Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
J Pharm Biomed Anal ; 223: 115119, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36343537

RESUMO

Forced degradation studies of d-tubocurarine (DTC) was carried out in hydrolytic (acidic, alkaline and neutral), thermal, photolytic and oxidative degradation conditions as per International Conference on Harmonization (ICH) guideline Q1A (R2). The present study revealed that DTC is highly sensitive to oxidative degradation conditions even at room temperature whereas the drug was found to be stable in hydrolytic, photolytic and thermal stress conditions. Separation of DTC and its four degradation products (DPs) (DP-I to DP-IV) formed during stress degradation conditions were achieved on Waters Acquity CSH C18 (1.7 µm, 2.1 mm × 100 mm) column using gradient elution with a mobile phase consisting of Eluent-A: 0.1 % Formic acid Eluent-B: acetonitrile achieved successfully. The detection was carried out at 210 nm wavelength and the flow rate was kept at 0.3 mL/min with a 5 µL injection volume. Also, a highly sensitive and robust HRMS/MS/TOF method was established for the identification and characterization of four DPs formed during the stress study. ESI +ve mode was used throughout the study for ionization of all the DPs. The degradation pathway was also established in the study that is never reported earlier.


Assuntos
Espectrometria de Massas em Tandem , Tubocurarina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Estabilidade de Medicamentos , Hidrólise , Fotólise , Oxirredução , Cromatografia Líquida de Alta Pressão/métodos
2.
Biochem Pharmacol ; 205: 115248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113566

RESUMO

BACKGROUND AND PURPOSE: Tubocurarine (d-TC), a non-depolarizing competitive blocker of nicotinic acetylcholine receptors is extensively utilized for the relaxation of skeletal muscles. Drug repositioning is a forthright approach to reduce the cost and speed up drug development process. Herein, we have attempted to evaluate the analgesic and anti-inflammatory activity of d-TC for its possible repurposing in pain and inflammation-related issues. EXPERIMENTAL APPROACH: We examined the soluble epoxide hydrolase inhibitory (sEHI) activity of d-TC employing in silico high throughput screening protocols, in vitro cell-free sEH inhibitory assay, and in in vivo rodent models for its repositioning in pain and inflammation-related disorders. KEY RESULTS: In molecular docking study, d-TC displayed impressive hydrogen bonding interactions within the cavity of sEH enzyme with good docking score. d-TC also exhibited notable sEH inhibitory activity (IC50 3.72 nm) at the in vitro assay. Oral absorption capability of d-TC (0.1 and 0.2 mg/mL) was determined using an in vitro everted intestinal sac model employing rat ileum tissue that revealed significant oral absorption of d-TC. Besides, in vivo studies revealed that oral administration of d-TC (0.1 and 0.2 mg/kg) in rodents significantly attenuated hyperalgesia (cold plate test, tail immersion test and formalin test) and inflammation (estimation of rectal temperature, acetic acid induced pleurisy test and cotton pellet-induced granuloma test) induced in robust preclinical models. Conclusion and implications These findings are novel and warrant immediate efforts to reposition d-TC as a new therapeutic candidate in the management of hyperalgesia, inflammation, and associated conditions.


Assuntos
Receptores Nicotínicos , Tubocurarina , Ratos , Animais , Tubocurarina/farmacologia , Tubocurarina/uso terapêutico , Epóxido Hidrolases , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Inibidores Enzimáticos/farmacologia
3.
Chem Biol Interact ; 364: 110061, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872047

RESUMO

Exposure to highly toxic organophosphorus compounds causes inhibition of the enzyme acetylcholinesterase resulting in a cholinergic toxidrome and innervation of receptors in the neuromuscular junction may cause life-threatening respiratory effects. The involvement of several receptor systems was therefore examined for their impact on bronchoconstriction using an ex vivo rat precision-cut lung slice (PCLS) model. The ability to recover airways with therapeutics following nerve agent exposure was determined by quantitative analyses of muscle contraction. PCLS exposed to nicotine resulted in a dose-dependent bronchoconstriction. The neuromuscular nicotinic antagonist tubocurarine counteracted the nicotine-induced bronchoconstriction but not the ganglion blocker mecamylamine or the common muscarinic antagonist atropine. Correspondingly, atropine demonstrated a significant airway relaxation following ACh-exposure while tubocurarine did not. Atropine, the M3 muscarinic receptor antagonist 4-DAMP, tubocurarine, the ß2-adrenergic receptor agonist formoterol, the Na+-channel blocker tetrodotoxin and the K+ATP-channel opener cromakalim all significantly decreased airway contractions induced by electric field stimulation. Following VX-exposure, treatment with atropine and the Ca2+-channel blocker magnesium sulfate resulted in significant airway relaxation. Formoterol, cromakalim and magnesium sulfate administered in combinations with atropine demonstrated an additive effect. In conclusion, the present study demonstrated improved airway function following nerve agent exposure by adjunct treatment to the standard therapy of atropine.


Assuntos
Broncoconstrição , Agentes Neurotóxicos , Acetilcolinesterase , Animais , Atropina/farmacologia , Cromakalim/farmacologia , Estimulação Elétrica , Fumarato de Formoterol/farmacologia , Sulfato de Magnésio/farmacologia , Antagonistas Muscarínicos/farmacologia , Contração Muscular , Agentes Neurotóxicos/farmacologia , Nicotina/farmacologia , Ratos , Tubocurarina/farmacologia
4.
J Neuromuscul Dis ; 8(5): 831-844, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334412

RESUMO

BackgroundIn myasthenia gravis, impaired postsynaptic sensitivity to acetylcholine results in failure of neuromuscular transmission and fatiguing muscle weakness.ObjectiveDevelop an ex vivo muscle contraction assay to test cannabinoids and other substances that might act on the myasthenic neuromuscular junction to restore control of the muscle.MethodsTubocurarine was added to an ex vivo, mouse phrenic nerve-hemidiaphragm muscle preparation to reduce acetylcholine sensitivity. This produced a myasthenia-like decrement in twitch force during a train of 10 nerve impulses (3 / sec). Endplate potential (EPP) recordings were used to confirm and extend the findings.ResultsSurprisingly, addition to the bath of dimethylsulphoxide (DMSO), at concentrations as low as 0.1%(v/v), partially reversed the decrement in nerve-evoked force. Intracellular electrophysiology, conducted in the presence of tubocurarine, showed that DMSO increased the amplitudes of both the spontaneous miniature EPP (MEPP) and the (nerve-evoked) EPP. In the absence of tubocurarine (synaptic potentials at physiological levels), an adaptive fall in quantal content negated the DMSO-induced rise in EPP amplitude. The effects of cannabinoid receptor agonists (solubilized with DMSO) in the contraction assay do not support their further exploration as useful therapeutic agents for myasthenia gravis. CP 55,940 (a dual agonist for cannabinoid receptor types 1 and 2) reversed the beneficial effects of DMSO.Conclusions:We demonstrate a powerful effect of DMSO upon quantal amplitude that might mislead pharmacological studies of synaptic function wherever DMSO is used as a drug vehicle. Our results also show that compounds targeting impaired neuromuscular transmission should be tested under myasthenic-like conditions, so as to avoid confounding effects of synaptic homeostasis.


Assuntos
Canabinoides/farmacologia , Dimetil Sulfóxido/farmacologia , Homeostase/efeitos dos fármacos , Miastenia Gravis/fisiopatologia , Potenciais de Ação , Animais , Diafragma/fisiopatologia , Camundongos , Placa Motora , Contração Muscular , Junção Neuromuscular/efeitos dos fármacos , Receptores Colinérgicos , Transmissão Sináptica/efeitos dos fármacos , Tubocurarina/farmacologia
5.
Neurotoxicology ; 74: 132-138, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212017

RESUMO

Cockroach neurosecretory cells, dorsal unpaired median (DUM) neurons, express two distinct α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtypes, nAChR1 and nAChR2 which are differently sensitive to the neonicotinoid insecticides and intracellular calcium pathways. The aim of this study is to determine whether sulfoxaflor acts as an agonist of nAChR1 and nAChR2 subtypes. We demonstrated that 1 mM sulfoxaflor induced high current amplitudes, compared to acetylcholine, suggesting that it was a full agonist of DUM neuron nAChR subtypes. Sulfoxaflor evoked currents were not inhibited by the nicotinic acetylcholine receptor antagonist d-tubocurarine (dTC) which reduced nAChR1. But, sulfoxaflor evoked currents were reduced in the presence of 5 µM mecamylamine which is known to reduce nAChR2 subtype. Interestingly, when 1 µM imidacloprid was added in the extracellular solution, sulfoxaflor-induced currents were significantly suppressed. Moreover, when extracellular calcium concentration was increased, bath application of 1 µM imidacloprid partially reduced sulfoxaflor activated currents when nAChR1 was inhibited with 20 µM dTC and completely suppressed sulfoxaflor currents when nAChR2 was inhibited with 5 µM mecamylamine. Our data demonstrated therefore that sulfoxaflor activates both nAChR1 and nAChR2 subtypes.


Assuntos
Bungarotoxinas/farmacologia , Colinérgicos/farmacologia , Baratas , Neonicotinoides/farmacologia , Agonistas Nicotínicos/farmacologia , Nitrocompostos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Compostos de Enxofre/farmacologia , Acetilcolina/farmacologia , Animais , Cálcio/farmacologia , Mecamilamina/farmacologia , Antagonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Piridinas/antagonistas & inibidores , Compostos de Enxofre/antagonistas & inibidores , Tubocurarina/toxicidade
6.
Muscle Nerve ; 59(4): 509-516, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677146

RESUMO

INTRODUCTION: The aim of this study was to compare the effects of adenosine-5'-triphosphate (ATP) and adenosine on the contractility of rodent extensor digitorum longus (EDL) muscle at normal and low temperatures. METHODS: Contractions of rat and mouse isolated EDL were induced by either electrical stimulation (ES) or exogenous carbachol and recorded in the presence of ATP or adenosine (both at 100 µM). RESULTS: ATP at all temperatures caused a decrease of the contractions induced by carbachol in rat and mouse EDL and ES-induced contractions in rat EDL, while it potentiated the ES-induced contractions of mouse EDL. Adenosine reduced the contractility of rat and mouse EDL evoked by ES and did not affect the carbachol-induced contractions of rat and mouse EDL at any temperature. DISCUSSION: Under various temperature conditions, ATP inhibits pre- but potentiates postsynaptic processes in the mouse EDL; in the rat EDL ATP causes only inhibition of neuromuscular conduction. Muscle Nerve 59:509-516, 2019.


Assuntos
Trifosfato de Adenosina/farmacologia , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Animais , Carbacol/farmacologia , Temperatura Baixa , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Camundongos , Agonistas Muscarínicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuromusculares não Despolarizantes/farmacologia , Agonistas Purinérgicos/farmacologia , Ratos , Ratos Wistar , Tubocurarina/farmacologia
7.
PLoS One ; 14(1): e0210182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608952

RESUMO

Several novel bisbenzylisoquinoline alkaloids (BBIQAs) have recently been isolated from a Matis tribe arrow poison and shown by two-electrode voltage-clamp to inhibit mouse muscle nicotinic acetylcholine receptors (nAChR). Here, using radioligand assay with Aplysia californica AChBP and radioiodinated α-bungarotoxin ([125I]-αBgt), we show that BBIQA1, BBIQA2, and d-tubocurarine (d-TC) have similar affinities to nAChR orthosteric site. However, a competition with [125I]-αBgt for binding to the Torpedo californica muscle-type nAChR revealed that BBIQAs1, 2, and 3 are less potent (IC50s = 26.3, 8.75, and 17.0 µM) than d-TC (IC50 = 0.39 µM), while with α7 nAChR in GH4C1 cells, BBIQA1 was less potent that d-TC (IC50s = 162 µM and 7.77 µM, respectively), but BBIQA2 was similar (IC50 = 5.52 µM). In inhibiting the Ca2+ responses induced by acetylcholine in Neuro2a cells expressing the mouse adult α1ß1εδ nAChR or human α7 nAChR, BBIQAs1 and 2 had similar potencies to d-TC (IC50s in the range 0.75-3.08 µM). Our data suggest that BBIQA1 and BBIQA2 can inhibit adult muscle α1ß1εδ nAChR by both competitive and noncompetitive mechanisms. Further experiments on neuronal α3ß2, α4ß2, and α9α10 nAChRs, expressed in Xenopus laevis oocytes, showed that similar potencies for BBIQAs1, 2, and d-TC. With α3ß2γ2 GABAAR currents were almost completely inhibited by d-TC at a high (100 µM) concentration, but BBIQAs1 and 2 were less potent (only 40-50% inhibition), whereas in competition with Alexa Fluor 546-α-cobratoxin for binding to α1ß3γ2 GABAAR in Neuro2a cells, d-TC and these analogs had comparable affinities. Especially interesting effects of BBIQAs1 and 2 in comparison with d-TC were observed for 5-HT3AR: BBIQA1 and BBIQA2 were 5- and 87-fold less potent than d-TC (IC50 = 22.63 nM). Thus, our results reveal that these BBIQAs differ from d-TC in their potencies towards certain Cys-loop receptors, and we suggest that understanding the reasons behind this might be useful for future drug design.


Assuntos
Benzilisoquinolinas/farmacologia , Curare/química , Venenos/farmacologia , Tubocurarina/farmacologia , Animais , Benzilisoquinolinas/química , Linhagem Celular Tumoral , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Oócitos , Técnicas de Patch-Clamp , Venenos/química , Ensaio Radioligante , Receptores de GABA-A/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
8.
Muscle Nerve ; 55(3): 417-423, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27448234

RESUMO

INTRODUCTION: The aim of this study was to evaluate the effects of adenosine 5'-triphosphate (ATP) and adenosine on the contractility of mammalian skeletal muscle under hypothermic conditions. METHODS: Contractions of isolated rat soleus muscle were induced by either electrical stimulation (ES) or carbachol at physiological temperatures (37°C) and hypothermic conditions (30-14°C) and recorded in the presence of ATP, adenosine, suramin, and 8-(p-sulfophenyl)-theophylline (8-SPT). RESULTS: At 37°C, incubation of the muscles with ATP inhibited ES-induced contractions; the inhibitory effect of ATP disappeared at 14°C. Adenosine inhibited ES-induced contractions at all temperature levels; 8-SPT fully prevented the action of adenosine. ATP and adenosine did not significantly affect carbachol-induced contractions at 37°C, while at lower temperatures ATP potentiated them. Suramin fully prevented effects of ATP. CONCLUSIONS: ATP is involved in both pre- and postsynaptic regulation of rat soleus muscle contractility, and these processes are significantly more pronounced at low temperatures. Muscle Nerve 55: 417-423, 2017.


Assuntos
Trifosfato de Adenosina/farmacologia , Adenosina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Temperatura , Análise de Variância , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Estimulação Elétrica , Hipotermia/induzido quimicamente , Masculino , Antagonistas Nicotínicos/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos , Ratos Wistar , Suramina/farmacologia , Teofilina/análogos & derivados , Teofilina/farmacologia , Tubocurarina/farmacologia
9.
Muscle Nerve ; 54(3): 460-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26833551

RESUMO

INTRODUCTION: In this study we examined the mechanisms of motor dysfunction in type 2 diabetes. METHODS: Contractile force was measured in isolated nerve-muscle preparations of db/db mice using various protocols for electrical stimulation. Sarcoplasmic reticulum Ca(2+) adenosine triphosphatase protein (SERCA) was quantified by comparing Ca(2+) -dependent and non-specific phosphorylation. RESULTS: Compared with controls, the muscle-nerve preparations of db/db mice displayed muscle atrophy, reduced axonal excitability, and force deficit when stimulated via the nerve. Muscle relaxation after contraction was slowed, and SERCA content was reduced. In contrast, the sensitivity of the neuromuscular junction to tubocurarine and muscle fiber excitability were not affected. CONCLUSIONS: The force deficit in db/db muscles was caused by atrophy and failure of neuromuscular signal transmission related to motor nerve axonal dysfunction. The slowed relaxation rate generally observed in diabetic muscles can, to a large extent, be explained by decreased SERCA pump content. Muscle Nerve 54: 460-468, 2016.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Músculo Esquelético/fisiopatologia , Doenças Musculares/etiologia , Doenças Musculares/patologia , Trifosfato de Adenosina/farmacocinética , Análise de Variância , Animais , Peso Corporal/genética , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Mutação/genética , Antagonistas Nicotínicos/farmacologia , Isótopos de Fósforo/farmacocinética , Receptores para Leptina/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tubocurarina/farmacologia
10.
Bioorg Med Chem ; 22(3): 1148-55, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24405813

RESUMO

Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand-protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd=4.4µM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Strychnos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Alcaloides/síntese química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Química Sintética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Tubocurarina/análogos & derivados , Tubocurarina/síntese química , Tubocurarina/química , Tubocurarina/farmacologia , Verapamil/farmacologia
11.
Dev Neurobiol ; 73(1): 45-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22648743

RESUMO

Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14-17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-ß-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development.


Assuntos
Axônios/fisiologia , Gânglios Parassimpáticos/citologia , Neurônios/citologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor trkB/metabolismo , Fatores Etários , Animais , Axônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Di-Hidro-beta-Eritroidina/farmacologia , Interações Medicamentosas , Feminino , Gânglios Parassimpáticos/embriologia , Iris/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Transfecção , Tubocurarina/farmacologia
12.
Clin Exp Pharmacol Physiol ; 39(10): 869-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23013133

RESUMO

1. The 2 Hz train-of-four ratio (TOF(ratio)) is used to monitor the degree of patient curarization. Using a rat phrenic nerve-hemidiaphragm preparation, we showed that antinicotinic agents, such as hexamethonium, d-tubocurarine and pancuronium, but not cisatracurium, decreased contractions produced by physiological nerve activity patterns (50 Hz) more efficiently than those caused by 2 Hz trains. Uncertainty about the usefulness of the TOF(ratio) to control safe recovery from curarization prompted us to investigate the muscarinic and adenosine neuromodulation of tetanic (50 Hz) fade induced by antinicotinic agents at concentrations that cause a 25% reduction in the TOF(ratio) (TOF(fade)). 2. Tetanic fade caused by d-tubocurarine (1.1 µmol/L), pancuronium (3 µmol/L) and hexamethonium (5.47 mmol/L) was attenuated by blocking presynaptic inhibitory muscarinic M(2) and adenosine A(1) receptors with methoctramine (1 µmol/L) and 1,3-dipropyl-8-cyclopentylxanthine (2.5 nmol/L), respectively. These compounds enhanced rather than decreased tetanic fade induced by cisatracurium (2.2 µmol/L), but they consistently attenuated cisatracurium-induced TOF(fade). The effect of the M(1) receptor antagonist pirenzepine (10 nmol/L) on fade produced by antinicotinic agents at 50 Hz was opposite to that observed with TOF stimulation. Blockade of adenosine A(2A) receptors with ZM 241385 (10 nmol/L) attenuated TOF(fade) caused by all antinicotinic drugs tested, with the exception of the 'pure' presynaptic nicotinic antagonist hexamethonium. ZM 241385 was the only compound tested in this series that facilitated recovery from tetanic fade produced by cisatracurium. 3. The data suggest that distinct antinicotinic relaxants interfere with fine-tuning neuromuscular adaptations to motor nerve stimulation patterns via activation of presynaptic muscarinic and adenosine receptors. These results support the use of A(2A) receptor antagonists together with atropine to facilitate recovery from antinicotinic neuromuscular blockade.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Bloqueadores Neuromusculares/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Animais , Diafragma/efeitos dos fármacos , Diafragma/fisiologia , Sinergismo Farmacológico , Estimulação Elétrica/métodos , Hexametônio/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Junção Neuromuscular/fisiologia , Pancurônio/farmacologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Período Refratário Eletrofisiológico/efeitos dos fármacos , Tubocurarina/farmacologia
13.
Neurosci Lett ; 518(1): 64-8, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22580207

RESUMO

The goal of the present study is to examine the agonist action of nornicotine on insect nicotinic acetylcholine receptors. Using patch-clamp techniques on cockroach dorsal unpaired median neurons, we demonstrated that nornicotine induced two distinct ionic currents named types 1 and 2. We found that alpha-bungarotoxin induced a rapid desensitization of type 1 currents whereas type 2 was completely blocked. Interestingly, types 1 and 2 currents were not blocked by the muscarinic antagonist, pirenzepine but by co-application of 1 µM pirenzepine and 0.5 µM alpha-bungarotoxin, suggesting that muscarinic receptors modulated nornicotine-induced current amplitudes. In addition, type 1 current amplitudes were strongly reduced by 20 µM d-tubocurarine and 5 µM mecamylamine which blocked the previously identified alpha-bungarotoxin-insensitive nAChR1 and nAChR2 receptors. Co-application of alpha-bungarotoxin with d-tubocurarine or mecamylamine completely blocked all ionic currents. We propose that types 1 and 2 currents are associated to several nicotinic receptors subtypes, including nAChR1 and nAChR2 receptors. Finally, we conclude that nornicotine could be used as an agonist to identify distinct insect nicotinic receptors.


Assuntos
Bungarotoxinas/farmacologia , Baratas/metabolismo , Neurônios/efeitos dos fármacos , Nicotina/análogos & derivados , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Células Cultivadas , Interações Medicamentosas , Neurônios/fisiologia , Nicotina/farmacologia , Receptores Muscarínicos/metabolismo , Tubocurarina/farmacologia
14.
Cell Immunol ; 274(1-2): 26-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22425227

RESUMO

We examined the effects of nicotine on differentiation and function of monocyte-derived human dendritic cells (DCs). NiDCs, which were the DCs differentiated in the presence of nicotine, showed lower levels of CD1a. Secretion of IL-12 and TNF-α by lipopolysaccharide (LPS)-stimulated NiDCs was significantly suppressed compared to monocyte-derived DCs grown without nicotine. NiDCs displayed a diminished capacity to induce allogeneic T cell proliferation with a reduced production of IFN-γ, and maintained/enhanced LPS-mediated expression of coinhibitory molecules. Interestingly, NiDCs enhanced the expression of nuclear receptor peroxisome proliferator-activated receptors γ (PPAR γ), which has immunomodulatory properties. Expression of PPAR γ and PPAR γ-target genes was significantly inhibited by pretreatment with d-tubocurarine, antagonist of non-selective nicotinic acetylcholine receptors (nAChR). In addition, reduction of Th1 responses was inhibited after blocking nAChR-mediated signal. These data suggest the effect of nicotine on altering DC immunogenicity by impeding Th1 immunity is partially mediated by upregulation of PPAR γ.


Assuntos
Células Dendríticas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Nicotina/farmacologia , PPAR gama/biossíntese , Receptores Nicotínicos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-12/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/metabolismo , Antagonistas Nicotínicos/farmacologia , PPAR gama/genética , Fenótipo , Fumar/efeitos adversos , Fumar/imunologia , Células Th1/imunologia , Células Th2/imunologia , Tubocurarina/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
15.
J Pharmacol Exp Ther ; 341(2): 326-39, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22286500

RESUMO

Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating neonicotinoid efficiency and open novel strategies for optimizing insect pest control.


Assuntos
Cálcio/metabolismo , Imidazóis/farmacologia , Inseticidas/farmacologia , Neurônios/metabolismo , Nitrocompostos/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Animais , Bungarotoxinas/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Agonistas Colinérgicos/farmacologia , Baratas , AMP Cíclico/metabolismo , Guanidinas/farmacologia , Insetos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Neonicotinoides , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Tubocurarina/farmacologia
16.
J Cardiovasc Pharmacol ; 59(5): 413-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22217882

RESUMO

The nature of the potassium channels involved in determining endothelium-derived hyperpolarizing factor-mediated relaxation was investigated in first-order small mesenteric arteries from male endothelial nitric oxide synthase (eNOS-/-)-knockout and control (+/+) mice. Acetylcholine-induced endothelium-dependent relaxation of small mesenteric arteries of eNOS-/- was resistant to N-nitro-L-arginine and indomethacin and the guanylyl cyclase inhibitor, 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one. Apamin and the combination of apamin and iberiotoxin or apamin and charybdotoxin induced a transient endothelium-dependent contraction of small mesenteric arteries from both eNOS-/- and +/+ mice. Acetylcholine-induced relaxation in eNOS-/- mice was unaffected by charybdotoxin or apamin alone but significantly inhibited by the combination of these agents. However, the combination of scyllatoxin and iberiotoxin did not mimic the inhibitory effect of the apamin/charybdotoxin combination. Tubocurarine alone completely blocked acetylcholine-induced relaxation in eNOS-/- mice. Single channel analysis of myocytes from small mesenteric arterioles revealed a large conductance calcium-activated potassium channel that was sensitive to iberiotoxin, charybdotoxin, and tetraethylammonium. Tubocurarine blocked this channel from the cytosolic side but not when applied extracellularly. Solutions of nitric oxide (NO) gas also relaxed small mesenteric arteries that had been contracted with cirazoline in a concentration-dependent manner, and the sensitivity to NO was reduced by iberiotoxin and the combination of apamin, scyllatoxin, or tubocurarine with charybdotoxin but not by apamin, charybdotoxin, scyllatoxin, or tubocurarine alone. These data indicate that acetylcholine-induced endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries from eNOS-/- involved the activation of tubocurarine and apamin-/charybdotoxin-sensitive K-channels. In eNOS+/+ mice, the acetylcholine-induced response was primarily mediated by NO and was sensitive to iberiotoxin and the combination of apamin and charybdotoxin.


Assuntos
Acetilcolina/farmacologia , Fatores Biológicos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Canais de Potássio/metabolismo , Animais , Apamina/administração & dosagem , Apamina/farmacologia , Charibdotoxina/administração & dosagem , Charibdotoxina/farmacologia , Relação Dose-Resposta a Droga , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/farmacologia , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Canais de Potássio/efeitos dos fármacos , Tubocurarina/administração & dosagem , Tubocurarina/farmacologia , Vasodilatação/efeitos dos fármacos
17.
Analyst ; 137(1): 263-8, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22046583

RESUMO

A potential binding assay based on binding-driven micromechanical motion is described. Acetylcholine binding protein (AChBP) was used to modify a microcantilever. The modified microcantilever was found to bend on application of the naturally occurring agonist (acetylcholine) or the antagonist (nicotine and d-tubocurarine). Control experiments show that microcantilevers modified without AChBP do not respond to acetylcholine, nicotine, and d-tubocurarine. K(d) values obtained for acetylcholine, nicotine, and d-tubocurarine are similar to those obtained from radio-ligand binding assays. These results suggest that the microcantilever system has potential for use in label free, drug screening applications.


Assuntos
Acetilcolina/análise , Técnicas Biossensoriais/métodos , Descoberta de Drogas/métodos , Sistemas Microeletromecânicos/métodos , Acetilcolina/agonistas , Acetilcolina/metabolismo , Técnicas Biossensoriais/instrumentação , Ligantes , Sistemas Microeletromecânicos/instrumentação , Nicotina/análise , Nicotina/metabolismo , Antagonistas Nicotínicos/análise , Antagonistas Nicotínicos/metabolismo , Ligação Proteica , Ensaio Radioligante/métodos , Coloração e Rotulagem , Tubocurarina/análise , Tubocurarina/metabolismo
18.
J Neurosci ; 31(37): 13323-32, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917815

RESUMO

Acetylcholine (ACh) is well known to be involved in the control of breathing. However, no information is available on the role of ACh receptors (AChRs) within the lamprey respiratory network. The present study was performed on in vitro brainstem preparations of adult lampreys to investigate whether ACh affects respiratory activity possibly through an action on the paratrigeminal respiratory group (pTRG) that has been identified as an essential component of the respiratory network. Respiratory activity was monitored as vagal motor output. Bath application of 100 µM physostigmine or 1 µM nicotine increased respiratory frequency, while bath application of 100 µM D-tubocurarine or 0.25 µM α-bungarotoxin reduced respiratory frequency and increased the duration of vagal bursts. Since these effects were mimicked by microinjections of the same drugs into the pTRG, ACh proved to influence respiratory activity by acting on α7 nicotinic AChRs located within the pTRG. During apnea caused by partial blockade of ionotropic glutamate receptors at the level of the pTRG, bath application of bicuculline and strychnine restored the respiratory rhythm, although at reduced frequency. Similar results were obtained by the concurrent removal of both fast synaptic excitatory and inhibitory transmission. Blockade of pTRG α7 nicotinic AChRs suppressed this respiratory activity, thus indicating that pTRG neurons expressing these receptors contribute to respiratory rhythm generation. Together, these findings identify a novel cholinergic modulatory and possibly subsidiary rhythmogenic mechanism within the respiratory network of the adult lamprey and encourage further studies on the respiratory role of cholinergic receptors in different animal species.


Assuntos
Tronco Encefálico/fisiologia , Receptores Nicotínicos/fisiologia , Centro Respiratório/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Tronco Encefálico/efeitos dos fármacos , Bungarotoxinas/farmacologia , Lampreias , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Fisostigmina/farmacologia , Respiração/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Estricnina/farmacologia , Tubocurarina/farmacologia , Nervo Vago/fisiologia , Receptor Nicotínico de Acetilcolina alfa7
19.
PLoS Biol ; 9(3): e1001034, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468359

RESUMO

Cys-loop receptors (CLR) are pentameric ligand-gated ion channels that mediate fast excitatory or inhibitory transmission in the nervous system. Strychnine and d-tubocurarine (d-TC) are neurotoxins that have been highly instrumental in decades of research on glycine receptors (GlyR) and nicotinic acetylcholine receptors (nAChR), respectively. In this study we addressed the question how the molecular recognition of strychnine and d-TC occurs with high affinity and yet low specificity towards diverse CLR family members. X-ray crystal structures of the complexes with AChBP, a well-described structural homolog of the extracellular domain of the nAChRs, revealed that strychnine and d-TC adopt multiple occupancies and different ligand orientations, stabilizing the homopentameric protein in an asymmetric state. This introduces a new level of structural diversity in CLRs. Unlike protein and peptide neurotoxins, strychnine and d-TC form a limited number of contacts in the binding pocket of AChBP, offering an explanation for their low selectivity. Based on the ligand interactions observed in strychnine- and d-TC-AChBP complexes we performed alanine-scanning mutagenesis in the binding pocket of the human α1 GlyR and α7 nAChR and showed the functional relevance of these residues in conferring high potency of strychnine and d-TC, respectively. Our results demonstrate that a limited number of ligand interactions in the binding pocket together with an energetic stabilization of the extracellular domain are key to the poor selective recognition of strychnine and d-TC by CLRs as diverse as the GlyR, nAChR, and 5-HT(3)R.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Estrutura Molecular , Conformação Proteica , Estricnina/química , Tubocurarina/química , Animais , Aplysia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Glicinérgicos/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese , Fármacos Neuromusculares não Despolarizantes/química , Ligação Proteica
20.
Clin Exp Pharmacol Physiol ; 38(3): 164-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21208254

RESUMO

1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 µmol/L)-, cisatracurium (0.32 µmol/L)- and vecuronium (0.36 µmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 µmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.


Assuntos
Inibidores da Colinesterase/farmacologia , Fármacos Neuromusculares/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptores Pré-Sinápticos/metabolismo , Acetilcolina/metabolismo , Animais , Atracúrio/análogos & derivados , Atracúrio/farmacologia , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Estimulação Elétrica/métodos , Hexametônio/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Pancurônio/farmacologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/metabolismo , Ratos , Ratos Wistar , Receptor Muscarínico M2/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Triazinas/farmacologia , Triazóis/farmacologia , Tubocurarina/farmacologia , Brometo de Vecurônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA