Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 51(10): 1071-1078, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559428

RESUMO

Pine wilt disease, caused by the pine wood nematode Bursaphelenchus xylophilus, leads to severe damage to pine forests in China. In our previous study, effectors secreted by this pathogen were shown to play roles in the different infection stages of pine wilt disease, and a series of candidate effectors were predicted by transcriptome sequencing. This study identified and characterized a novel effector, BxSapB3, which was among these candidate effectors. Agrobacterium-mediated transient expression was used to identify BxSapB3. BxSapB3 was secreted by B. xylophilus and found to be capable of inducing cell death in Nicotiana benthamiana. Quantitative real-time PCR (qRT-PCR) analysis revealed that BxSapB3 was upregulated in a highly virulent strain of B. xylophilus and expressed at lower levels in a weakly virulent strain at the early stages of infection. When BxSapB3 was silenced in B. xylophilus, the process of infection was delayed. These results indicate that BxSapB3 acts as an effector and contributes to virulence at the early stages of B. xylophilus infection.


Assuntos
Proteínas de Helminto/genética , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Animais , Expressão Gênica , Interferência de RNA , Tylenchida/patogenicidade , Fatores de Virulência/genética
2.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626082

RESUMO

The pine wood nematode (PWN), Bursaphelenchus xylophilus, is the pathogen of pine wilt disease (PWD), resulting in huge losses in pine forests. However, its pathogenic mechanism remains unclear. The cathepsin L-like cysteine proteinase (CPL) genes are multifunctional genes related to the parasitic abilities of plant-parasitic nematodes, but their functions in PWN remain unclear. We cloned three cpl genes of PWN (Bx-cpls) by rapid amplification of cDNA ends (RACE) and analyzed their characteristics using bioinformatic methods. The tissue specificity of cpl gene of PWN (Bx-cpl) was studied using in situ mRNA hybridization (ISH). The functions of Bx-cpls in development and pathogenicity were investigated using real-time quantitative PCR (qPCR) and RNA interference (RNAi). The results showed that the full-length cDNAs of Bx-cpl-1, Bx-cpl-2, and Bx-cpl-3 were 1163 bp, 1305 bp, and 1302 bp, respectively. Bx-cpls could accumulate specifically in the egg, intestine, and genital system of PWN. During different developmental stages of PWN, the expression of Bx-cpls in the egg stage was highest. After infection, the expression levels of Bx-cpls increased and reached their highest at the initial stage of PWD, then declined gradually. The silencing of Bx-cpl could reduce the feeding, reproduction, and pathogenicity of PWN. These results revealed that Bx-cpls play multiple roles in the development and pathogenic processes of PWN.


Assuntos
Catepsina L/genética , Pinus/parasitologia , Tylenchida/crescimento & desenvolvimento , Tylenchida/patogenicidade , Animais , Catepsina L/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Doenças das Plantas/parasitologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/genética , Análise de Sequência de DNA , Tylenchida/enzimologia , Tylenchida/genética
3.
Mol Plant Microbe Interact ; 32(4): 452-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30351223

RESUMO

The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Morte Celular , China , Pinus/parasitologia , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
4.
PLoS One ; 12(3): e0172190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257464

RESUMO

During sampling of several Coffea arabica plantations in Tanzania severe root galling, caused by a root-knot nematode was observed. From pure cultures, morphology and morphometrics of juveniles and females matched perfectly with Meloidogyne africana, whereas morphology of the males matched identically with those of Meloidogyne decalineata. Based on their Cox1 sequence, however, the recovered juveniles, females and males were confirmed to belong to the same species, creating a taxonomic conundrum. Adding further to this puzzle, re-examination of M. oteifae type material showed insufficient morphological evidence to maintain its status as a separate species. Consequently, M. decalineata and M. oteifae are synonymized with M. africana, which is herewith redescribed based on results of light and scanning electron microscopy, ribosomal and mitochondrial DNA sequences, isozyme electrophoresis, along with bionomic and cytogenetic features. Multi-gene phylogenetic analysis placed M. africana outside of the three major clades, together with M. coffeicola, M. ichinohei and M. camelliae. This phylogenetic position was confirmed by several morphological features, including cellular structure of the spermatheca, egg mass position, perineal pattern and head shape. Moreover, M. africana was found to be a polyphagous species, demonstrating that "early-branching" Meloidogyne spp. are not as oligophagous as had previously been assumed. Cytogenetic information indicates M. africana (2n = 21) and M. ardenensis (2n = 51-54) to be a triploid mitotic parthenogenetic species, revealing at least four independent origins of mitotic parthenogenesis within the genus Meloidogyne. Furthermore, M. mali (n = 12) was found to reproduce by amphimixis, indicating that amphimictic species with a limited number of chromosomes are widespread in the genus, potentially reflecting the ancestral state of the genus. The wide variation in chromosome numbers and associated changes in reproduction modes indicate that cytogenetic evolution played a crucial role in the speciation of root-knot nematodes and plant-parasitic nematodes in general.


Assuntos
Coffea/parasitologia , Ciclo-Oxigenase 1/genética , Evolução Molecular , Filogenia , Tylenchida/genética , Animais , Classificação , DNA Mitocondrial/genética , Variação Genética , Raízes de Plantas/parasitologia , Especificidade da Espécie , Tanzânia , Tylenchida/patogenicidade
5.
Exp Parasitol ; 128(2): 121-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21371475

RESUMO

The cloning and characterization of a cDNA encoding a calreticulin from the pinewood nematode Bursaphelenchus xylophilus is described herein. The full-length cDNA (Bx-crt-1) contained a 1200 bp open reading frame that could be translated to a 399 amino acid polypeptide. The deduced protein contained highly conserved regions of a calreticulin gene and had 66.2-70.1% amino acid sequence identity to other calreticulin sequences from nematodes. RNAi, RT-PCR amplification, and southern blot suggest that Bx-crt-1 may be important for the development of B. xylophilus.


Assuntos
Calreticulina/genética , DNA Complementar/genética , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Sequência de Aminoácidos , Animais , Southern Blotting , Calreticulina/química , Calreticulina/metabolismo , Clonagem Molecular , Primers do DNA , DNA Complementar/química , DNA de Helmintos/química , DNA de Helmintos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Interferência de RNA , RNA de Helmintos/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Tylenchida/química , Tylenchida/patogenicidade
6.
Theor Appl Genet ; 121(7): 1253-66, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20559815

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pest of soybean worldwide. Host plant resistance is an effective approach to control this pest. Plant introduction PI 567516C has been reported to be highly resistant to multiple-HG types of SCN. The objectives of this study were to identify and map novel quantitative trait loci (QTL) for SCN resistance to six HG types (also known as races 1, 2, 3, 5, 14, and LY1). Mapping was conducted using 250 F(2:3) progeny derived from a Magellan (susceptible) × PI 567516C (resistant) cross. F(6:7) recombinant inbred lines (RILs) developed from the F(2:3) progeny were employed to confirm the putative QTL identified. A total of 927 polymorphic simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) markers were genotyped. Following the genetic linkage analysis, permutation tests and composite interval mapping were performed to identify and map QTL. Four QTL were associated with resistance to either multiple- or single-SCN HG types. Two QTL for resistance to multiple-SCN HG types were mapped to Chromosomes 10 and 18 and have not been reported in other SCN resistance sources. New QTL were confirmed by analysis of 250 F(6:7) RILs from the same population. SSR and SNP markers closely associated with these QTL can be useful for the development of near-isogenic lines for fine-mapping and positional cloning of candidate genes for SCN resistance.


Assuntos
Glycine max/genética , Glycine max/parasitologia , Locos de Características Quantitativas/genética , Tylenchida/patogenicidade , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Ligação Genética , Genótipo , Interações Hospedeiro-Parasita/genética , Repetições Minissatélites/genética , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Polimorfismo de Nucleotídeo Único
7.
Transgenic Res ; 14(5): 665-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16245157

RESUMO

Serine proteinase inhibitors (IP's) are proteins found naturally in a wide range of plants with a significant role in the natural defense system of plants against herbivores. The question addressed in the present study involves assessing the ability of the serine proteinase inhibitor in combating nematode infestation. The present study involves engineering a plant serine proteinase inhibitor (pin2) gene into T. durum PDW215 by Agrobacterium-mediated transformation to combat cereal cyst nematode (Heterodera avenae) infestation. Putative T(0) transformants were screened and positive segregating lines analysed further for the study of the stable integration, expression and segregation of the genes. PCR, Southern analysis along with bar gene expression studies corroborate the stable integration pattern of the respective genes. The transformation efficiency is 3%, while the frequency of escapes was 35.71%. chi(2) analysis reveals the stable integration and segregation of the genes in both the T(1) and T(2) progeny lines. The PIN2 systemic expression confers satisfactory nematode resistance. The correlation analysis suggests that at p < 0.05 level of significance the relative proteinase inhibitor (PI) values show a direct positive correlation vis-à-vis plant height, plant seed weight and also the seed number.


Assuntos
Solanum tuberosum/genética , Triticum/genética , Triticum/parasitologia , Tylenchida/patogenicidade , Animais , Sequência de Bases , DNA Recombinante/genética , Expressão Gênica , Genes de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Inibidores de Proteases/metabolismo , Transformação Genética
8.
J Microbiol ; 43(1): 17-20, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15765052

RESUMO

Poria cocos, a famous traditional Chinese medicine, was found to have nematicidal activity in experiments searching for nematicidal fungi. The experiment showed it could kill 94.9% of the saprophytic nematode, Panagrellus redivivue, 92.6% of the root-knot nematode, Meloidogyne arenaria, and 93.5% of the pine nematode, Bursaphelenchus xylophilus, on PDA plate within 12 hours. According to the nematicidal activity, three new compounds, 2, 4, 6-triacetylenic octane diacid, 2, 4, 5, 6-tetrahydroxyhexanoic acid and 3, 4-dihydroxy-2-keto-n-butyl 2,4,5,6-tetrahydroxyhexanate, were isolated from submerged cultures of Poria cocos. Of these, 2, 4, 6-triacetylenic octane diacid could kill 83.9% Meloidogyne arenaria and 73.4% Panagrellus redivivus at 500 ppm within 12 hours. Here, it is reported for the first time that Poria cocos has nematicidal activity.


Assuntos
Antinematódeos/isolamento & purificação , Polyporales/química , Animais , Antinematódeos/química , Antinematódeos/farmacologia , Medicina Tradicional Chinesa , Doenças das Plantas/parasitologia , Plantas/parasitologia , Rabditídios/efeitos dos fármacos , Rabditídios/patogenicidade , Tylenchida/efeitos dos fármacos , Tylenchida/patogenicidade , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/patogenicidade
9.
Mol Plant Microbe Interact ; 18(2): 158-68, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15720085

RESUMO

The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Doenças das Plantas/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Tylenchida/patogenicidade , Animais , Genes de Plantas , Imunidade Inata/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Solanum tuberosum/parasitologia
10.
Int J Syst Evol Microbiol ; 53(Pt 1): 197-200, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12656173

RESUMO

Taxonomically relevant characteristics of a fastidiously Gram-positive, obligately endoparasitic prokaryote (strain S-1) that uses the phytoparasitic sting nematode Belonolaimus longicaudatus as its host are reviewed. 16S rDNA sequence similarity (> or = 93%) confirms its congeneric ranking with other Pasteuria species and strains from nematodes and cladocerans and corroborates morphological, morphometric and host range evidence suggesting a novel taxon. The 16S rDNA sequence of strain S-1 has greatest similarity (96%) to the 16S rDNA sequences of both Pasteuria penetrans from root-knot nematodes (Meloidogyne species) and the recently reported strain of Pasteuria isolated from the soybean cyst nematode Heterodera glycines. Because the obligately endoparasitic nature of prokaryotes in the genus Pasteuria prevents isolation of definitive type strains, strain S-1 is proposed as 'Candidatus Pasteuria usgae' sp. nov.


Assuntos
Bactérias Gram-Positivas Formadoras de Endosporo/classificação , Bactérias Gram-Positivas Formadoras de Endosporo/patogenicidade , Tylenchida/microbiologia , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Bactérias Gram-Positivas Formadoras de Endosporo/genética , Dados de Sequência Molecular , Filogenia , Plantas/parasitologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Tylenchida/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA