Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; 37(6): 1030-1035, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35834717

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal cancers around the world and remain asymptomatic in early stage. An alcoholic extract prepared from leaves of Tropaeolum majus L. (Tropaeolaceae) was assessed for its potential activity against diethylnitrosamine-induced liver carcinoma in vivo. Oral administration of the extract significantly decreased the inflammatory marker translation NF-kB and supressed HCC progression in combination with 0.5 Gy gamma radiation via EGF-HER-2 pathway. Histopathological and immunohistopathological features also showed the recovery of a hepatic architecture. Immunohistochemical study showed the T. majus and LDR enhancement effect on proapoptotic markers (caspase-3 and Bax) and inhibition of anti-apoptotic factor (BCl2). HPLC-DAD-MSn analysis of the extract revealed the annotation of twelve compounds. T. majus could mediate a defensive influence against diethylnitrosamine-induced hepatocarcinogenesis and serve as a respectable option in amelioration of the hepatocellular carcinoma development in combination with low dose of gamma radiation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tropaeolum , Tropaeolum/química , Tropaeolum/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Extratos Vegetais/química , Dietilnitrosamina/metabolismo , Dietilnitrosamina/farmacologia , Raios gama , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais , Fígado , Receptores ErbB/metabolismo , Apoptose
2.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293253

RESUMO

Anthocyanins are an important group of water-soluble and non-toxic natural pigments with antioxidant and anti-inflammatory properties that can be found in flowers, vegetables, and fruits. Anthocyanin biosynthesis is regulated by several different types of transcription factors, including the WD40-repeat protein Transparent Testa Glabra 1 (TTG1), the bHLH transcription factor Transparent Testa 8 (TT8), Glabra3 (GL3), Enhancer of GL3 (EGL3), and the R2R3 MYB transcription factor Production of Anthocyanin Pigment 1 (PAP1), PAP2, MYB113, and MYB114, which are able to form MYB-bHLH-WD40 (MBW) complexes to regulate the expression of late biosynthesis genes (LBGs) in the anthocyanin biosynthesis pathway. Nasturtium (Tropaeolum majus) is an edible flower plant that offers many health benefits, as it contains numerous medicinally important ingredients, including anthocyanins. By a comparative examination of the possible anthocyanin biosynthesis regulator genes in nasturtium varieties with different anthocyanin contents, we found that TmPAP2, an R2R3 MYB transcription factor gene, is highly expressed in "Empress of India", a nasturtium variety with high anthocyanin content, while the expression of TmPAP2 in Arabidopsis led to the overproduction of anthocyanins. Protoplast transfection shows that TmPAP2 functions as a transcription activator; consistent with this finding, some of the biosynthesis genes in the general phenylpropanoid pathway and anthocyanin biosynthesis pathway were highly expressed in "Empress of India" and the 35S:TmPAP2 transgenic Arabidopsis plants. However, protoplast transfection indicates that TmPAP2 may not be able to form an MBW complex with TmGL3 and TmTTG1. These results suggest that TmPAP2 may function alone as a key regulator of anthocyanin biosynthesis in nasturtiums.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tropaeolum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tropaeolum/genética , Tropaeolum/metabolismo , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Água/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 16(1): 805-22, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25561232

RESUMO

Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu's reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat-showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.


Assuntos
Antioxidantes/química , Asteraceae/química , Fenóis/análise , Espectrometria de Massas por Ionização por Electrospray , Tagetes/química , Tropaeolum/química , Antocianinas/análise , Asteraceae/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flores/química , Flores/metabolismo , Tagetes/metabolismo , Tropaeolum/metabolismo
4.
PLoS One ; 7(4): e35545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536404

RESUMO

Plants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.g. new chemical defenses. The association of Pierid butterflies and plants of the Brassicales has been cited as an illustrative example of this adaptive process known as 'coevolutionary armsrace'. All plants of the Brassicales are defended by the glucosinolate-myrosinase system to which larvae of cabbage white butterflies and related species are biochemically adapted through a gut nitrile-specifier protein. Here, we provide evidence by metabolite profiling and enzyme assays that metabolism of benzylglucosinolate in Pieris rapae results in release of equimolar amounts of cyanide, a potent inhibitor of cellular respiration. We further demonstrate that P. rapae larvae develop on transgenic Arabidopsis plants with ectopic production of the cyanogenic glucoside dhurrin without ill effects. Metabolite analyses and fumigation experiments indicate that cyanide is detoxified by ß-cyanoalanine synthase and rhodanese in the larvae. Based on these results as well as on the facts that benzylglucosinolate was one of the predominant glucosinolates in ancient Brassicales and that ancient Brassicales lack nitrilases involved in alternative pathways, we propose that the ability of Pierid species to safely handle cyanide contributed to the primary host shift from Fabales to Brassicales that occured about 75 million years ago and was followed by Pierid species diversification.


Assuntos
Arabidopsis/metabolismo , Borboletas/metabolismo , Glucosinolatos/metabolismo , Nasturtium/metabolismo , Nitrilas/metabolismo , Folhas de Planta/metabolismo , Tropaeolum/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Arabidopsis/genética , Fezes/química , Herbivoria , Hidroxilação , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Larva/enzimologia , Larva/metabolismo , Microssomos/enzimologia , Microssomos/metabolismo , Nasturtium/genética , Folhas de Planta/genética , Tiocianatos/metabolismo , Tioglucosídeos/metabolismo , Tropaeolum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA