Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 197, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845889

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a disease caused by the larval stage of Echinococcus granulosus sensu lato  (s.l.). The treatment of CE mainly relies on the use of benzimidazoles, which can commonly cause adverse side effects. Therefore, more efficient treatment options are needed. Drug repurposing is a useful approach for advancing drug development. We have evaluated the in vitro protoscolicidal effects of tropisetron and granisetron in E. granulosus sensu stricto (s.s.) and assessed the expression of the calcineurin (CaN) and calmodulin (CaM) genes, both of which have been linked to cellular signaling activities and thus are potentially promising targets for the development of drugs. METHODS: Protoscoleces (PSC) of E. granulosus (s.s.) (genotype G1) obtained from sheep hepatic hydatid cysts were exposed to tropisetron and granisetron at concentrations of 50, 150 and 250 µM for various periods of time up to 10 days. Cyclosporine A (CsA) and albendazole sulfoxide were used for comparison. Changes in the morphology of PSC were investigated by light microscopy and scanning electron microscopy. Gene expression was assessed using real-time PCR at the mRNA level for E. granulosus calcineurin subunit A (Eg-CaN-A), calcineurin subunit B (Eg-CaN-B) and calmodulin (Eg-CaM) after a 24-h exposure at 50 and 250 µM, respectively. RESULTS: At 150 and 250 µM, tropisetron had the highest protoscolicidal effect, whereas CsA was most effective at 50 µM. Granisetron, however, was less effective than tropisetron at all three concentrations. Examination of morphological alterations revealed that the rate at which PSC were killed increased with increasing rate of PSC evagination, as observed in PSC exposed to tropisetron. Gene expression analysis revealed that tropisetron at 50 µM significantly upregulated Eg-CaN-B and Eg-CaM expression while at 250 µM it significantly downregulated both Eg-CaN-B and Eg-CaM expressions; in comparison, granisetron decreased the expression of all three genes at both concentrations. CONCLUSIONS: Tropisetron exhibited a higher efficacy than granisetron against E. granulosus (s.s.) PSC, which is probably due to the different mechanisms of action of the two drugs. The concentration-dependent effect of tropisetron on calcineurin gene expression might reflect its dual functions, which should stimulate future research into its mechanism of action and evaluation of its potential therapeutical effect in the treatment of CE.


Assuntos
Anti-Helmínticos/farmacologia , Calcineurina/metabolismo , Calmodulina/metabolismo , Equinococose/veterinária , Echinococcus granulosus/efeitos dos fármacos , Granisetron/farmacologia , Proteínas de Helminto/metabolismo , Doenças dos Ovinos/parasitologia , Tropizetrona/farmacologia , Animais , Anti-Helmínticos/análise , Calcineurina/genética , Calmodulina/genética , Avaliação Pré-Clínica de Medicamentos , Equinococose/parasitologia , Echinococcus granulosus/genética , Echinococcus granulosus/crescimento & desenvolvimento , Echinococcus granulosus/metabolismo , Granisetron/análise , Proteínas de Helminto/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Ovinos , Tropizetrona/análise
2.
Eur J Hosp Pharm ; 27(e1): e58-e62, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32296507

RESUMO

Background: A combination of methylprednisolone sodium succinate and tropisetron hydrochloride is commonly used to treat the nausea and vomiting associated with antineoplastic therapy. The objective of this study was to investigate the stability of tropisetron hydrochloride and methylprednisolone sodium succinate in 0.9% sodium chloride injection for up to 48 hours. Methods: Commercial solutions of methylprednisolone sodium succinate and tropisetron hydrochloride were obtained and further diluted with 0.9% sodium chloride injection to final concentrations of either 0.4 or 0.8 mg/mL (methylprednisolone sodium succinate) and 0.05 mg/mL (tropisetron). The admixtures were assessed for periods of up to 48 hours after storage at 4°C with protection from light and at 25°C without protection from light. Physical compatibility was determined visually, and the chemical compatibility was measured with high-performance liquid chromatography (HPLC) and by measurement of pH values. Results: HPLC analysis demonstrated that methylprednisolone sodium succinate and tropisetron hydrochloride in the various solutions were maintained at 97% of the initial concentrations or higher during the testing period. There were no changes observed by physical precipitation or pH in any of the prepared solutions. Conclusions: Tropisetron hydrochloride injection and methylprednisolone sodium succinate injection in 0.9% sodium chloride injection are stable for up to 48 hours at 4°C and 25°C.


Assuntos
Anti-Inflamatórios/química , Antieméticos/química , Incompatibilidade de Medicamentos , Hemissuccinato de Metilprednisolona/química , Solução Salina/química , Tropizetrona/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/análise , Antieméticos/administração & dosagem , Antieméticos/análise , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Humanos , Injeções , Hemissuccinato de Metilprednisolona/administração & dosagem , Hemissuccinato de Metilprednisolona/análise , Solução Salina/administração & dosagem , Solução Salina/análise , Tropizetrona/administração & dosagem , Tropizetrona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA