Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961768

RESUMO

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Assuntos
Retículo Endoplasmático , Tylenchoidea , Animais , Retículo Endoplasmático/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Imunidade Vegetal , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia , Interações Hospedeiro-Parasita
2.
Plant Cell Rep ; 43(7): 178, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907748

RESUMO

KEY MESSAGE: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.


Assuntos
Doenças das Plantas , Plantas Geneticamente Modificadas , Interferência de RNA , Solanum melongena , Tylenchoidea , Animais , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia , Solanum melongena/genética , Solanum melongena/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Parasita/genética
3.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693568

RESUMO

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Assuntos
Arabidopsis , Complexo III da Cadeia de Transporte de Elétrons , Imunidade Vegetal , Plastídeos , Espécies Reativas de Oxigênio , Tylenchoidea , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/parasitologia , Arabidopsis/imunologia , Arabidopsis/genética , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Animais , Plastídeos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Proteica , Mutação/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética
4.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733408

RESUMO

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Assuntos
Glycine max , Doenças das Plantas , Salicilatos , Tylenchoidea , Animais , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salicilatos/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade
5.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695657

RESUMO

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Assuntos
Glycine max , Doenças das Plantas , Transdução de Sinais , Tylenchoidea , Glycine max/parasitologia , Glycine max/genética , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética
6.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516730

RESUMO

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/parasitologia , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/metabolismo , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Botrytis/fisiologia , Botrytis/patogenicidade , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Imunidade Vegetal , Interações Hospedeiro-Parasita , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
7.
Braz. j. biol ; 84: e253451, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345553

RESUMO

Abstract Root-knot nematode Meloidogyne incognita is among the biotic factors which has greatly affected both the yield and the quality of the tomato crop. The egg parasitic nematode, Purpureocillium lilacinum (Pl) is considered as one of the most promising agents in controlling and overcoming this plant pathogen. The nematicidal effect of the native isolate Pl AUMC 10149 on second stage juvenile's survival and egg hatching of M. incognita at different times of exposure was tested in vitro. The obtained data showed that Pl gave a maximum percentage of J2 mortality (97.6%) and egg hatching inhibition (79.8%) after 72 hours of exposure. The potentiality of Pl as well as Bio-Nematon to control M. incognita infecting tomato was conducted using different times of application in vivo. Nine treatments with five replicates were used for such bioagents compared with the nematicide Oxamyl. Each seedling was inoculated with 1000 J2s of nematode/pot and 10 mL of Pl (1x1010 CFU/mL) or Bio-Nematon spore suspension (1x108 CFU/mL) 10mL/pot. The results indicated that the most effective treatments in reducing nematode population, number of galls and egg masses of M. incognita in plant roots was performed with treatment by Pl pre-planting and post-infection with Pl (Rf 1.9) giving a significant enhancement in plant length (64.9%), fresh weight (72.52%) and shoot dry weight (163.41%) without negatively impacting environment. Therefore, the present study confirmed that using P. lilacinum AUMC 10149 can be used as a practical supplement to environmentally friendly disease management of root-knot nematodes in Egypt.


Resumo O nematoide-das-galhas Meloidogyne incognita está entre os fatores bióticos que afetaram enormemente a produção e a qualidade da cultura do tomate. O nematoide parasita de ovos, Purpureocillium lilacinum (Pl), é considerado um dos mais promissores agentes no controle e superação desse fitopatógeno. O efeito nematicida do isolado nativo Pl AUMC 10149 na sobrevivência de juvenis de segundo estágio e na eclosão dos ovos de M. incognita em diferentes momentos de exposição foi testado in vitro. Os dados obtidos mostraram que o Pl deu um percentual máximo de mortalidade de J2 (97.6%) e inibição da eclosão dos ovos (79.8%) após 72 horas de exposição. A potencialidade de Pl e de Bio-Nematon para controlar M. incognita infectando tomate foi conduzida em diferentes tempos de aplicação in vivo. Nove tratamentos com cinco repetições foram usados ​​para tais bioagentes em comparação com o nematicida Oxamyl. Cada muda foi inoculada com 1.000 J2s de nematoide / vaso e 10 mL de Pl (1×1010 CFU/mL). Ou suspensão de esporos Bio-Nematon (1×108 CFU/mL) 10mL/pot. Os resultados indicaram que os tratamentos mais eficazes na redução da população de nematoides, número de galhas e desovas de M. incognita nas raízes das plantas foram realizados com Pl pré-plantio e pós-infecção com Pl (Rf 1.9), dando um aumento significativo no comprimento da planta (64.9%), massa fresca (72.52%) e massa seca da parte aérea (163.41%) sem impactar negativamente o meio ambiente. Portanto, o presente estudo confirmou que o uso de P. lilacinum AUMC 10149 pode ser usado como um suplemento prático para o manejo ecologicamente correto de nematoides-das-galhas no Egito.


Assuntos
Animais , Tylenchoidea/patogenicidade , Solanum lycopersicum/parasitologia , Agentes de Controle Biológico , Hypocreales
8.
Planta ; 258(2): 40, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420105

RESUMO

MAIN CONCLUSION: Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tylenchoidea/patogenicidade
9.
Planta ; 254(6): 112, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727239

RESUMO

MAIN CONCLUSION: Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity. Potato cyst nematode (PCN) is a plant root sedentary endoparasite, specialized in the infection of solanaceous species such as potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Earlier reports (Mulder et al. in Hatching agent for the potato cyst nematode, Patent application No. PCT/NL92/00126, 1996; Schenk et al. in Croat Chem Acta 72:593-606, 1999) showed that solanoeclepin A (SolA), a triterpenoid metabolite that was isolated from the root exudate of potato, induces the hatching of PCN. Its low concentration in potato root exudate has hindered progress in fully understanding its hatching inducing activity and exploitation in the control of PCN. To further investigate the role of SolA in hatching of PCN, the establishment of a highly sensitive analytical method is a prerequisite. Here we present the efficient single-step extraction and UHPLC-MS/MS based analysis for rapid determination of SolA in sub-nanomolar concentrations in tomato root exudate. This method was used to analyze SolA production in different tomato cultivars and related solanaceous species, including the trap crop Solanum sisymbriifolium. Hatching assays with PCN, Globodera pallida, with root exudates of tomato genotypes revealed a significant positive correlation between SolA concentration and hatching activity. Our results demonstrate that there is natural variation in SolA production within solanaceous species and that this has an effect on PCN hatching. The analytical method we have developed can potentially be used to support breeding for crop genotypes that induce less hatching and may therefore display reduced infection by PCN.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Hexanos/química , Doenças das Plantas/parasitologia , Solanum tuberosum , Tylenchoidea , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Exsudatos e Transudatos , Melhoramento Vegetal , Raízes de Plantas/química , Solanum tuberosum/química , Espectrometria de Massas em Tandem , Tylenchoidea/patogenicidade
10.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830457

RESUMO

Heterodera schachtii is a well-known cyst nematode that causes serious economic losses in sugar beet production every year. Rapid and visual detection of H. schachtii is essential for more effective prevention and control. In this study, a species-specific recombinase polymerase amplification (RPA) primer was designed from a specific H. schachtii sequence-characterized amplified region (SCAR) marker. A band was obtained in reactions with DNA from H. schachtii, but absent from nontarget cyst nematodes. The RPA results could be observed by the naked eye, using a lateral flow dipstick (LFD). Moreover, we combined CRISPR technology with RPA to identify positive samples by fluorescence detection. Sensitivity analysis indicated that 10-4 single cysts and single females, 4-3 single second-stage juveniles, and a 0.001 ng genomic DNA template could be detected. The sensitivity of the RPA method for H. schachtii detection is not only higher than that of PCR and qPCR, but can also provide results in <1 h. Consequently, the RPA assay is a practical and useful diagnostic tool for early diagnosis of plant tissues infested by H. schachtii. Sugar beet nematodes were successfully detected in seven of 15 field sugar beet root samples using the RPA assay. These results were consistent with those achieved by conventional PCR, indicating 100% accuracy of the RPA assay in field samples. The RPA assay developed in the present study has the potential for use in the direct detection of H. schachtii infestation in the field.


Assuntos
Proteínas de Bactérias/genética , Beta vulgaris/parasitologia , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases/genética , Tylenchoidea/isolamento & purificação , Animais , Beta vulgaris/genética , Técnicas de Amplificação de Ácido Nucleico , Recombinases/química , Recombinases/genética , Tylenchoidea/genética , Tylenchoidea/patogenicidade
11.
Plant Mol Biol ; 107(3): 129-146, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596818

RESUMO

KEY MESSAGES: We reported an NBS-LRR gene, PsoRPM3, is highly expressed following RKN infection, initiating an HR response that promotes plant resistance. Meloidogyne spp. are root-knot nematodes (RKNs) that cause substantial economic losses worldwide. Screening for resistant tree resources and identifying plant resistance genes is currently the most effective way to prevent RKN infestations. Here, we cloned a novel TIR-NB-LRR-type resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz.) and demonstrated that its protein product localized to the nucleus. In response to Meloidogyne incognita infection, PsoRPM3 gene expression levels were significantly higher in resistant myrobalan plum plants compared to susceptible plants. We investigated this difference, discovering that the - 309 to - 19 bp region of the susceptible PsoRPM3 promoter was highly methylated. Indeed, heterologous expression of PsoRPM3 significantly enhanced the resistance of susceptible tobacco plants to M. incognita. Moreover, transient expression of PsoRPM3 induced a hypersensitive response in tobacco, whereas RNAi-mediated silencing of PsoRPM3 in transgenic tobacco reduced this hypersensitive response. Several hypersensitive response marker genes were considerably up-regulated in resistant myrobalan plum plants when compared with susceptible counterparts inoculated with M. incognita. PsoPR1a (a SA marker gene), PsoPR2 (a JA marker gene), and PsoACS6 (an ET signaling marker gene) were all more highly expressed in resistant than in susceptible plants. Together, these results support a model in which PsoRPM3 is highly expressed following RKN infection, initiating an HR response that promotes plant resistance through activated salicylic acid, jasmonic acid, and ethylene signaling pathways.


Assuntos
Nicotiana/genética , Nicotiana/parasitologia , Proteínas de Plantas/genética , Prunus/genética , Tylenchoidea/patogenicidade , Animais , Clonagem Molecular , Metilação de DNA , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Nicotiana/imunologia
12.
Plant Cell Rep ; 40(12): 2287-2302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34387737

RESUMO

KEY MESSAGE: This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.


Assuntos
Proteínas de Helminto/genética , Interações Hospedeiro-Parasita/genética , Nicotiana/genética , Interferência de RNA , Tylenchoidea/genética , Animais , Feminino , Inativação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Plantas Geneticamente Modificadas/genética , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes , Nicotiana/parasitologia , Tylenchoidea/patogenicidade , Vigna/genética , Vigna/parasitologia
13.
Plant J ; 107(6): 1681-1696, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231270

RESUMO

Plant expansins are structural cell wall-loosening proteins implicated in several developmental processes and responses to environmental constraints and pathogen infection. To date, there is limited information about the biological function of expansins-like B (EXLBs), one of the smallest and less-studied subfamilies of plant expansins. In the present study, we conducted a functional analysis of the wild Arachis AdEXLB8 gene in transgenic tobacco (Nicotiana tabacum) plants to clarify its putative role in mediating defense responses to abiotic and biotic stresses. First, its cell wall localization was confirmed in plants expressing an AdEXLB8:eGFP fusion protein, while nanomechanical assays indicated cell wall reorganization and reassembly due to AdEXLB8 overexpression without compromising the phenotype. We further demonstrated that AdEXLB8 increased tolerance not only to isolated abiotic (drought) and biotic (Sclerotinia sclerotiorum and Meloidogyne incognita) stresses but also to their combination. The jasmonate and abscisic acid signaling pathways were clearly favored in transgenic plants, showing an activated antioxidative defense system. In addition to modifications in the biomechanical properties of the cell wall, we propose that AdEXLB8 overexpression interferes with phytohormone dynamics leading to a defense primed state, which culminates in plant defense responses against isolated and combined abiotic and biotic stresses.


Assuntos
Arachis/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Animais , Ascomicetos/patogenicidade , Fenômenos Biomecânicos , Parede Celular/genética , Parede Celular/metabolismo , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/microbiologia , Tylenchoidea/patogenicidade
14.
Sci Rep ; 11(1): 14114, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34239009

RESUMO

Plant-parasitic nematodes wreak havoc on crops by root parasitism worldwide. An approach to combat nematode root parasitism is the application of antagonistic microbes like the rhizobacterium Bacillus firmus I-1582 which is promoted as biological control agent. Although B. firmus is a known nematode antagonist in general, the underlying mechanisms about its interaction with nematodes and plants have not yet been elucidated. Therefore, we explored the influence of B. firmus I-1582 as well as its extracellular and secreted molecules on plant-nematode interaction utilizing the plant-pathogen system Arabidopsis thaliana-Heterodera schachtii. We demonstrated that B. firmus I-1582 is attracted by A. thaliana root exudates, particularly by those of young plants. The bacterium colonized the root and showed a strictly pH-dependent development and plant growth promotion effect. Our results revealed that root colonization by B. firmus I-1582 significantly protected A. thaliana from infestation by the beet cyst nematode whereas dead bacterial cells or the culture supernatant were not effective. The bacterium also negatively affected nematode reproduction as well as pathogenicity and development of next generation nematodes. The obtained results highlight B. firmus I-1582 as a promising biocontrol agent that is well suited as an element of integrated control management strategies in sustainable agriculture.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Bacillus firmus/fisiologia , Desenvolvimento Vegetal , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Quimiotaxia , Concentração de Íons de Hidrogênio , Exsudatos de Plantas , Raízes de Plantas/parasitologia , Tylenchoidea/patogenicidade , Virulência
15.
Nat Commun ; 12(1): 3380, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099714

RESUMO

Plant-parasitic nematodes (PPNs) are economically important pests of agricultural crops, and soybean cyst nematode (SCN) in particular is responsible for a large amount of damage to soybean. The need for new solutions for controlling SCN is becoming increasingly urgent, due to the slow decline in effectiveness of the widely used native soybean resistance derived from genetic line PI 88788. Thus, developing transgenic traits for controlling SCN is of great interest. Here, we report a Bacillus thuringiensis delta-endotoxin, Cry14Ab, that controls SCN in transgenic soybean. Experiments in C. elegans suggest the mechanism by which the protein controls nematodes involves damaging the intestine, similar to the mechanism of Cry proteins used to control insects. Plants expressing Cry14Ab show a significant reduction in cyst numbers compared to control plants 30 days after infestation. Field trials also show a reduction in SCN egg counts compared with control plants, demonstrating that this protein has excellent potential to control PPNs in soybean.


Assuntos
Toxinas de Bacillus thuringiensis/genética , Produtos Agrícolas/parasitologia , Resistência à Doença/genética , Endotoxinas/genética , Glycine max/parasitologia , Proteínas Hemolisinas/genética , Tylenchoidea/patogenicidade , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/metabolismo , Bioensaio , Caenorhabditis elegans , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Endotoxinas/metabolismo , Feminino , Engenharia Genética , Proteínas Hemolisinas/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/isolamento & purificação
16.
Phytopathology ; 111(11): 2100-2109, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33851860

RESUMO

Soybean cyst nematode (SCN; Heterodera glycines) continues to be the greatest threat to soybean production in the United States. Because host resistance is the primary strategy used to control SCN, knowledge of SCN virulence phenotypes (HG types) is necessary for choosing sources of resistance for SCN management. To characterize SCN virulence phenotypes in North Dakota, a total of 419 soybean fields across 22 counties were sampled during 2015, 2016, and 2017. SCN was detected in 42% of the fields sampled, and population densities in these samples ranged from 30 to 92,800 eggs and juveniles per 100 cm3 of soil. The SCN populations from some of the infested fields were virulence-phenotyped with seven soybean indicator lines and a susceptible check ('Barnes') using the HG type tests. Overall, 73 SCN field populations were successfully virulence-phenotyped. The HG types detected in North Dakota were HG types 0 (frequency rate: 36%), 7 (27%), 2.5.7 (19%), 5.7 (11%), 1.2.5.7 (4%), and 2.7 (2%). However, before this study only HG type 0 was detected in North Dakota. The designation of each of these HG types detected was also validated by repeating the HG type tests for 33 arbitrarily selected samples. This research for the first time reports several new HG types detected in North Dakota and confirms that the virulence of SCN populations is shifting and overcoming resistance, highlighting the necessity of using different resistance sources, rotating resistance sources, and identifying novel resistance sources for SCN management in North Dakota.


Assuntos
Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea , Animais , North Dakota , Fenótipo , Tylenchoidea/patogenicidade , Virulência
17.
J Appl Genet ; 62(1): 93-98, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33403645

RESUMO

Yield losses because of cereal cyst nematodes could be as high as 92%, causing a bottleneck for wheat production. An integrated approach (application of pesticides, crop rotation, and use of host resistance) is needed to manage this devastating pathogen where resistant cultivars are considered most effective. This necessitates the identification of nematode-resistant sources in the available germplasm. Here, we report on the genetic mapping of nematode resistance in 255 diverse prebreeding lines (PBLs) employing an association mapping strategy. Altogether, seven additive quantitative trait loci (QTL) were identified on chromosomes 1A, 2A, 2B, 2D, 3A, 6B, and 6D explaining a maximum of 9.42% phenotypic variation where at least five QTL (on chromosomes 2A, 2B, 2D, 6B, and 6D) are located on the same chromosomes that harbor the already known nematode resistance genes. Resistant PBLs carried Aegilops squarrosa (436) in their pedigree which could be the possible source of positive alleles. To add to it, better yield performance of the identified nematode-resistant lines under stress conditions indicates that the germplasm can provide both nematode resistance and high-yielding cultivars.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/parasitologia , Triticum/genética , Tylenchoidea , Animais , Grão Comestível/genética , Grão Comestível/parasitologia , Estudos de Associação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/parasitologia , Tylenchoidea/patogenicidade
18.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339262

RESUMO

Protein disulfide isomerase (PDI) is a multifunctional enzyme that catalyzes rate-limiting reactions such as disulfide bond formation, isomerization, and reduction. There is some evidence that indicates that PDI is also involved in host-pathogen interactions in plants. In this study, we show that the rice root-knot nematode, Meloidogyne graminicola, has evolved a secreted effector, MgPDI2, which is expressed in the subventral esophageal glands and up-regulated during the early parasitic stage of M. graminicola. Purified recombinant MgPDI2 functions as an insulin disulfide reductase and protects plasmid DNA from nicking. As an effector, MgPDI2 contributes to nematode parasitism. Silencing of MgPDI2 by RNA interference in the pre-parasitic second-stage juveniles (J2s) reduced M. graminicola multiplication and also increased M. graminicola mortality under H2O2 stress. In addition, an Agrobacterium-mediated transient expression assay found that MgPDI2 caused noticeable cell death in Nicotiana benthamiana. An intact C-terminal region containing the first catalytic domain (a) with an active motif (Cys-Gly-His-Cys, CGHC) and the two non-active domains (b and b') is required for cell death induction in N. benthamiana. This research may provide a promising target for the development of new strategies to combat M. graminicola infections.


Assuntos
Proteínas de Helminto/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Tylenchoidea/enzimologia , Animais , Domínio Catalítico , Proteínas de Helminto/química , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Insulina/metabolismo , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Nicotiana/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade
19.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317090

RESUMO

Defensins are small and rather ubiquitous cysteine-rich anti-microbial peptides. These proteins may act against pathogenic microorganisms either directly (by binding and disrupting membranes) or indirectly (as signaling molecules that participate in the organization of the cellular defense). Even though defensins are widespread across eukaryotes, still, extensive nucleotide and amino acid dissimilarities hamper the elucidation of their response to stimuli and mode of function. In the current study, we screened the Solanum lycopersicum genome for the identification of defensin genes, predicted the relating protein structures, and further studied their transcriptional responses to biotic (Verticillium dahliae, Meloidogyne javanica, Cucumber Mosaic Virus, and Potato Virus Y infections) and abiotic (cold stress) stimuli. Tomato defensin sequences were classified into two groups (C8 and C12). Our data indicate that the transcription of defensin coding genes primarily depends on the specific pathogen recognition patterns of V. dahliae and M. javanica. The immunodetection of plant defensin 1 protein was achieved only in the roots of plants inoculated with V. dahliae. In contrast, the almost null effects of viral infections and cold stress, and the failure to substantially induce the gene transcription suggest that these factors are probably not primarily targeted by the tomato defensin network.


Assuntos
Defensinas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Animais , Resposta ao Choque Frio , Defensinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Proteínas de Plantas/metabolismo , Ativação Transcricional , Tylenchoidea/patogenicidade , Verticillium/patogenicidade
20.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32955612

RESUMO

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Assuntos
Hordeum/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Ácaros/patogenicidade , Folhas de Planta/metabolismo , Tylenchoidea/patogenicidade , Animais , Cloroplastos/parasitologia , Cloroplastos/ultraestrutura , Enzimas/metabolismo , Hordeum/fisiologia , Fenóis/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA