated LDL cholesterol promotes thromboinflammation through excess microvascular endothelial VWF and platelet adhesion, resulting in less microvascular reflow and larger infarct size. In the presence of elevated LDL cholesterol, therapies that suppress endothelial-associated VWF can promote recovery of left ventricular function and protect against remodeling.


Assuntos
Infarto do Miocárdio , Tromboinflamação , Animais , Camundongos , Acetilcisteína , Proteína ADAMTS13/genética , LDL-Colesterol , Inflamação , Isquemia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Fator de von Willebrand/genética
13.
Front Biosci (Landmark Ed) ; 28(3): 59, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005767

RESUMO

Immunothrombosis has emerged as a dominant pathological process exacerbating morbidity and mortality in acute- and long-COVID-19 infections. The hypercoagulable state is due in part to immune system dysregulation, inflammation and endothelial cell damage, as well as a reduction in defense systems. One defense mechanism in particular is glutathione (GSH), a ubiquitously found antioxidant. Evidence suggests that reduction in GSH increases viral replication, pro-inflammatory cytokine release, and thrombosis, as well as decreases macrophage-mediated fibrin removal. The collection of adverse effects as a result of GSH depletion in states like COVID-19 suggest that GSH depletion is a dominant mechanism of immunothrombosis cascade. We aim to review the current literature on the influence of GSH on COVID-19 immunothrombosis pathogenesis, as well as the beneficial effects of GSH as a novel therapeutic for acute- and long-COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Tromboinflamação , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Glutationa/uso terapêutico
14.
J Am Soc Nephrol ; 34(7): 1207-1221, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022108

RESUMO

SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.


Assuntos
Glomerulonefrite , Insuficiência Renal Crônica , Trombose , Humanos , Camundongos , Animais , Trombopoetina/metabolismo , Trombopoetina/farmacologia , Receptores de Trombopoetina , Inflamação , Tromboinflamação , Hematopoese/fisiologia , Anticorpos/farmacologia , Rim/metabolismo , Insuficiência Renal Crônica/etiologia , Fator de Crescimento Transformador beta/farmacologia
15.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768242

RESUMO

Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.


Assuntos
COVID-19 , Vesículas Extracelulares , Sepse , Trombose , Humanos , Inflamação , Tromboinflamação , COVID-19/complicações , Trombose/etiologia , Vesículas Extracelulares/patologia , Sepse/complicações , Sepse/patologia
16.
J Thromb Haemost ; 21(4): 744-757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696191

RESUMO

Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.


Assuntos
Síndrome Antifosfolipídica , Trombose , Feminino , Gravidez , Humanos , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/tratamento farmacológico , Tromboinflamação , Células Endoteliais , Inflamação/tratamento farmacológico , Inflamação/complicações , Trombose/etiologia , Serina-Treonina Quinases TOR
17.
Autoimmun Rev ; 22(1): 103232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414219

RESUMO

Coronavirus disease 19 (COVID-19) may present as a multi-organ disease with a hyperinflammatory and prothrombotic response (immunothrombosis) in addition to upper and lower airway involvement. Previous data showed that complement activation plays a role in immunothrombosis mainly in severe forms. The study aimed to investigate whether complement involvement is present in the early phases of the disease and can be predictive of a negative outcome. We enrolled 97 symptomatic patients with a positive RT-PCR for SARS-CoV-2 presenting to the emergency room. The patients with mild symptoms/lung involvement at CT-scan were discharged and the remaining were hospitalized. All the patients were evaluated after a 4-week follow-up and classified as mild (n. 54), moderate (n. 17) or severe COVID-19 (n. 26). Blood samples collected before starting any anti-inflammatory/immunosuppressive therapy were assessed for soluble C5b-9 (sC5b-9) and C5a plasma levels by ELISA, and for the following serum mediators by ELLA: IL-1ß, IL-6, IL-8, TNFα, IL-4, IL-10, IL-12p70, IFNγ, IFNα, VEGF-A, VEGF-B, GM-CSF, IL-2, IL-17A, VEGFR2, BLyS. Additional routine laboratory parameters were measured (fibrin fragment D-dimer, C-reactive protein, ferritin, white blood cells, neutrophils, lymphocytes, monocytes, platelets, prothrombin time, activated partial thromboplastin time, and fibrinogen). Fifty age and sex-matched healthy controls were also evaluated. SC5b-9 and C5a plasma levels were significantly increased in the hospitalized patients (moderate and severe) in comparison with the non-hospitalized mild group. SC5b9 and C5a plasma levels were predictive of the disease severity evaluated one month later. IL-6, IL-8, TNFα, IL-10 and complement split products were higher in moderate/severe versus non-hospitalized mild COVID-19 patients and healthy controls but with a huge heterogeneity. SC5b-9 and C5a plasma levels correlated positively with CRP, ferritin values and the neutrophil/lymphocyte ratio. Complement can be activated in the very early phases of the disease, even in mild non-hospitalized patients. Complement activation can be observed even when pro-inflammatory cytokines are not increased, and predicts a negative outcome.


Assuntos
COVID-19 , Ativação do Complemento , Humanos , Proteínas do Sistema Complemento , COVID-19/diagnóstico , COVID-19/imunologia , Interleucina-10 , Interleucina-6 , Interleucina-8 , SARS-CoV-2 , Tromboinflamação , Fator de Necrose Tumoral alfa
18.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293431

RESUMO

Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Hemostáticos , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Tromboinflamação , Proteoma , Hemostasia
19.
Front Immunol ; 13: 1002652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177015

RESUMO

C-reactive protein (CRP) is a member of the highly conserved pentraxin superfamily of proteins and is often used in clinical practice as a marker of infection and inflammation. There is now increasing evidence that CRP is not only a marker of inflammation, but also that destabilized isoforms of CRP possess pro-inflammatory and pro-thrombotic properties. CRP circulates as a functionally inert pentameric form (pCRP), which relaxes its conformation to pCRP* after binding to phosphocholine-enriched membranes and then dissociates to monomeric CRP (mCRP). with the latter two being destabilized isoforms possessing highly pro-inflammatory features. pCRP* and mCRP have significant biological effects in regulating many of the aspects central to pathogenesis of atherothrombosis and venous thromboembolism (VTE), by directly activating platelets and triggering the classical complement pathway. Importantly, it is now well appreciated that VTE is a consequence of thromboinflammation. Accordingly, acute VTE is known to be associated with classical inflammatory responses and elevations of CRP, and indeed VTE risk is elevated in conditions associated with inflammation, such as inflammatory bowel disease, COVID-19 and sepsis. Although the clinical data regarding the utility of CRP as a biomarker in predicting VTE remains modest, and in some cases conflicting, the clinical utility of CRP appears to be improved in subsets of the population such as in predicting VTE recurrence, in cancer-associated thrombosis and in those with COVID-19. Therefore, given the known biological function of CRP in amplifying inflammation and tissue damage, this raises the prospect that CRP may play a role in promoting VTE formation in the context of concurrent inflammation. However, further investigation is required to unravel whether CRP plays a direct role in the pathogenesis of VTE, the utility of which will be in developing novel prophylactic or therapeutic strategies to target thromboinflammation.


Assuntos
COVID-19 , Trombose , Tromboembolia Venosa , Biomarcadores , Proteína C-Reativa/metabolismo , Humanos , Inflamação/metabolismo , Fosforilcolina , Isoformas de Proteínas/metabolismo , Tromboinflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA