Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Oncogene ; 43(21): 1631-1643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589675

RESUMO

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Assuntos
Progressão da Doença , Neoplasias de Próstata Resistentes à Castração , Isomerases de Dissulfetos de Proteínas , Trombose Venosa , Masculino , Humanos , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Linhagem Celular Tumoral , Trombose Venosa/metabolismo , Trombose Venosa/induzido quimicamente , Trombose Venosa/patologia , Trombose Venosa/genética , Trombose Venosa/etiologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Tromboplastina/metabolismo , Tromboplastina/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Thromb Res ; 237: 23-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547690

RESUMO

INTRODUCTION: Mucins released from epithelial tumors have been proposed to play a role in cancer-associated thrombosis. Mucin1 (MUC1) is a transmembrane mucin that is overexpressed in a variety of human malignancies, including breast and pancreatic cancer. We analyzed the association of MUC1 and venous thrombosis in a mouse tumor model and in patients with cancer. MATERIALS AND METHODS: We used a human pancreatic cancer cell line HPAF-II that expresses a high level of MUC1. We grew HPAF-II tumors in the pancreas of Crl:NU-Foxn1nu male mice. MUC1 in plasma and extracellular vesicles (EVs) isolated from plasma was measured using an enzyme-linked immunosorbent assay. MUC1 in EVs and venous thrombi from tumor-bearing mice was assessed by western blotting. We measured MUC1 in plasma from healthy controls and patients with stomach, colorectal or pancreatic cancer with or without venous thromboembolism. RESULTS AND DISCUSSION: MUC1 was detected in the plasma of mice bearing HPAF-II tumors and was associated with EVs. MUC1 was present in venous thrombi from mice bearing HFAP-II tumors. Recombinant MUC1 did not induce platelet aggregation. Levels of MUC1 were higher in patients with pancreatic cancer compared with healthy controls. In contrast to the mouse model, MUC1 was present in EV-free plasma in samples from healthy controls and patients with cancer. There was no significant difference in the levels of MUC1 in cancer patients with or without VTE. Our data did not find any evidence that MUC1 contributed to VTE in patients with cancer.


Assuntos
Mucina-1 , Trombose Venosa , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Mucina-1/sangue , Mucina-1/metabolismo , Neoplasias/complicações , Neoplasias/sangue , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Trombose Venosa/sangue , Trombose Venosa/metabolismo , Trombose Venosa/patologia
3.
J Thromb Haemost ; 22(1): 172-187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37678548

RESUMO

BACKGROUND: Neutrophils participate in the pathogenesis of thrombosis through the formation of neutrophil extracellular traps (NETs). Thrombosis is the main cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). Recent studies have shown an increase in NET formation (NETosis) both in patients with JAK2V617F neutrophils and in mouse models, and reported the participation of NETosis in the pathophysiology of thrombosis in mice. OBJECTIVES: This study investigated whether JAK2V617F neutrophils are sufficient to promote thrombosis or whether their cooperation with other blood cell types is necessary. METHODS: NETosis was studied in PF4iCre;Jak2V617F/WT mice expressing JAK2V617F in all hematopoietic lineages, as occurs in MPNs, and in MRP8Cre;Jak2V617F/WT mice in which JAK2V617F is expressed only in leukocytes. RESULTS: In PF4iCre;Jak2V617F/WT mice, an increase in NETosis and spontaneous lung thrombosis abrogated by DNAse administration were observed. The absence of spontaneous NETosis or lung thrombosis in MRP8Cre;Jak2V617F/WT mice suggested that mutated neutrophils alone are not sufficient to induce thrombosis. Ex vivo experiments demonstrated that JAK2V617F-mutated platelets trigger NETosis by JAK2V617F-mutated neutrophils. Aspirin treatment in PF4iCre;Jak2V617F/WT mice reduced NETosis and reduced lung thrombosis. In cytoreductive-therapy-free patients with MPN treated with aspirin, plasma NET marker concentrations were lower than that in patients with MPN not treated with aspirin. CONCLUSION: Our study demonstrates that JAK2V617F neutrophils alone are not sufficient to promote thrombosis; rather, platelets cooperate with neutrophils to promote NETosis in vivo. A new role for aspirin in thrombosis prevention in MPNs was also identified.


Assuntos
Armadilhas Extracelulares , Transtornos Mieloproliferativos , Neoplasias , Trombose , Trombose Venosa , Humanos , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Neoplasias/metabolismo , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Trombose Venosa/metabolismo , Aspirina
4.
Chin J Physiol ; 66(6): 466-473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149559

RESUMO

Deep vein thrombosis (DVT) is a common complication in hematologic malignancies and immunologic disorders. Endothelial cell injury and dysfunction comprise the critical contributor for the development of DVT. A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), a plasma metalloprotease that cleaves von Willebrand factor, acts as a critical regulator in normal hemostasis. This study was aimed to explore the role of ADAMTS13 in endothelial cell injury during DVT and the possible mechanism. First, human umbilical vein endothelial cells (HUVECs) were exposed to hydrogen peroxide (H2O2). Then, the mRNA and protein expressions of ADAMTS13 were evaluated with the reverse transcription-quantitative polymerase chain reaction and western blot. After treatment with recombinant ADAMTS13 (rADAMTS13; rA13), the viability and apoptosis of H2O2-induced HUVECs were assessed by cell counting kit-8 assay and terminal-deoxynucleoitidyl transferase-mediated nick end labeling staining. In addition, the levels of prostaglandin F1-alpha, endothelin-1, and reactive oxygen species were detected using the enzyme-linked immunosorbent assay and dichloro-dihydro-fluorescein diacetate assay. The expressions of proteins related to p38/extracellular signal-regulated kinase (ERK) signaling pathway were estimated with the western blot. Then, p79350 (p38 agonist) was used to pretreat cells to analyze the regulatory effects of rA13 on p38/ERK signaling in H2O2-induced HUVEC injury. The results revealed that ADAMTS13 expression was significantly downregulated in H2O2-induced HUVECs. The reduced viability and increased apoptosis of HUVECs induced by H2O2 were revived by ADAMTS13. ADAMTS13 also suppressed the oxidative stress in HUVECs after H2O2 treatment. Besides, ADAMTS13 was found to block p38/ERK signaling pathway, and p79350 reversed the impacts of ADAMTS13 on the damage of HUVECs induced by H2O2. To sum up, ADAMTS13 could alleviate H2O2-induced HUVEC injury through the inhibition of p38/ERK signaling pathway.


Assuntos
Proteína ADAMTS13 , Sistema de Sinalização das MAP Quinases , Trombose Venosa , Humanos , Peróxido de Hidrogênio/efeitos adversos , Trombose Venosa/metabolismo , Proteína ADAMTS13/metabolismo , Células Endoteliais da Veia Umbilical Humana , Estresse Oxidativo
5.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 183-188, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807309

RESUMO

Lower extremity deep venous thrombosis (LEDVT) has a high incidence and mortality. Crocin has the potential to ameliorate thrombosis. The study aimed to clarify whether crocin affects LEDVT. Human umbilical vein endothelial cells (HUVECs) were exposed to thrombin and crocin (0, 5, 10, 20, 40, and 80 µM). Cell viability was assessed by MTT assay. Cellular behaviors were assessed using flow cytometry, TUNEL assay, and tube formation assay. The binding relationship between crocin and PIM1 was analyzed by molecular docking. The underlying mechanism of PIM1 was determined by reverse transcription-quantitative PCR, dual-luciferase reporter assay, and RIP. We found that crocin (5, 10, 20, and 40 µM) promoted thrombin-treated HUVEC viability in a dose-dependent manner. Crocin inhibited apoptosis and promoted the angiogenesis of HUVECs induced by thrombin. PIM1 was a target of crocin and was upregulated in patients with LEDVT and thrombin-treated cells. Foxo3a could interact with PIM1 and positively related to PIM1 expression. Moreover, the knockdown of PIM1 suppressed apoptosis and promoted angiogenesis in thrombin-HUVECs treated with crocin, while overexpression of Foxo3a reversed the effects. In conclusion, crocin inhibited apoptosis and promoted the angiogenesis of HUVECs induced by thrombin via the PIM1/Foxo3a axis, suggesting that crocin may be effective for LEDVT therapy.


Assuntos
MicroRNAs , Trombose Venosa , Humanos , Simulação de Acoplamento Molecular , Trombina/metabolismo , Trombose Venosa/tratamento farmacológico , Trombose Venosa/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Extremidade Inferior/irrigação sanguínea , MicroRNAs/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-pim-1/metabolismo
6.
J Thromb Haemost ; 21(11): 3153-3165, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37473844

RESUMO

BACKGROUND: Cancer-associated thrombosis (CAT) is the leading cause of morbidity and mortality. Cancer-associated fibroblasts (CAFs) are a prominent component of the tumor microenvironment that contributes to cancer progression through direct cell-cell interactions and the release of extracellular vesicles (EVs). However, the role of CAFs in CAT remains unclear. OBJECTIVE: This study aims to investigate whether CAFs aggravate CAT and the underlying molecular mechanism using a preclinical mouse lung cancer model. METHODS: We designed a Lewis lung carcinoma (LLC) tumor-bearing mouse model. CAFs were characterized using fluorescence immunohistostaining. The presence of podoplanin, a platelet-activating membrane protein through C-type lectin-like receptor 2 (CLEC-2), in EVs isolated from primary CAFs or LLC tumor tissues was assessed by immunoblotting. The platelet activation and aggregation abilities of the EVs were quantified using flow cytometry. Podoplanin plasma levels were measured by enzyme-linked immunosorbent assay. Venous thrombosis was induced in the femoral vein using 2.5% ferric chloride. The anti-CLEC-2 monoclonal antibody 2A2B10 was used to deplete CLEC-2 on the surface of the platelets. RESULTS: CAFs expressing CD90, PDGFRß, HSP47, CD34, and vimentin, co-expressed podoplanin and induced platelet activation and aggregation in a CLEC-2-dependent manner. Tumor-bearing mice showed elevated podoplanin plasma levels. CAF-EV injection and tumor-bearing mice showed shorter occlusion time in the venous thrombosis model. Although tumor growth was not altered, antibody-induced CLEC-2 depletion suppressed venous thrombosis in the tumor-bearing state but not in the healthy condition. CONCLUSION: CAFs and CAF-derived EVs induce CLEC-2-dependent platelet aggregation and aggravate venous thrombosis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Trombose , Trombose Venosa , Camundongos , Animais , Fibroblastos Associados a Câncer/metabolismo , Agregação Plaquetária , Plaquetas/metabolismo , Neoplasias Pulmonares/metabolismo , Trombose Venosa/metabolismo , Trombose/metabolismo , Lectinas Tipo C/metabolismo , Microambiente Tumoral
7.
Mol Biotechnol ; 65(10): 1664-1678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36738360

RESUMO

Endothelial progenitor cells (EPCs) contribute to recanalization of deep vein thrombosis (DVT). MicroRNAs (miRNAs) play regulatory roles in functions of EPCs, which is becoming a promising therapeutic choice for thrombus resolution. The main purpose of this study was to explore the effect of miR-125a-5p on EPC functions in deep vein thrombosis (DVT). EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-125a-5p and myeloid cell leukemia sequence 1 (MCL-1) in EPCs and thrombi of DVT mice were detected by RT-qPCR. EPC migration, angiogenesis, and apoptosis were estimated by Transwell assay, tube formation assay, and flow cytometry analysis. Luciferase reporter assay was utilized for detecting the binding of miR-125a-5p and MCL-1. The phosphorylation of PI3K and AKT was estimated by western blot. DVT formation in vivo was observed through hematoxylin-eosin (H&E) staining. The expression of thrombus resolution marker, CD34 molecule (CD34), in the thrombi was measured by immunofluorescence staining. MiR-125a-5p upregulation repressed EPC migration and angiogenesis and facilitated apoptosis. MiR-125a-5p downregulation showed the opposite effect. MCL-1 was targeted and negatively regulated by miR-125a-5p. Additionally, miR-125a-5p inhibited the PI3K/AKT pathway in EPCs. Inhibition of MCL-1 or PI3K/AKT pathway reversed the effect of miR-125a-5p knockdown on EPC functions. The in vivo experiments revealed that miR-125a-5p downregulation repressed thrombus formation and promoted the homing capability of EPCs to the thrombosis site, thereby alleviating DVT mice. Downregulation of miR-125a-5p promotes EPC migration and angiogenesis by upregulating MCL-1, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Trombose , Trombose Venosa , Camundongos , Animais , Células Progenitoras Endoteliais/metabolismo , Regulação para Cima , Regulação para Baixo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trombose/metabolismo
8.
In Vitro Cell Dev Biol Anim ; 58(10): 957-969, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36469244

RESUMO

Deep venous thrombosis (DVT) therapy during pregnancy warrants special consideration for the woman and the fetus. This study aimed to evaluate the impact of umbilical cord-derived mesenchymal stem cells (UC-MSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) in terms of pro-angiogenic capacity and amelioration of pregnancy outcomes. The pregnant DVT rat model was successfully established by the "stenosis" method. Three consecutive injections of both UC-MSCs and BM-MSCs improved angiogenesis and ameliorated the embryo absorption rate in pregnant SD rats with DVT, in which UC-MSCs promoted angiogenesis more significantly. Furthermore, the levels of serum vascular endothelial growth factor-A (VEGF-A) and epidermal growth factor (EGF) were significantly higher in the UC-MSC group compared to those of the BM-MSC group. Thereafter, differentially expressed genes (DEGs) in thrombosed inferior vena cava tissues in the UC-MSC and BM-MSC groups were identified using transcriptome sequencing and further assessed by RT-qPCR and western blotting. The bioinformatics analysis indicated that the enriched DEG terms occurred in the cytokine activity, and the DEG pathways were significantly enriched in the cytokine-cytokine receptor interaction. In addition, both the mRNA and protein levels of angiogenic genes and their receptors, including VEGF-A, VEGF receptor-1, EGF, and EGF receptor, were significantly higher in the UC-MSC group. In conclusion, the BM-MSCs and UC-MSCs both significantly stimulate angiogenesis and ameliorate the embryo absorption rate in pregnant SD rats with DVT, but the difference in cytokine secretion causes UC-MSCs to have more potent angiogenic effects than BM-MSCs.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Trombose Venosa , Animais , Feminino , Gravidez , Ratos , Citocinas/metabolismo , Fator de Crescimento Epidérmico , Infusões Intravenosas , Células-Tronco Mesenquimais/metabolismo , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Trombose Venosa/terapia , Trombose Venosa/metabolismo
9.
J Thromb Thrombolysis ; 54(3): 411-419, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006542

RESUMO

Exosomes (exos) exert biological functions to maintain the dynamic balance of cells and tissues by transferring biological cargo to recipient cells. Thus, this study explored human umbilical cord mesenchymal stem cells (hucMSCs)-derived exo transfer of microRNA (miR)-342-3p in deep vein thrombosis (DVT). DVT rat models were established via inferior vena cava (IVC) ligation. HucMSCs-exos were extracted and injected into rats with DVT to observe whether they could influences thrombus formation in vivo. HucMSCs-exos were co-cultured with human umbilical vein endothelial cells (HUVECs) in vitro to observe angiogenesis. miR-342-3p and endothelin A receptor (EDNRA) expression in rats with DVT, as well as their interaction was analyzed. miR-342-3p was downregulated and EDNRA was upregulated in rats with DVT. HucMSCs-exos inhibited the formation of thrombus in rats with DVT, as well as promoted angiogenesis of HUVECs. Upregulated miR-342-3p delivery by hucMSCs-exos alleviated DVT in rats and improved angiogenesis of HUVECs. miR-342-3p targeted EDNRA, and the effect of hucMSCs-exos transfer of upregulated miR-342-3p was rescued by overexpressing EDNRA. Briefly, miR-342-3p loaded by hucMSCs-exos attenuates DVT by downregulating EDNRA, offering a novel direction to treat DVT.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Trombose Venosa , Animais , Exossomos/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Receptor de Endotelina A/metabolismo , Cordão Umbilical/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo , Trombose Venosa/terapia
10.
J Cell Mol Med ; 26(16): 4479-4491, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35808901

RESUMO

Venous calcification has been observed in post-thrombotic syndrome (PTS) patients; yet, the cell types and possible mechanisms regulating this process are still unclear. We evaluated the calcium deposition within the venous wall, the cell type involved in the calcified remodelling of the venous wall after thrombosis and explored possible mechanisms in vitro. Calcium deposition was found in human specimens of superficial thrombotic veins and was co-localized with VSMCs markers αSMA and TAGLN (also known as SM22α). Besides, the expression of osteogenesis-related genes was dramatically changed in superficial thrombotic veins. Moreover, the inhibition of the TGFß signalling pathway after TNFα treatment effectively induced the expression of osteogenic phenotype markers, the calcium salt deposits and the obvious phosphorylation of ERK1/2 and JNK2 in the VSMCs calcification model. Supplementing TGFß2 or blocking the activation of the ERK/MAPK signalling pathway prevented the transformation of VSMCs into osteoblast-like cells in vitro. Taken together, VSMCs have an important role in venous calcification after thrombosis. Supplementing TGFß2 or inhibiting the ERK/MAPK signalling pathway can reduce the appearance of VSMCs osteogenic phenotype. Our findings may present a novel therapeutic approach to prevent of vascular calcification after venous thrombosis.


Assuntos
Calcificação Vascular , Trombose Venosa , Cálcio/metabolismo , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Calcificação Vascular/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo
11.
Biomolecules ; 12(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740954

RESUMO

The efficacy of thrombolysis is inversely correlated with thrombus age. During early thrombogenesis, activated factor XIII (FXIIIa) cross-links α2-AP to fibrin to protect it from early lysis. This was exploited to develop an α2-AP-based imaging agent to detect early clot formation likely susceptible to thrombolysis treatment. In this study, this imaging probe was improved and validated using 111In SPECT/CT in a mouse thrombosis model. In vitro fluorescent- and 111In-labelled imaging probe-to-fibrin cross-linking assays were performed. Thrombus formation was induced in C57Bl/6 mice by endothelial damage (FeCl3) or by ligation (stenosis) of the infrarenal vena cava (IVC). Two or six hours post-surgery, mice were injected with 111In-DTPA-A16 and ExiTron Nano 12000, and binding of the imaging tracer to thrombi was assessed by SPECT/CT. Subsequently, ex vivo IVCs were subjected to autoradiography and histochemical analysis for platelets and fibrin. Efficient in vitro cross-linking of A16 imaging probe to fibrin was obtained. In vivo IVC thrombosis models yielded stable platelet-rich thrombi with FeCl3 and fibrin and red cell-rich thrombi with stenosis. In the stenosis model, clot formation in the vena cava corresponded with a SPECT hotspot using an A16 imaging probe as a molecular tracer. The fibrin-targeting A16 probe showed specific binding to mouse thrombi in in vitro assays and the in vivo DVT model. The use of specific and covalent fibrin-binding probes might enable the clinical non-invasive imaging of early and active thrombosis.


Assuntos
Trombose , Trombose Venosa , Animais , Constrição Patológica , Modelos Animais de Doenças , Fibrina/química , Camundongos , Camundongos Endogâmicos C57BL , Trombose/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/metabolismo
12.
Mol Med Rep ; 25(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35191519

RESUMO

Inflammation is a protective response of the body to various injuries, which is strictly regulated by a variety of factors, including immune cells and soluble mediators. However, dysfunction of this defensive mechanism often results in inflammation­driven diseases, such as deep vein thrombosis (DVT). The complex relationship between inflammatory cell activity and DVT has not been fully elucidated. The present study aimed to investigate the role of interleukin­6 (IL6) signaling transduction in DVT. To this aim, the expression levels of transmembrane isoforms of the IL6 receptor (IL6R) and the glycoprotein 130 responsible for the IL6 cis­signaling were evaluated in the peripheral blood mononuclear cells of patients with DVT and of healthy controls. The results indicated that leukocytes from patients with DVT exhibited overexpression of both IL6R and gp130 membrane isoforms and that these were strongly associated with the occurrence of DVT. Overall, the present findings indicated that IL6 cis­signaling may have a direct involvement in the leukocyte activation in DVT and may serve as a predictive biomarker of DVT development.


Assuntos
Interleucina-6 , Trombose Venosa , Humanos , Interleucina-6/metabolismo , Leucócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Transdução de Sinais , Trombose Venosa/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163180

RESUMO

Spontaneous venous thrombosis is often the first clinical sign of cancer, and it is linked to a worsened survival rate. Traditionally, tumor-cell induced platelet activation has been the main actor studied in cancer-associated-thrombosis. However, platelet involvement alone does not seem to be sufficient to explain this heightened pro-thrombotic state. Neutrophils are emerging as key players in both thrombus generation and cancer progression. Neutrophils can impact thrombosis through the release of pro-inflammatory cytokines and expression of molecules like P-selectin and Tissue Factor (TF) on their membrane and on neutrophil-derived microvesicles. Their role in cancer progression is evidenced by the fact that patients with high blood-neutrophil counts have a worsened prognosis. Tumors can attract neutrophils to the cancer site via pro-inflammatory cytokine secretions and induce a switch to pro-tumoral (or N2) neutrophils, which support metastatic spread and have an immunosuppressive role. They can also expel their nuclear contents to entrap pathogens forming Neutrophil Extracellular Traps (NETs) and can also capture coagulation factors, enhancing the thrombus formation. These NETs are also known to have pro-tumoral effects by supporting the metastatic process. Here, we strived to do a comprehensive literature review of the role of neutrophils as drivers of both cancer-associated thrombosis (CAT) and cancer progression.


Assuntos
Neoplasias/metabolismo , Neutrófilos/metabolismo , Trombose/imunologia , Plaquetas/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Neoplasias/imunologia , Neutrófilos/imunologia , Selectina-P/metabolismo , Ativação Plaquetária/imunologia , Ativação Plaquetária/fisiologia , Tromboplastina/metabolismo , Trombose/metabolismo , Trombose Venosa/metabolismo
14.
Mol Biotechnol ; 64(3): 330-337, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34647243

RESUMO

Lower extremity deep venous thrombosis (LEDVT) is a venous reflux disorder caused by abnormal coagulation of blood. LEDVT can obstruct the lumen and LEDVT is the third vascular disease after cerebrovascular diseases and coronary artery diseases. miRNAs are associated with thrombosis, and miR-185 was reported to affect the proliferation and apoptosis of vascular endothelial cells by regulating receptor of advanced glycation end products (RAGE). However, no study has reported the effect of miR-185 on LEDVT. Here, we studied the effects of miR-185 on the PI3K/AKT and MAPK signaling pathways in the LEDVT cells. The results showed that miR-185 promotes cell proliferation through activating the PI3K/AKT and MAPK signaling pathways and then inhibits tissue factor and fibrin expression to reduce thrombosis. In short, our study provides new ideas and a theoretical basis for research on the prevention, diagnosis, and treatment of LEDVT.


Assuntos
MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose Venosa/genética , Animais , Proliferação de Células , Células Cultivadas , Cromonas/farmacologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibrina/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Morfolinas/farmacologia , Ratos , Tromboplastina/metabolismo , Trombose Venosa/etiologia , Trombose Venosa/metabolismo
15.
Exp Cell Res ; 411(1): 112985, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942190

RESUMO

Deep venous thrombosis (DVT) endangers human health. Endothelial progenitor cells (EPCs) were proven to promote thrombolysis and miR-204-5p was discovered to be low-expressed in DVT patients. This study concentrated on exploring whether miR-204-5p had a regulatory effect on EPCs and DVT. Concretely, the expression of miR-204-5p in DVT patients' blood was detected by qRT-PCR. The target of miR-204-5p was predicted by bioinformatics and verified by dual-luciferase reporter assay. After rat EPCs were isolated, identified, and transfected with miR-204-5p agomiR, antagomiR, or SPRED1 plasmids, the viability, migration, invasion, and tube formation of EPCs were detected by MTT, wound healing, Transwell, and tube formation assays, respectively. MiR-204-5p, SPRED1, p-PI3K, PI3K, p-AKT, AKT, VEGFA, and Ang1 expressions in EPCs were measured by qRT-PCR or Western blot. EPCs transfected with miR-204-5p overexpression lentivirus plasmid were injected into the DVT rat model. The histopathology of the thrombus and the homing of EPCs to thrombus in the DVT rats were observed by hematoxylin-eosin staining and confocal microscopy, respectively. We found that miR-204-5p was low-expressed in DVT patients and SPRED1 was a target gene of miR-204-5p. MiR-204-5p agomiR promoted the viability, migration, invasion, and tube formation of EPCs, the levels of VEGFA and Ang1 and the activation of PI3K/AKT pathway in EPCs, while miR-204-5p antagomiR and SPRED1 worked oppositely. SPRED1 reversed the effect of miR-204-5p agomiR on EPCs. Up-regulated miR-204-5p inhibited thrombosis and promoted EPCs homing to thrombus in DVT rats. Collectively, up-regulated miR-204-5p enhanced the angiogenesis of EPCs and thrombolysis in DVT rats by targeting SPRED1.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Neovascularização Fisiológica , Proteínas Repressoras/antagonistas & inibidores , Terapia Trombolítica/métodos , Trombose Venosa/terapia , Adulto , Animais , Apoptose , Biomarcadores/metabolismo , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Feminino , Humanos , Masculino , Prognóstico , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ativação Transcricional , Regulação para Cima , Trombose Venosa/metabolismo , Trombose Venosa/patologia
16.
Sci Rep ; 11(1): 22805, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815441

RESUMO

Venous thromboembolism is a significant source of morbidity and mortality worldwide. Catheter-directed thrombolytics is the primary treatment used to relieve critical obstructions, though its efficacy varies based on the thrombus composition. Non-responsive portions of the specimen often remain in situ, which prohibits mechanistic investigation of lytic resistance or the development of diagnostic indicators for treatment outcomes. In this study, thrombus samples extracted from venous thromboembolism patients were analyzed ex vivo to determine their histological properties, susceptibility to lytic therapy, and imaging characteristics. A wide range of thrombus morphologies were observed, with a dependence on age and etymology of the specimen. Fibrinolytic inhibitors including PAI-1, alpha 2-antiplasmin, and TAFI were present in samples, which may contribute to the response venous thrombi to catheter-directed thrombolytics. Finally, a weak but significant correlation was observed between the response of the sample to lytic drug and its magnetic microstructure assessed with a quantitative MRI sequence. These findings highlight the myriad of changes in venous thrombi that may promote lytic resistance, and imaging metrics that correlate with treatment outcomes.


Assuntos
Biomarcadores/metabolismo , Técnicas de Imagem por Elasticidade/métodos , Ativador de Plasminogênio Tecidual/administração & dosagem , Ultrassonografia/métodos , Trombose Venosa/patologia , Fibrinolíticos/administração & dosagem , Humanos , Trombose Venosa/tratamento farmacológico , Trombose Venosa/metabolismo
17.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34702946

RESUMO

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Assuntos
COVID-19/terapia , Imunomodulação , Transplante de Células-Tronco Mesenquimais , Idoso , Animais , Anticorpos Antivirais/sangue , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Proteína C-Reativa/análise , COVID-19/imunologia , COVID-19/virologia , Citocinas/genética , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Trombose Venosa/metabolismo , Trombose Venosa/patologia
18.
Arterioscler Thromb Vasc Biol ; 41(11): 2681-2692, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34496636

RESUMO

The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Inflamação/metabolismo , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tromboembolia Venosa/metabolismo , Trombose Venosa/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Fibrinolíticos/uso terapêutico , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/sangue , Ligantes , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Transdução de Sinais , Tromboembolia Venosa/sangue , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/patologia , Trombose Venosa/sangue , Trombose Venosa/tratamento farmacológico , Trombose Venosa/patologia
19.
Stroke ; 52(11): e706-e709, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34428931
20.
Ann Vasc Surg ; 77: 288-295, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34416282

RESUMO

BACKGROUND: This study is to investigate the role and mechanism of mir-5189-3p in deep vein thrombosis (DVT) in lower extremity. METHODS: The blood samples were collected from Kazakh patients with DVT in lower extremity and were subjected to microRNA sequencing. Bioinformatics were used to identify mir-5189-3p and its target genes. Dual luciferase reporter assay was used to determine the regulatory effect of mir-5189-3p on JAG1. SD rats were randomly divided into normal control, DVT model, hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups. HE staining was used to observe the pathological changes. TUNEL method was used to observe apoptosis. Western blot was used to detect Bax and Bcl-2 protein expression. Real-time quantitative PCR was used to detect JAG1, Notch1 and Hes1 mRNA. RESULTS: The target of Has-miR-5189-3p was JAG1. Co-transfection of miR-5189-3p mimics and pmirGLO/JAG1 wild-type plasmid induced significantly decreased luciferase activity. In hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups, there were more nucleated cells in the thrombus tissues, and the organization degree obviously increased. Signs of blood flow recanalization were observed. The apoptosis of hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups was lower than that in DVT model group. Furthermore, mir-5189-3p mimics significantly increased the mRNA levels of JAG1, Notch1 and Hes1. Additionally, mir-5189-3p mimics significantly increased Bcl-2 while decreased Bax protein. CONCLUSIONS: mir-5189-3p could inhibit apoptosis and promote thrombus organization in DVT possibly via Notch signaling pathway. Mir-5189-3p can be used as a potential target for DVT treatment.


Assuntos
MicroRNAs/metabolismo , Veia Cava Inferior/metabolismo , Trombose Venosa/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Veia Cava Inferior/patologia , Trombose Venosa/sangue , Trombose Venosa/genética , Trombose Venosa/patologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA