Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
2.
Sci Rep ; 14(1): 10039, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693166

RESUMO

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Assuntos
Doença de Chagas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trypanosoma cruzi , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Ligação Proteica
3.
ACS Infect Dis ; 10(5): 1793-1807, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648355

RESUMO

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Assuntos
Cardiomiopatia Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Miocárdio/patologia , Masculino , Trypanosoma cruzi/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Miocardite/tratamento farmacológico , Miocardite/parasitologia
4.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644164

RESUMO

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Assuntos
Doença de Chagas , Quinonas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinonas/química , Quinonas/farmacologia , Testes de Sensibilidade Parasitária , Estrutura Molecular , Luz , Modelos Animais de Doenças , Relação Estrutura-Atividade
5.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306933

RESUMO

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Assuntos
Amida Sintases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leishmania infantum/enzimologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
6.
Toxicol In Vitro ; 78: 105267, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688839

RESUMO

Grandiflorenic acid (GFA) is one of the main kaurane diterpenes found in different parts of Sphagneticola trilobata. It has several biological activities, especially antiprotozoal action. In turn, Chagas disease is a complex systemic disease caused by the protozoan Trypanosoma cruzi, and the drugs available to treat it involve significant side effects and impose an urgent need to search for therapeutic alternatives. In this context, our goal was to determine the effect of GFA on trypomastigote and intracellular amastigote forms. Our results showed that GFA treatment led to significantly less viability of trypomastigote forms, with morphological and ultrastructural changes in the parasites treated with IC50 of GFA (24.60 nM), and larger levels of reactive oxygen species (ROS), mitochondrial depolarization, lipid droplets accumulation, presence of autophagic vacuoles, phosphatidylserine exposure, and plasma membrane damage. In addition, the GFA treatment was able to reduce the percentage of infected cells and the number of amastigotes per macrophage (J774A.1) without showing cytotoxicity in mammalian cell lines (J774A.1, LLCMK2, THP-1, AMJ2-C11), in addition to increasing TNF-α and reducing IL-6 levels in infected macrophages. In conclusion, the GFA treatment exerted influence on trypomastigote forms through an apoptosis-like mechanism and by eliminating intracellular parasites via TNF-α/ROS pathway, without generating cellular cytotoxicity.


Assuntos
Antiprotozoários/farmacologia , Diterpenos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/toxicidade , Asteraceae/química , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Diterpenos/toxicidade , Humanos , Imunomodulação/efeitos dos fármacos , Macaca mulatta , Macrófagos/parasitologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/metabolismo
7.
PLoS Negl Trop Dis ; 15(11): e0009994, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843481

RESUMO

Trypanosoma cruzi is a hemoflagellated parasite causing Chagas disease, which affects 6-8 million people in the Americas. More than one hundred years after the description of this disease, the available drugs for treating the T. cruzi infection remain largely unsatisfactory. Chloroquinoline and arylamidine moieties are separately found in various compounds reported for their anti-trypanosoma activities. In this work we evaluate the anti-T. cruzi activity of a collection of 26 "chimeric" molecules combining choroquinoline and amidine structures. In a first screening using epimastigote forms of the parasite as a proxy for the clinically relevant stages, we selected the compound 7-chloro-4-[4-(4,5-dihydro-1H-imidazol-2-yl)phenoxy]quinoline (named here as A6) that performed better as an anti-T. cruzi compound (IC50 of 2.2 ± 0.3 µM) and showed a low toxicity for the mammalian cell CHO-K1 (CC50 of 137.9 ± 17.3 µM). We initially investigated the mechanism of death associated to the selected compound. The A6 did not trigger phosphatidylserine exposure or plasma membrane permeabilization. Further investigation led us to observe that under short-term incubations (until 6 hours), no alterations of mitochondrial function were observed. However, at longer incubation times (4 days), A6 was able to decrease the intracellular Ca2+, to diminish the intracellular ATP levels, and to collapse mitochondrial inner membrane potential. After analysing the cell cycle, we found as well that A6 produced an arrest in the S phase that impairs the parasite proliferation. Finally, A6 was effective against the infective forms of the parasite during the infection of the mammalian host cells at a nanomolar concentration (IC50(tryps) = 26.7 ± 3.7 nM), exhibiting a selectivity index (SI) of 5,170. Our data suggest that A6 is a promising hit against T. cruzi.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Doença de Chagas/parasitologia , Imidazolinas/química , Imidazolinas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Trypanosoma cruzi/fisiologia
8.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771151

RESUMO

Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure-activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.


Assuntos
Técnicas de Cultura de Células , Doença de Chagas/tratamento farmacológico , Impressão Tridimensional , Pirazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Modelos Moleculares , Testes de Sensibilidade Parasitária , Pirazóis/química , Tripanossomicidas/química
9.
Chem Biol Interact ; 349: 109661, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537181

RESUMO

Phytochemical analysis of EtOH extract from leaves of Nectandra oppositifolia afforded three flavonoids: kaempferol (1), kaempferol-3-O-α-rhamnopyranoside (2) and kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside (3), which were characterized by NMR and ESI-HRMS. When tested against the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, flavonoids 1 and 3 were effective to kill the trypomastigotes with IC50 values of 32.0 and 6.7 µM, respectively, while flavonoid 2 was inactive. Isolated flavonoids 1-3 were also tested in mammalian fibroblasts and showed CC50 values of 24.8, 48.7 and 153.1 µM, respectively. Chemically, these results suggested that the free aglycone plays an important role in the bioactivity while the presence of p-coumaroyl unities linked in the rhamnoside unity is important to enhance the antitrypanosomal activity and reduce the mammalian cytotoxicity. The mechanism of cellular death was investigated for the most potent flavonoid 3 in the trypomastigotes using fluorescent and luminescent-based assays. It indicated that this compound induced neither permeabilization of the plasma membrane nor depolarization of the membrane electric potential. However, early time incubation (20 min) with flavonoid 3 resulted in a constant elevation of the Ca2+ levels inside the parasite. This effect was followed by a mitochondrial imbalance, leading to a hyperpolarization and depolarization of the mitochondrial membrane potential, with reduction of the ATP levels. During this time, the levels of reactive oxygen species levels (ROS) were unaltered. The leakage of Ca2+ from the intracellular pools can affect the bioenergetics system of T. cruzi, leading to the parasite death. Therefore, flavonoid 3 can be a useful tool for future studies against T. cruzi parasites.


Assuntos
Cálcio/metabolismo , Flavonoides/química , Quempferóis/química , Lauraceae/química , Trypanosoma cruzi/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Íons/química , Lauraceae/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
10.
Exp Parasitol ; 228: 108142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34375652

RESUMO

We investigated the in vitro activity and selectivity, and in vivo efficacy of ravuconazole (RAV) in self-nanoemulsifying delivery system (SNEDDS) against Trypanosoma cruzi. Novel formulations of this poorly soluble C14-α-demethylase inhibitor may improve its efficacy in the experimental treatment. In vitro activity was determined in infected cardiomyocytes and efficacy in vivo evaluated in terms of parasitological cure induced in Y and Colombian strains of T. cruzi-infected mice. In vitro RAV-SNEDDS exhibited significantly higher potency of 1.9-fold at the IC50 level and 2-fold at IC90 level than free-RAV. No difference in activity with Colombian strain was observed in vitro. Oral treatment with a daily dose of 20 mg/kg for 30 days resulted in 70% of cure for RAV-SNEDDS versus 40% for free-RAV and 50% for 100 mg/kg benznidazole in acute infection (T. cruzi Y strain). Long-term treatment efficacy (40 days) was able to cure 100% of Y strain-infected animals with both RAV preparations. Longer treatment time was also efficient to increase the cure rate with benznidazole (Y and Colombian strains). RAV-SNEDDS shows greater efficacy in a shorter time treatment regimen, it is safe and could be a promising formulation to be evaluated in other pre-clinical models to treat T. cruzi and fungi infections.


Assuntos
Doença de Chagas/tratamento farmacológico , Tiazóis/administração & dosagem , Triazóis/administração & dosagem , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Emulsões , Feminino , Células Hep G2 , Humanos , Concentração Inibidora 50 , Camundongos , Miócitos Cardíacos , Nanoestruturas , Ratos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Tiazóis/toxicidade , Triazóis/farmacologia , Triazóis/uso terapêutico , Triazóis/toxicidade
11.
J Med Chem ; 64(17): 13054-13071, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34461718

RESUMO

The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 µM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade
12.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207619

RESUMO

Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6-7 million people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole, which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics, metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure. An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like transport could participate in the regulation of responses to stressor stimuli. In order to achieve this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present study reveals the participation of glutathione and ceramides on ABCC-like transport, which are both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not associated with natural resistance to benznidazole, since sensitive strains showed higher activity than the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against cell stress depends on the glutathione biosynthesis pathway.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Chagas/tratamento farmacológico , Glutationa/metabolismo , Nitroimidazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Transporte Biológico , Doença de Chagas/parasitologia , Resistência a Medicamentos , Estresse Oxidativo/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
13.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199336

RESUMO

The natural compound ravenelin was isolated from the biomass extracts of Exserohilum rostratum fungus, and its antimicrobial, antiplasmodial, and trypanocidal activities were evaluated. Ravenelin was isolated by column chromatography and HPLC and identified by NMR and MS. The susceptibility of Gram-positive and Gram-negative bacteria strains to ravenelin was determined by microbroth dilution assay. Cytotoxicity was evaluated in hepatocarcinoma cells (HepG2) and BALB/c peritoneal macrophages by using MTT. SYBR Green I-based assay was used in the asexual stages of Plasmodium falciparum. Trypanocidal activity was tested against the epimastigote and intracellular amastigote forms of Trypanosoma cruzi. Ravenelin was active against Gram-positive bacteria strains, with emphasis on Bacillus subtilis (MIC value of 7.5 µM). Ravenelin's antiparasitic activities were assessed against both the epimastigote (IC50 value of 5 ± 1 µM) and the intracellular amastigote forms of T. cruzi (IC50 value of 9 ± 2 µM), as well as against P. falciparum (IC50 value of 3.4 ± 0.4 µM). Ravenelin showed low cytotoxic effects on both HepG2 (CC50 > 50 µM) and peritoneal macrophage (CC50 = 185 ± 1 µM) cells with attractive selectivity for the parasites (SI values > 15). These findings indicate that ravenelin is a natural compound with both antibacterial and antiparasitic activities, and considerable selectivity indexes. Therefore, ravenelin is an attractive candidate for hit-to-lead development.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Ascomicetos/química , Macrófagos Peritoneais/citologia , Xantonas/farmacologia , Animais , Antibacterianos/química , Antiprotozoários/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Biomassa , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células Hep G2 , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Xantonas/química
14.
Chem Biodivers ; 18(10): e2100466, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34263530

RESUMO

The hexane extract from aerial parts Baccharis sphenophylla Dusén ex Malme (Asteraceae) displayed activity against amastigote forms of Trypanossoma cruzi and was subjected to chromatographic steps to afford one unreported - 7α-hydroxy-ent-abieta-8(14),13(15)-dien-16,12ß-olide (1) and three known diterpenes - ent-kaur-16-en-19-oic acid, (2), grandifloric acid (3), and 15ß-tiglinoyloxy-ent-kaur-16-en-19-oic acid (4), two sesquiterpenes - spathulenol (5) and oplopanone (6) - as well as hexacosyl p-coumarate (7). Isolated compounds were characterized by NMR and ESI-HR-MS spectra and were evaluated in vitro for activity against amastigote forms of the parasite T. cruzi - the relevant clinical form in the chronic phase of Chagas disease. In addition, the activity of compounds 1-7 against NCTC cells was evaluated. Compounds 1 and 7 showed effectiveness with EC50 values of 21.3 and 16.9 µM, respectively. Both compounds also exhibited reduced toxicity against NCTC cells (CC50 >200 µM) with SI values higher than 9.4 and 11.9. Obtained results suggest that the new ent-abietane diterpene 1 and alkyl coumarate 7 could be used as prototypes for the development of novel and selective semisynthetic derivatives against intracellular forms of T. cruzi.


Assuntos
Baccharis/química , Componentes Aéreos da Planta/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação
15.
BMC Complement Med Ther ; 21(1): 187, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215249

RESUMO

BACKGROUND: Parasite persistence, exacerbated and sustained immune response, and continuous oxidative stress have been described to contribute to the development of the cardiac manifestations in Chronic Chagas Disease. Nevertheless, there are no efficient therapies to resolve the Trypanosoma cruzi infection and prevent the disease progression. Interestingly, trypanocide, antioxidant, and immunodulatory properties have been reported separately for some major terpenes, as citral (neral plus geranial), limonene, and caryophyllene oxide, presents in essential oils (EO) extracted from two chemotypes (Citral and Carvone) of Lippia alba. The aim of this study was to obtain L. alba essential oil fractions enriched with the aforementioned bioactive terpenes and to evaluate the impact of these therapies on trypanocide, oxidative stress, mitochondrial bioenergetics, genotoxicity, and inflammatory markers on T. cruzi-infected macrophages. METHODS: T. cruzi-infected J774A.1 macrophage were treated with limonene-enriched (ACT1) and citral/caryophyllene oxide-enriched (ACT2) essential oils fractions derived from Carvone and Citral-L. alba chemotypes, respectively. RESULTS: ACT1 (IC50 = 45 ± 1.7 µg/mL) and ACT2 (IC50 = 80 ± 1.9 µg/mL) exhibit similar trypanocidal effects to Benznidazole (BZN) (IC50 = 48 ± 2.5 µg/mL), against amastigotes. Synergistic antiparasitic activity was observed when ACT1 was combined with BZN (∑FIC = 0.52 ± 0.13 µg/mL) or ACT2 (∑FIC = 0.46 ± 1.7 µg/mL). ACT1 also decreased the oxidative stress, mitochondrial metabolism, and genotoxicity of the therapies. The ACT1 + ACT2 and ACT1 + BZN experimental treatments reduced the pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) and increased the anti-inflammatory cytokines (IL-4 and IL-10). CONCLUSION: Due to its highly trypanocidal and immunomodulatory properties, ACT1 (whether alone or in combination with BZN or ACT2) represents a promising L. alba essential oil fraction for further studies in drug development towards the Chagas disease control.


Assuntos
Antioxidantes/farmacologia , Lippia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Tripanossomicidas/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nitroimidazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Trypanosoma cruzi/citologia , Trypanosoma cruzi/efeitos dos fármacos
16.
Molecules ; 26(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299479

RESUMO

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


Assuntos
Antiparasitários/síntese química , Antiparasitários/farmacologia , Doença de Chagas/tratamento farmacológico , Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Fosfolipídeos/farmacologia , Doença de Chagas/parasitologia , Química Click , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
17.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288674

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Assuntos
Aldeídos/química , Tratamento Farmacológico da COVID-19 , Doença de Chagas/tratamento farmacológico , Inibidores de Cisteína Proteinase/uso terapêutico , SARS-CoV-2/enzimologia , Trypanosoma cruzi/enzimologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
18.
Eur J Protistol ; 80: 125821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34144311

RESUMO

Trypanosoma cruzi is a protozoan of great medical interest since it is the causative agent of Chagas disease, an endemic condition in Latin America. This parasite undergoes epigenetic events, such as phosphorylation, methylation and acetylation, which play a role in several cellular processes including replication, transcription and gene expression. Histone deacetylases (HDAC) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. Tubastatin A (TST) is a specific HDAC6 inhibitor that affects cell growth and promotes structural modifications in cancer cells and parasites. In the present study, we demonstrated that T. cruzi epimastigote cell proliferation and viability are reduced after 72 h of TST treatment. The results obtained through different microscopy methodologies suggest that this inhibitor impairs the polymerization dynamics of cytoskeleton microtubules, generating protozoa displaying atypical morphology and cellular patterns that include polynucleated parasites. Furthermore, the microtubules of treated protozoa were more intensely acetylated, especially at the anterior portion of the cell body. A cell cycle analysis demonstrated an increase in the number of trypanosomatids in the G2/M phase. Together, our results suggest that TST should be explored as a tool to study trypanosomatid cell biology, including microtubule cytoskeleton dynamics, and as an antiparasitic drug.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Citoesqueleto/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Trypanosoma cruzi/citologia , Trypanosoma cruzi/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos
19.
Bioorg Chem ; 113: 105018, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098396

RESUMO

Chagas disease (ChD), caused by Trypanosoma cruzi, remains a challenge for the medical and scientific fields due to the inefficiency of the therapeutic approaches available for its treatment. Thiosemicarbazones and hydrazones present a wide spectrum of bioactivities and are considered a platform for the design of new anti-T. cruzi drug candidates. Herein, the potential antichagasic activities of [(E)-2-(1-(4-chlorophenylthio)propan-2-ylidene)-hydrazinecarbothioamides] (C1, C3), [(E)-N'-(1-((4-chlorophenyl)thio)propan-2-ylidene)benzohydrazide] (C2), [(E)-2-(1-(4-, and [(E)-2-(1-((4-chlorophenyl)thio)propan-2-ylidene)hydrazinecarboxamide] (C4) were investigated. Macrophages (MOs) from C57BL/6 mice stimulated with C1 and C3, but not with C2 and C4, reduced amastigote replication and trypomastigote release, independent of nitric oxide (NO) and reactive oxygen species production and indoleamine 2,3-dioxygenase activity. C3, but not C1, reduced parasite uptake by MOs and potentiated TNF production. In cardiomyocytes, C3 reduced trypomastigote release independently of NO, TNF, and IL-6 production. C1 and C3 were non-toxic to the host cells. A reduction of parasite release was found during infection of MOs with trypomastigotes pre-incubated with C1 or C3 and MOs pre-stimulated with compounds before infection. Moreover, C1 and C3 acted directly on trypomastigotes, killing them faster than Benznidazole, and inhibited T. cruzi proliferation at various stages of its intracellular cycle. Mechanistically, C1 and C3 inhibit parasite duplication, and this process cannot be reversed by inhibiting the DNA damage response. In vivo, C1 and C3 attenuated parasitemia in T. cruzi-infected mice. Moreover, C3 loaded in a lipid nanocarrier system (nanoemulsion) maintained anti-T. cruzi activity in vivo. Collectively, these data suggest that C1 and C3 are candidates for the treatment of ChD and present activity in both the host and parasite cells.


Assuntos
Tiossemicarbazonas/química , Tripanossomicidas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Cisteína Endopeptidases/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Óxido Nítrico/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Ratos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia
20.
Int J Biol Macromol ; 183: 1607-1620, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34029585

RESUMO

Several classes of toxins are present in the venom of Brown spiders (Loxosceles genus), some of them are highly expressed and others are less expressed. In this work, we aimed to clone the sequence of a little expressed novel toxin from Loxosceles venom identified as a serine protease inhibitor (serpin), as well as to express and characterize its biochemical and biological properties. It was named LSPILT, derived from Loxoscelesserine protease inhibitor-like toxin. Multiple alignment analysis revealed high identity between LSPILT and other serpin molecules from spiders and crab. LSPILT was produced in baculovirus-infected insect cells, resulting in a 46-kDa protein fused to a His-tag. Immunological assays showed epitopes in LSPILT that resemble native venom toxins of Loxosceles spiders. The inhibitory activity of LSPILT on trypsin was found both by reverse zymography and fluorescent gelatin-degradation assay. Additionally, LSPILT inhibited the complement-dependent lysis of Trypanosoma cruzi epimastigotes, reduced thrombin-dependent clotting and suppressed B16-F10 melanoma cells migration. Results described herein prove the existence of conserved serpin-like toxins in Loxosceles venoms. The availability of a recombinant serpin enabled the determination of its biological and biochemical properties and indicates potential applications in future studies regarding the pathophysiology of the envenoming or for biotechnological purposes.


Assuntos
Antineoplásicos/farmacologia , Fibrinolíticos/farmacologia , Serpinas/genética , Serpinas/metabolismo , Aranhas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Baculoviridae , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Clonagem Molecular , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Coelhos , Células Sf9 , Venenos de Aranha/genética , Venenos de Aranha/metabolismo , Aranhas/genética , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA